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Graph structures are prevalent
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Wu, et al. A comprehensive survey on graph neural networks. TNNLS 2021.



Learning from graph structures
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Semantics on graphs: Text-Attributed Graphs
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Can we integrate graph structures and textual semantics within one model?



Can GNNs or graph transformers utilize textual
attributes? Yes, but ineffective
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How are language-image models trained?
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CLIP: Contrastive Language-Image Pre-training
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Radford et al. Learning Transferable Visual Models From Natural Language Supervision. OpenAl 2021.



Graph-grounded pre-training and prompting (G2P2)

Papers grounded on a citation network
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Learns a dual-modal embedding
space by jointly pre-training a text
encoder and graph encoder

Exploits three contrastive losses
o Lq: Text-node contrast

o L,: Text-summary contrast

o L3: Node-summary contrast

Wen et al. Augmenting Low-Resource Text Classification with Graph-Grounded Pre-training and Prompting. SIGIR 2023.



Graph-grounded pre-training and prompting (G2P2)
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Datasets to evaluate G2P2
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Dataset Cora Art  Industrial M.I
# Documents 25,120 1,615,902 1,260,053 905,453
# Links 182,280 4,898,218 3,101,670 2,692,734
# Avg. doc length 141.26 54.23 52.15 84.66
# Avg. node deg 7.26 3.03 2.46 2.97
# Classes 70 3,347 2,462 1,191
—:fj =l _ _ @ ] i
~ Cora is a collection @_‘:,A/l\. Art, Industrial and Music
~_ I of research papers Instruments (M.l.) are three
L Al with citation links Amazon review datasets
oo . ‘\V%
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Empirical performance of G2P2

| Cora | Art ‘ Industrial ’ ML

| Accuracy Macro-F1 | Accuracy Macro-F1 ‘ Accuracy Macro-F1 ’ Accuracy Macro-F1

GCN 41.15+2.41 34.50+2.23 22.47+1.78 15.45+1.14 21.08+0.45 15.23+0.29 22.54+0.82 16.26+0.72
SAGEqsyp 41.424+2.90 35.14+2.14 22.60+0.56 16.01+0.28 20.74+0.91 15.31+0.37 22.14+0.80 16.69+0.62
TextGCN 59.78+1.88 55.85+1.50 43.47+1.02 32.20+1.30 53.60+0.70 45.97+0.49 46.26+0.91 38.75+0.78
GPT-GNN 76.72+2.02 72.23+1.17 65.15+1.37 52.79+0.83 62.13+0.65 54.47+0.67 67.97+2.49 59.89+2.51
DGI 78.42+1.39 74.58+1.24 65.41+0.86 53.57+0.75 52.29+0.66 45.26+0.51 68.06+0.73 60.64+0.61
SAGEgf 77.59+1.71 73.47+1.53 76.13+0.94 65.25+0.31 71.87+0.61 65.09+0.47 77.70+0.48 70.87+0.59
BERT 37.86+5.31 32.78+5.01 46.39+1.05 37.07+ 0.68 54.00+0.20 47.57+0.50 50.14+0.68 42.96+1.02
BERT" 27.22+1.22 23.34+1.11 45.31+0.96 36.28+0.71 49.60+0.27 43.3610.27 40.19+0.74 33.69+0.72
RoBERTa 62.10+2.77 57.21+2.51 72.95+1.75 62.25+1.33 76.35+0.65 70.49+0.59 70.67+0.87 63.50+1.11
RoBERTa* 67.42+4.35 62.72+3.02 74.47+1.00 63.35+1.09 77.08+1.02 71.44+0.87 74.61+1.08 67.78+0.95
P-Tuning v2 | 71.00+2.03 66.76+1.95 | 76.86+0.59 66.89+1.14 ‘ 79.65+0.38 74.33+0.37 ’ 72.08+0.51 65.44+0.63
G2P2-p 79.16+1.23 74.99+1.35 79.59+0.31 68.26+0.43 80.86+0.40 74.44+0.29 81.26+0.36 74.82+0.45
G2P2 80.08*+1.33 75.91"+1.39 | 81.03"+0.43 69.86"+0.67 | 82.46%+0.29 76.36" +0.25 82.77*+0.32 76.48" +0.52

(improv.) (+2.12%) (+1.78%) (+5.43%) (+4.44%) (+3.53%) (+2.7%) (+6.53%) (+7.92%)

G2P2 outperforms the best baseline (at that time) by around 3—7%.



Fine-grained graph-text integration
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Li et al. Advancing Molecular Graph-Text Pre-training via Fine-grained Alignment. KDD 2025.



Why is fine-grained alignment important?
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Visualization of learned word/motif embeddings

® [NH2+]=0
® C=[NH2+]
® [NH3+]0
A ammonium
® [AsH3]
© O[AsH2]
A poison

e OS

® CCSSCC

® CCl=CSC(C)=N1

A sulf
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Integrating graph data in the era of LLMs

Graph verbalization
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Instructor:
You are a brilliant graph master that can handle anything

related to graphs like retrieval, detection and classification. Node P357 has 4 neighbors, where each of which

are about anomaly detection with statsitical
models. The whole graph contains 5 nodes and 10
edges and describes the citation relations. .......

The clustering coefficient of a node is the ratio of the
number of closed neighbors and all possible closed
neighbors. To compute the clustering coefficient of node
P357, we fisrt know that node P357 has 4 neighbors
bt g j that is there are totally 6 possible triangles between
.<e.d?;e;sc;i|:ce:"P§51" cargercrersssss | Generate Generate them. Among these neighbors, there are only 2 of them
<data key="relation">reference</data>

<sedger New Contexts Final Output | connected with each other, which forms one triangle.

S arapn I Thus the clustering coefficient of node P357 is 1 / 6 =
: > LLMs C> 0.167.
I
I
]
v 4

<?xml version='1.0"' encoding="utf-8'?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns">
<key id="relation" for="edge" attr.name="relation" attr.type="string" />
<key id="title" for="node" attr.name="title" attr.type="string" />
<graph edgedefault="undirected">
<node id="P357">
<data key="title">statistical anomaly detection via composite hypothesi models</
data>
</node>
<node id="P79639">
<data key="title">universal and composite hypothesis testing</data>

-----—,

What is the clustering coefficient of node P357 ?

’_________________‘

’

‘_----------------------—

GPT4Graph

Guo et al. GPT4Graph: Can large language models understand graph structured data? an empirical evaluation and benchmarking. arXiv preprint 2023.



Graph Tokens
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Integrating graph data in the era of LLMs

heavy
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Structural-semantic gap
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Instructor:
You are a brilliant graph master that can handle anything . . .

related to graphs like retrieval, detection and classification.

<?xml version='1.8" encoding='utf-8'7>
tp://graphml.graphdrawing.org/xmlns">
or="edge" attr.name="relation" attr.type="string" />
="node" attr.name="title" attr.type="string" />

title">statistical anomaly detection via composite hypothesi models</

</node> /
“node. 10="P79639"> /
<data key="title">universal and composite hypothesis testing</data>
</node> 7
.<;dép.sr.m;u-="l’!51" target="P79639"> / TeXt
<data key="relation">reference</data> !
e 1 Attributes Molecul h
. olecular grap
graphm
Context: XXXXXX Cardiovascular
complications are
What is the clustering coefficient of node P357 ? the primary...

Graph Verbalization Projector-based Alignment Transfer learning

Structural information loss High computational cost Poor generalization

Continuous vs. Discrete
Graph embeddings <> LLM tokens



Soft Tokenization of Text-attributed Graphs (STAG)
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Bo et al. Quantizing Text-attributed Graphs for Semantic-Structural Integration. KDD 2025.



Soft Tokenization of Text-attributed Graphs (STAG)
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« Extract top-k tokens Al I 0.35
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o Zero-shot: Direct LLM classification CompleXlt_y ] 0.20
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Inference with LLMs
7

System Prompt: You are a node classifier. Given a list of tokens representing a node’s
features, predict its class from the following options: [Research Paper, Dataset, Software].

Few-shot examples: Node tokens: [research, methodology, experiment]| Class: Research

-——-——-——-——-——-——-——-——-——-——-——-——-——-——-——-——-——-——-——-——-——-—-

------------------------------------------------------------------




Pre-train once, apply all

23 |

LLM Cora Full WikiCS ogbn-arxiv  CiteSeer

LLaMA2-7B 76.66+7.79 79.00+7.96 65.33+1046  H54.3549.54
+ PT 81.05+7.77 79.90+7.69 77.4241048  58.45+8.61
LLaMA2-13B | 77.62+8.67 79.80+7.30 69.38+8.83 54.60+8.79
+ PT 81.95+7.06 80.45+7.66 77.75+9.01 H7.30+9.20
Vicuna-7B 74.12+6.47 80.30+7.02 64.84+9.38 49.2546.72
+ PT 80.77+6.75 80.10+7.39 76.95+9.43 H2.25+8.23
Vicuna-13B 77.76+8.58 79.35+7.98 66.03+9.34 52.25+6.39
+ PT 81.384+7.65 79.25+7.50 75.65+9.59 53.00+8.16
LLaMA3-8B 79.22+8.45 78.40+8.05 70.37+8.95 61.25+7.14
+ PT 82.88+8.09 78.35+7.61 76.71+1020 64.20+7.39
GPT-40-mini 79.25+8.42 81.05+6.80 71.32+9.13 61.90+7.22
+ PT 83.04+784 81.90+6.16 77.51+9.58 65.90+7.04
GPT-40 81.40+7.41 81.4547.10 72.75+8.83 62.95+16.61
+ PT 83.28+7.06 81.60+7.19 78.85+9.74 65.90+7.03

Larger models perform better

Newer architectures show
advantages

Prompt tuning provides
consistent gains
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Conclusions

Text-attributed graphs contain rich semantics
Graph structures and semantics can be jointly pre-trained

Quantizing graphs is promising for integration with LLMs
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