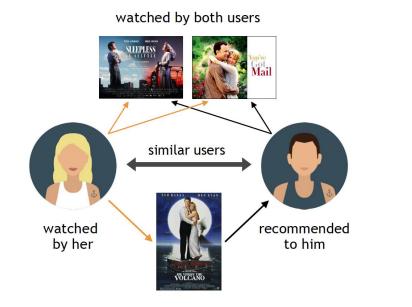
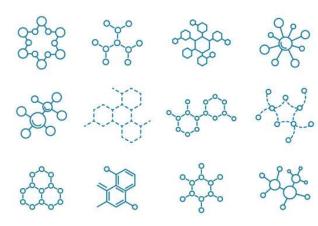
Semantic-Structural Integration in Text-Attributed Grahs

Yuan FANG

School of Computing and Information Systems
Singapore Management University

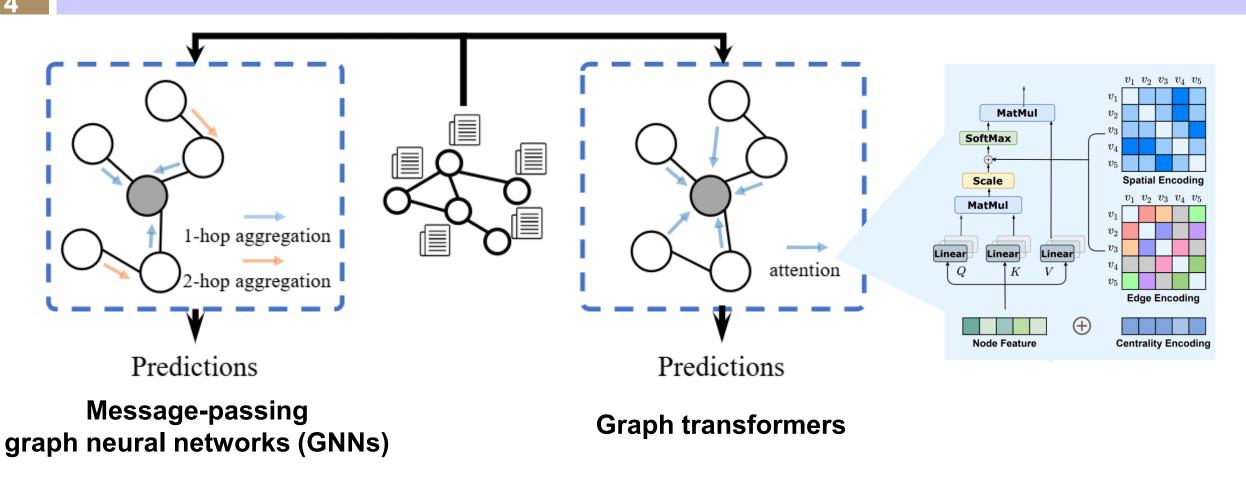
ISCSC 2025 @ Taiyuan, China 9 Nov 2025




Outline

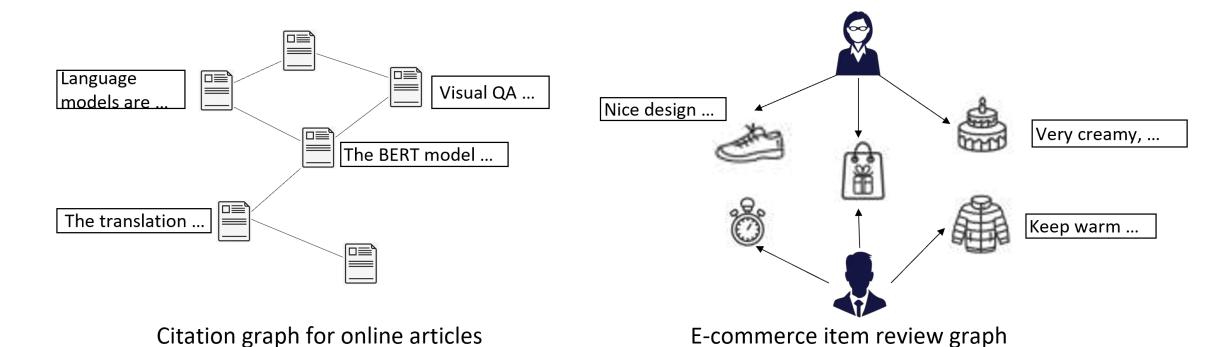
- □ Introduction: Graphs & text-attributed graphs
- Jointly training graph and textual data
- Quantizing graphs into language tokens for LLMs
- Conclusions

Graph structures are prevalent

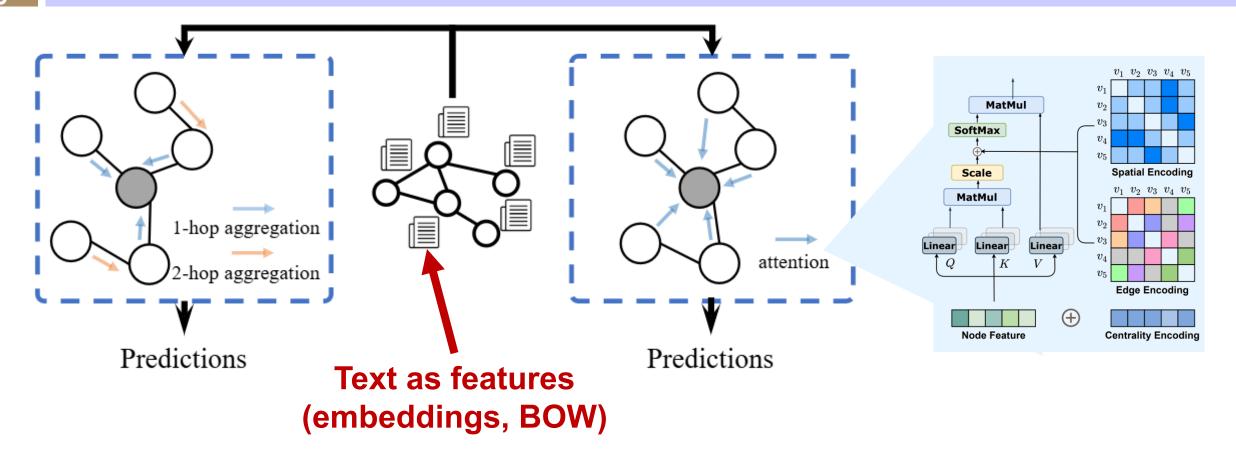


Social network

Recommendation System


Molecular graphs

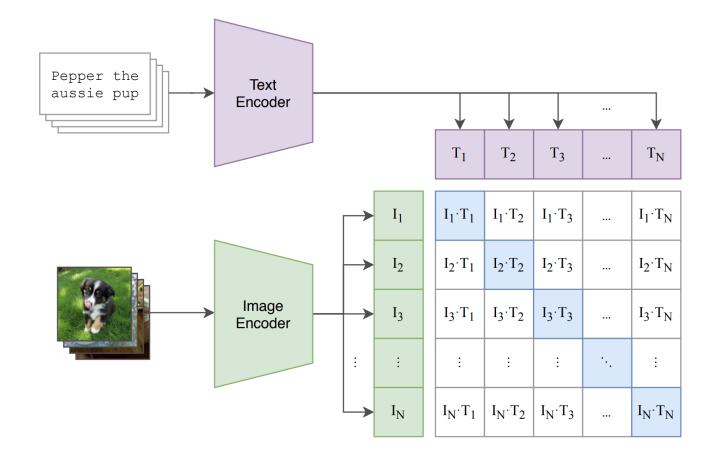
Learning from graph structures


Ying, *et al.* Do Transformers Really Perform Bad for Graph Representation? NeurIPS 2021. Liu, *et al.* Graph foundation models: Concepts, Opportunities and Challenges. TPAMI 2025.

Semantics on graphs: Text-Attributed Graphs

Can we integrate graph structures and textual semantics within one model?

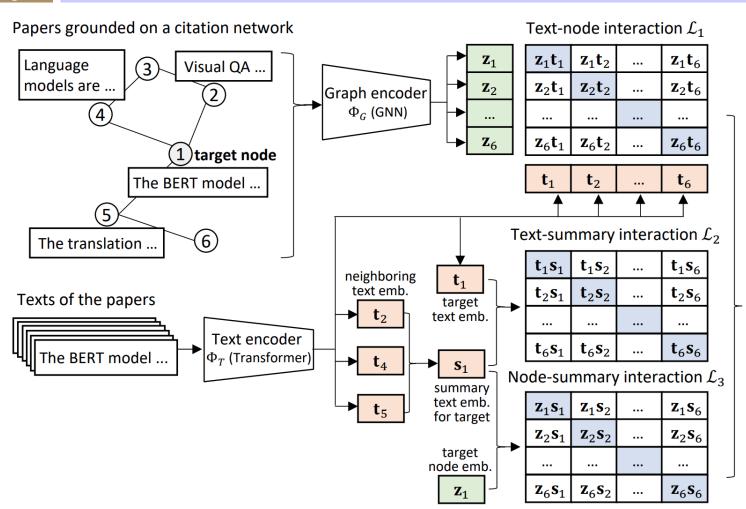
Can GNNs or graph transformers utilize textual attributes? Yes, but ineffective



Ying, et al. Do Transformers Really Perform Bad for Graph Representation? NeurIPS 2021.

- Introduction: Graphs & text-attributed graphs
- Jointly training graph and textual data
- Quantizing graphs into language tokens for LLMs
- Conclusions

How are language-image models trained?


CLIP: Contrastive Language-Image Pre-training

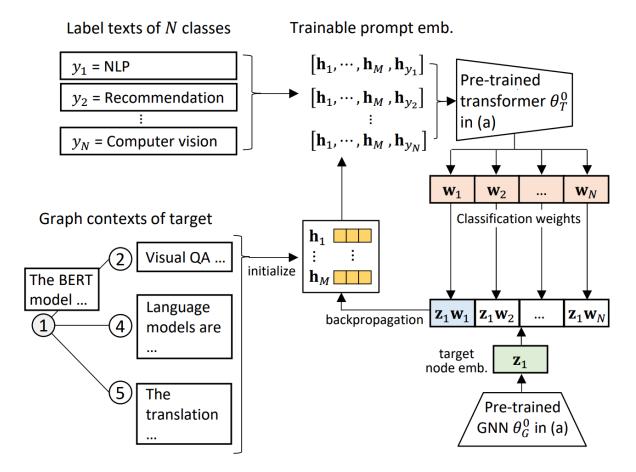
Radford et al. Learning Transferable Visual Models From Natural Language Supervision. OpenAl 2021.

Graph-grounded pre-training and prompting (G2P2)

9

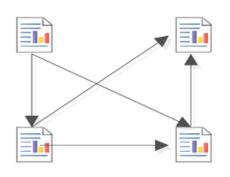
Learns a dual-modal embedding space by jointly pre-training a **text encoder** and **graph encoder**

Exploits three contrastive losses

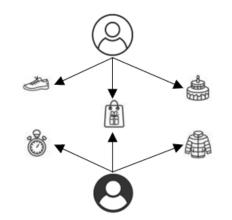

- o \mathcal{L}_1 : Text-node contrast
- o \mathcal{L}_2 : Text-summary contrast
- \mathcal{L}_3 : Node-summary contrast

Graph-grounded pre-training and prompting (G2P2)

Zero-shot node classification with discrete prompts


Label texts of N classes Discrete prompt $y_1 = NLP$ Pre-trained "paper of" + y_i transformer θ_T^0 y_2 = Recommendation y_N = Computer vision \mathbf{W}_2 classification weights target node emb. Pre-trained $|\mathbf{z}_1\mathbf{w}_1|\mathbf{z}_1\mathbf{w}_2$ \mathbf{z}_1 $\mathbf{z}_1 \mathbf{w}_N$ GNN θ_G^0 predict y_1

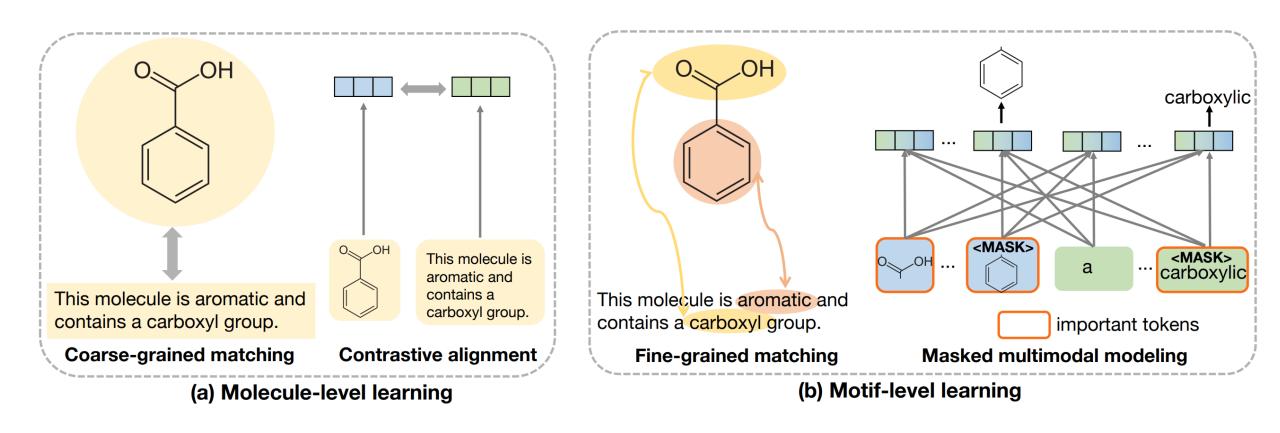
Few-shot node classification with continuous prompt tuning



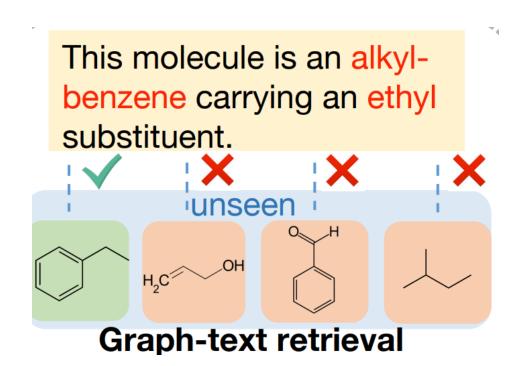
Datasets to evaluate G2P2

Dataset	Cora	Art	Industrial	M.I.
# Documents	25,120	1,615,902	1,260,053	905,453
# Links	182,280	4,898,218	3,101,670	2,692,734
# Avg. doc length	141.26	54.23	52.15	84.66
# Avg. node deg	7.26	3.03	2.46	2.97
# Classes	70	3,347	2,462	1,191

Cora is a collection of research papers with citation links

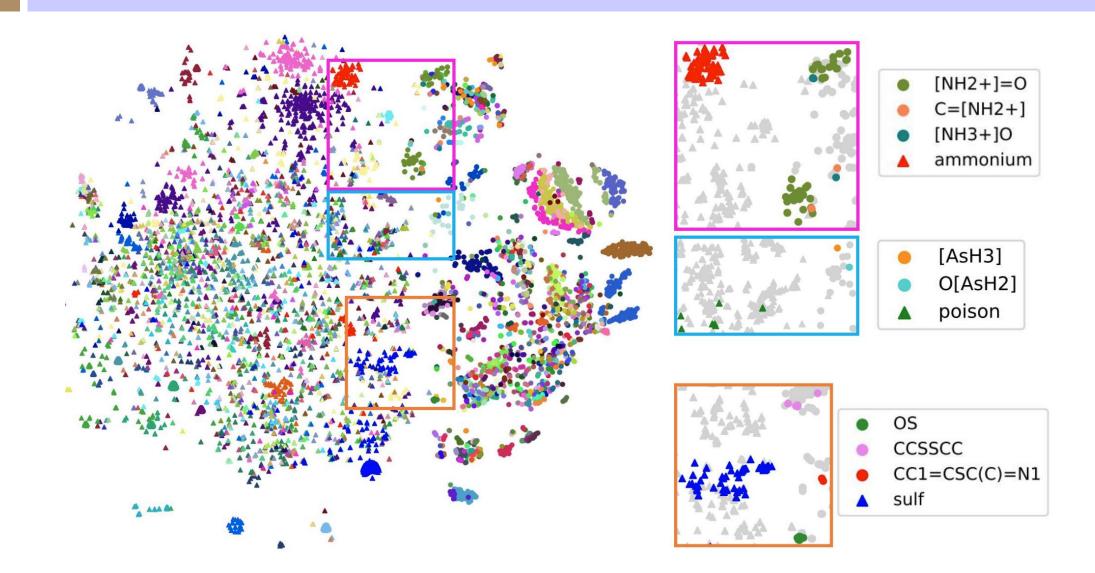

Art, Industrial and Music Instruments (M.I.) are three Amazon review datasets

Empirical performance of G2P2


		Cora		Art		Industrial		M.I.	
		Accuracy	Macro-F1	Accuracy	Macro-F1	Accuracy	Macro-F1	Accuracy	Macro-F1
the sold	GCN	41.15±2.41	34.50±2.23	22.47±1.78	15.45±1.14	21.08±0.45	15.23±0.29	22.54±0.82	16.26±0.72
400	$SAGE_{sup}$	41.42±2.90	35.14±2.14	22.60 ± 0.56	16.01 ± 0.28	20.74±0.91	15.31 ± 0.37	22.14±0.80	16.69 ± 0.62
NO CE	TextGCN	59.78±1.88	55.85±1.50	43.47 ± 1.02	32.20 ± 1.30	53.60±0.70	45.97±0.49	46.26±0.91	38.75 ± 0.78
Qui O	GPT-GNN	76.72±2.02	72.23±1.17	65.15±1.37	52.79±0.83	62.13±0.65	54.47±0.67	67.97±2.49	59.89±2.51
*(0)	DGI	78.42±1.39	74.58±1.24	65.41 ± 0.86	53.57±0.75	52.29±0.66	45.26 ± 0.51	68.06±0.73	60.64 ± 0.61
0,66	$SAGE_{self}$	77.59±1.71	73.47±1.53	76.13 ± 0.94	65.25 ± 0.31	71.87±0.61	65.09 ± 0.47	77.70±0.48	70.87 ± 0.59
000	BERT	37.86±5.31	32.78±5.01	46.39±1.05	37.07 ± 0.68	54.00±0.20	47.57±0.50	50.14±0.68	42.96±1.02
	BERT*	27.22±1.22	23.34±1.11	45.31 ± 0.96	36.28 ± 0.71	49.60±0.27	43.36 ± 0.27	40.19±0.74	33.69 ± 0.72
100	RoBERTa	62.10±2.77	57.21±2.51	72.95 ± 1.75	62.25 ± 1.33	76.35±0.65	70.49 ± 0.59	70.67±0.87	63.50 ± 1.11
The stain of the s	RoBERTa*	67.42±4.35	62.72±3.02	74.47 ± 1.00	63.35±1.09	77.08±1.02	71.44 ± 0.87	74.61±1.08	67.78±0.95
20	P-Tuning v2	71.00±2.03	66.76±1.95	76.86 ± 0.59	<u>66.89</u> ±1.14	79.65±0.38	74.33 ± 0.37	72.08±0.51	65.44±0.63
toning to the state of the stat	G2P2-p	79.16±1.23	74.99±1.35	79.59±0.31	68.26±0.43	80.86±0.40	74.44±0.29	81.26±0.36	74.82±0.45
15	G2P2	80.08 *±1.33	75.91 *±1.39	$81.03^* \pm 0.43$	$69.86*\pm0.67$	82.46 *±0.29	$76.36*\pm0.25$	$82.77^* \pm 0.32$	$76.48*\pm0.52$
	(improv.)	(+2.12%)	(+1.78%)	(+5.43%)	(+4.44%)	(+3.53%)	(+2.7%)	(+6.53%)	(+7.92%)

G2P2 outperforms the best baseline (at that time) by around 3–7%.

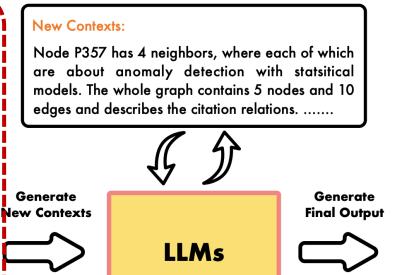
Fine-grained graph-text integration



Why is fine-grained alignment important?

Text-based molecule editing

Visualization of learned word/motif embeddings


Outline

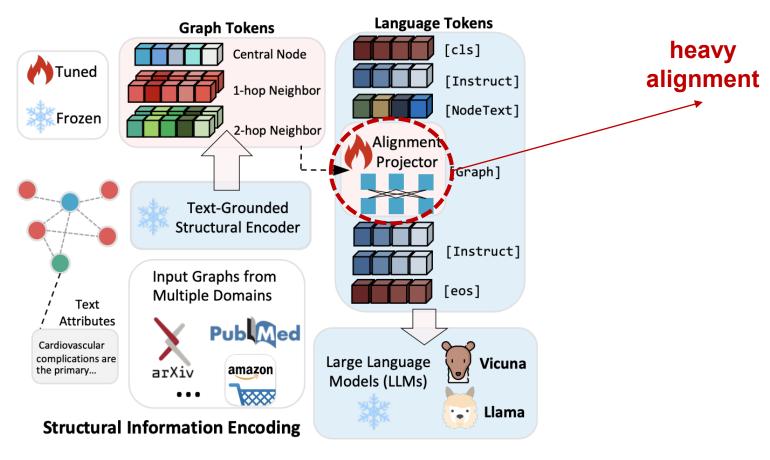
- Introduction: Graphs & text-attributed graphs
- Jointly training graph and textual data
- Quantizing graphs into language tokens for LLMs
- Conclusions

Integrating graph data in the era of LLMs

Graph verbalization

Instructor: You are a brilliant graph master that can handle anything related to graphs like retrieval, detection and classification. Graph description language: <?xml version='1.0' encoding='utf-8'?> <graphml xmlns="http://graphml.graphdrawing.org/xmlns"> <key id="relation" for="edge" attr.name="relation" attr.type="string" /> <key id="title" for="node" attr.name="title" attr.type="string" /> <graph edgedefault="undirected"> <node id="P357"> <data key="title">statistical anomaly detection via composite hypothesi models/ data> <data key="title">universal and composite hypothesis testing</data> <edge source="P357" target="P79639"> <data key="relation">reference</data> </graph> </graphml> Context: XXXXXX Query: What is the clustering coefficient of node P357?

Final Output:


The clustering coefficient of a node is the ratio of the number of closed neighbors and all possible closed neighbors. To compute the clustering coefficient of node P357, we first know that node P357 has 4 neighbors

.....

that is there are totally 6 possible triangles between them. Among these neighbors, there are only 2 of them connected with each other, which forms one triangle. Thus the clustering coefficient of node P357 is 1/6 = 0.167.

GPT4Graph

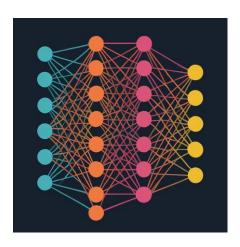
Integrating graph data in the era of LLMs

GraphGPT

Tang et al. GraphGPT: Graph Instruction Tuning for Large Language Models. SIGIR 2024.

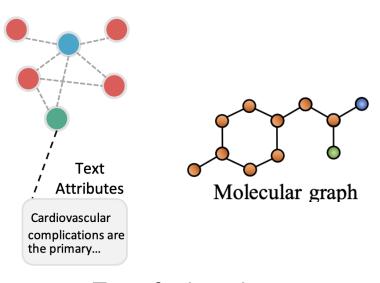
Structural-semantic gap

Instructor:


You are a brilliant graph master that can handle anything related to graphs like retrieval, detection and classification.

Graph description language:

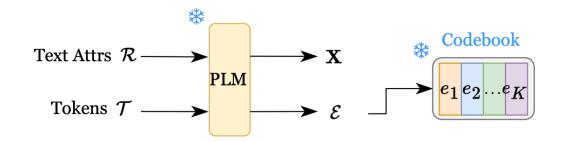
<


Graph Verbalization

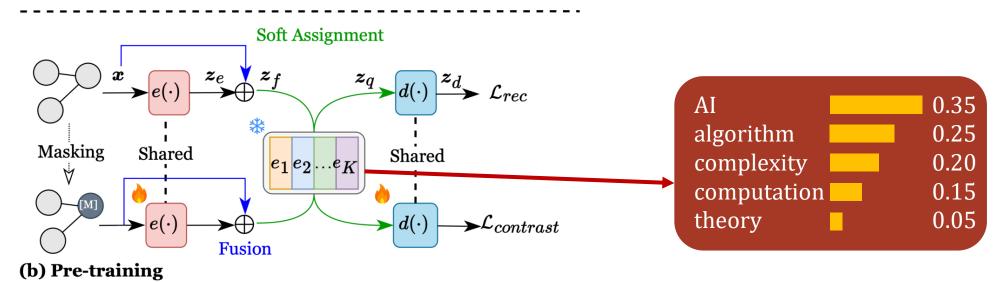
Structural information loss

Projector-based Alignment

High computational cost



Transfer learning


Poor generalization

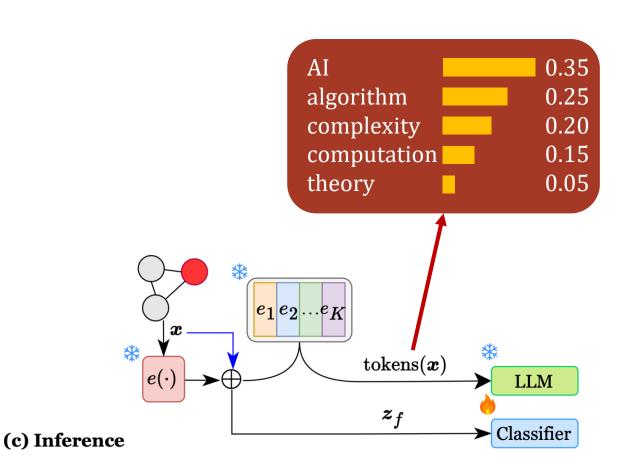
Continuous vs. Discrete
Graph embeddings ↔ LLM tokens

Soft Tokenization of Text-attributed Graphs (STAG)

(a) Codebook Construction

Soft Tokenization of Text-attributed Graphs (STAG)

✓ With LLMs


- Extract top-k tokens
- Few-shot: In-context learning
- Zero-shot: Direct LLM classification

✓ Without LLMs

Linear probing on frozen embeddings

✓ Prompt Tuning

- Lightweight adaptation for domain transfer
- Supports both LLMs and without LLMs

Inference with LLMs

System Prompt: You are a node classifier. Given a list of tokens representing a node's

features, predict its class from the following options: [Research Paper, Dataset, Software].

Few-shot examples: Node tokens: [research, methodology, experiment] Class: Research

Paper

Node tokens: [benchmark, statistics, collection] Class: Dataset

Node tokens: [implementation, code, library] Class: Software

Test Node: Node tokens: [algorithm, computation, optimization] Predict the class:

Pre-train once, apply all

LLM	Cora Full	WikiCS	ogbn-arxiv	CiteSeer
LLaMA2-7B + PT	76.66 ± 7.79 81.05 ± 7.77	79.00 ± 7.96 79.90 ± 7.69	$65.33{\pm}10.46\\77.42{\pm}10.48$	54.35 ± 9.54 58.45 ± 8.61
	01.00±1.11	19.90±1.09	11.42±10.46	00.40±6.01
LLaMA2-13B	$77.62{\pm}8.67$	$79.80{\pm}7.30$	$69.38{\pm}8.83$	$54.60{\pm}8.79$
+ PT	81.95 ± 7.06	$80.45{\pm}7.66$	$77.75{\pm}9.01$	$57.30{\pm}9.20$
Vicuna-7B	74.12 ± 6.47	80.30 ± 7.02	64.84 ± 9.38	$49.25{\scriptstyle\pm6.72}$
+ PT	80.77 ± 6.75	$80.10{\pm}7.39$	$76.95{\scriptstyle\pm9.43}$	$52.25{\pm}8.23$
Vicuna-13B	77.76 ± 8.58	$79.35{\pm}7.98$	$66.03{\pm}9.34$	$52.25{\scriptstyle\pm6.39}$
+ PT	81.38 ± 7.65	$79.25{\pm}7.50$	$75.65{\pm}9.59$	$53.00{\pm}8.16$
LLaMA3-8B	79.22 ± 8.45	$78.40{\pm}8.05$	$70.37{\pm}8.95$	$61.25{\pm}7.14$
+ PT	82.88 ± 8.09	$78.35{\scriptstyle\pm7.61}$	$76.71{\scriptstyle\pm10.20}$	$64.20{\pm}7.39$
GPT-4o-mini	79.25 ± 8.42	$81.05{\pm}6.80$	71.32 ± 9.13	$61.90{\pm}7.22$
+ PT	83.04 ± 7.84	$81.90 {\pm} 6.16$	$77.51{\pm}9.58$	$65.90{\pm}7.04$
GPT-4o	81.40±7.41	81.45 ± 7.10	$\textbf{72.75} {\pm} 8.83$	$\textbf{62.95} {\pm} 6.61$
+ PT	83.28±7.06	$81.60{\pm}7.19$	$\textbf{78.85} {\pm} 9.74$	$65.90 {\pm} 7.03$

- Larger models perform better
- Newer architectures show advantages
- Prompt tuning provides consistent gains

Outline

- Introduction: Graphs & text-attributed graphs
- Jointly training graph and textual data
- Quantizing graphs into language tokens for LLMs
- Conclusions

Conclusions

- Text-attributed graphs contain rich semantics
- Graph structures and semantics can be jointly pre-trained
- Quantizing graphs is promising for integration with LLMs

Acknowledgement

Zhihao Wen, Yuan Fang. Augmenting Low-Resource Text Classification with Graph-Grounded Pretraining and Prompting. *SIGIR* 2023.

Yibo Li, Yuan Fang, Mengmei Zhang, Chuan Shi. Advancing Molecular Graph-Text Pre-training via Fine-grained Alignment. *KDD* 2025.

Jianyuan Bo, Hao Wu, Yuan Fang. Quantizing Text-attributed Graphs for Semantic-Structural Integration. *KDD* 2025.

Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, Chuan Shi. Graph Foundation Models: Concepts, Opportunities and Challenges. *TPAMI* 2025.

The research is made possible with support from the School of Computing and Information Systems, Singapore Management University. Full publications, codes and data are available at http://www.yfang.site/.