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Graph structures are prevalent
3

Wu, et al. A comprehensive survey on graph neural networks. TNNLS 2021.

Social network Recommendation System Molecular graphs



Learning from graph structures
4

Ying, et al. Do Transformers Really Perform Bad for Graph Representation? NeurIPS 2021. 

Liu, et al. Graph foundation models: Concepts, Opportunities and Challenges. TPAMI 2025.

Message-passing

graph neural networks (GNNs)
Graph transformers



Semantics on graphs: Text-Attributed Graphs
5

Can we integrate graph structures and textual semantics within one model?



Can GNNs or graph transformers utilize textual 

attributes? Yes, but ineffective
6

Ying, et al. Do Transformers Really Perform Bad for Graph Representation? NeurIPS 2021. 

Liu, et al. Graph foundation models: Concepts, Opportunities and Challenges. TPAMI 2025.

Text as features

(embeddings, BOW)
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How are language-image models trained?
8

CLIP: Contrastive Language-Image Pre-training

Radford et al. Learning Transferable Visual Models From Natural Language Supervision. OpenAI 2021.



Graph-grounded pre-training and prompting (G2P2)

9

Learns a dual-modal embedding 

space by jointly pre-training a text 

encoder and graph encoder 

Exploits three contrastive losses

o ℒ1: Text-node contrast

o ℒ2: Text-summary contrast

o ℒ3: Node-summary contrast

Wen et al. Augmenting Low-Resource Text Classification with Graph-Grounded Pre-training and Prompting. SIGIR 2023.



Graph-grounded pre-training and prompting (G2P2)

10

Zero-shot node classification 

with discrete prompts

Few-shot node classification 

with continuous prompt tuning



Datasets to evaluate G2P2
11

Cora is a collection 

of research papers 

with citation links

Art, Industrial and Music 

Instruments (M.I.) are three 

Amazon review datasets



Empirical performance of G2P2
12

G2P2 outperforms the best baseline (at that time) by around 3–7%.



Fine-grained graph-text integration
13

Li et al. Advancing Molecular Graph-Text Pre-training via Fine-grained Alignment. KDD 2025.



Why is fine-grained alignment important?
14



Visualization of learned word/motif embeddings
15
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Integrating graph data in the era of LLMs
17

GPT4Graph

Guo et al. GPT4Graph: Can large language models understand graph structured data? an empirical evaluation and benchmarking. arXiv preprint 2023.

Graph verbalization



Integrating graph data in the era of LLMs
18

Tang et al. GraphGPT: Graph Instruction Tuning for Large Language Models. SIGIR 2024.

GraphGPT

heavy 

alignment



Structural-semantic gap 
19

Graph Verbalization

Structural information loss

Projector-based Alignment

High computational cost

Transfer learning

Poor generalization

Continuous vs. Discrete

Graph embeddings  LLM tokens



Soft Tokenization of Text-attributed Graphs (STAG)

20

Bo et al. Quantizing Text-attributed Graphs for Semantic-Structural Integration. KDD 2025.
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Soft Tokenization of Text-attributed Graphs (STAG)

21

AI
algorithm
complexity
computation
theory

0.35
0.25
0.20
0.15
0.05

✓ With LLMs
• Extract top-k tokens

• Few-shot: In-context learning

• Zero-shot: Direct LLM classification

✓ Without LLMs
• Linear probing on frozen embeddings

✓ Prompt Tuning
• Lightweight adaptation for domain transfer

• Supports both LLMs and without LLMs



Inference with LLMs
22



Pre-train once, apply all
23

• Larger models perform better

• Newer architectures show 
advantages

• Prompt tuning provides 
consistent gains
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Conclusions
25

 Text-attributed graphs contain rich semantics

 Graph structures and semantics can be jointly pre-trained

 Quantizing graphs is promising for integration with LLMs
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