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l Related Resources

* This tutorial is based on the following survey paper & github repo:

(" . )
A Survey of Few-Shot Learning on Graphs: from g Awesome Few-Shot Learning on Graphs A

Meta-Learning to Pre-Training and Prompt Learning

This repository provides a curated collection of research papers focused on few-shot
learning on graphs. It is derived from our survey paper: A Survey of Few-Shot
Learning on Graphs: From Meta-Learning to Pre-Training and Prompting. We will
update this list regularly. If you notice any errors or missing papers, please feel free to
open an issue or submit a pull request.

https://arxiv.org/abs/2402.01440v4

https://github.com/smufang/fewshotgraph

* Also related to / partially based on the following:

4 A ~ )
Graph Foundation Models: Concepts, Opportunities GFMPapers: Must-read papers on graph foundation

and Challenges (TPAMI 2025) models (GFMs)

This list is currently maintained by members in BUPT GAMMA Lab. If you like our
project, please give us a star .. on GitHub for the latest update.

Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen,
Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang,
Lichao Sun, Philip S. Yu, Chuan Shi

https://ieeexplore.ieee.org/document/10915556

We thank all the great contributors very much.

L https://github.com/BUPT-GAMMA/GFMPapers

\
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- Graphs

 Graphs model the interactions among various objects

watched by both users
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Wu, et al. A comprehensive survey on graph neural networks. TNNLS 2020
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8 End-to-End Graph Learning

* (Semi-)Supervised graph representation learning methods
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1-hop aggregation

attention

2-hop aggregation

Predictions Predictions
Graph Neural Networks Graph Transformer
(GNNSs)

Liu, et al. Graph self-supervised learning: A survey. TKDE 2022.

Liu, et al. Towards graph foundation models: A survey and beyond. TPAMI 2025.
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- Graph Neural Networks

* GNNs typically leverage message-passing framework

Hidden layer Hidden layer
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Kipf, et al. “Semi-supervised classification with graph convolutional networks.” ICLR’17.

Velickovic, et al. “Graph attention networks”. ICLR’18.
7



Graph Transformers
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Yun, et al. “Graph transformer networks.” NeurlPS’19.

Hu, et al. “Heterogeneous graph transformer.” WWW’20.
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N Few-shot Learning Problems

* Performance highly depends on

» Abundant labeled data > Rich Structure
» Challenging or expensive to » Graph structure may be sparse,
obtain labels, leads to leads to

|_abel scarcity Structure scarcity



N Few-shot Learning Methods

* |_earn prior knowledge and adapt to downstream applications

(1) Meta-learning (2) Pre-training
Approaches Approaches

10



B Few-shot Learning Methods

* Meta learning methods

» Derive prior knowledge from a series of “meta-training” task
* Pre-training methods

» Utilize unlabeled data to optimize self-supervised pretext tasks

»Employ fine-tuning or parameter-efficient adaption

* Hybrid methods
» Integrate both paradigms
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N Few-Shot Learning Problems on Graphs

* Label scarcity: lack of labeled data
« Structure scarcity: lack of structural connections

Few-shot Learning on Graphs: Problems

Label Scarcity Structure Scarcity
L Class-based L Instance-based Long-tail distribution
New classes Node-level Cold start
Base classes Edge-level
Both classes Graph-level

13



N Label Scarcity Problems on Graphs
* Class-based Label Scarcity

The entire set of classes (C) on a graph

Base class set €5, Tor model training
New class set C,,,,, for testing

C = Cpase Y Chew

Chase N Chew= 0

O O O O

14



N Label Scarcity Problems on Graphs
* Class-based Label Scarcity

» Label scarcity in new classes C,,.,,

Transfer

e — ———
—_— — ~
— ~

-~~~ prior knowledge™~~_ Meta-learning based approaches
{ Support set: labeled data from C,,,,,

14 <
LLabeled base
classes Cy e

Query set: unlabeled data from C,,,




N Label Scarcity Problems on Graphs

* Class-based Label Scarcity

» Label scarcity in base classes Cp4¢e

Pre-training

—— —— —
- —_—

Ve

Unlabeled/No
base classes Cp e

_— -

~
N
A |

New classes C,,.,,

X Meta-learning based methods

v Self-supervised methods

2 Pre-train graph encoders on Cp e
2 Fine-tuning on novel tasks

16



N Label Scarcity Problems on Graphs
* Class-based Label Scarcity

» Label scarcity in both classes: labeled data are limited in both €y 5. and C,,.,

Self-supervised methods

1 Pre-train graph encoders
2 Fine-tuning on novel downstream tasks: parameter-efficient adaptation

17



N Label Scarcity Problems on Graphs

* Instance-based Label Scarcity

» Node-level label scarcity F—r-ASELO

. 2 %\ix o
» Edge-level label scarcity . S

Recommender system

©—Q

» Graph-level label scarcity { )
®\ (O—©
Molecular graph

Instance Application domain
Academic network
Node Social network

E-commerce network
Protein-protein interaction
Traffic flow

Drug-drug interaction
Protein multimer structure

Edge E-comm./academic network
Knowledge graphs
Molecular graph
Graph Protein graph

Social network




N Label Scarcity Problems on Graphs
* Instance-based Label Scarcity

» Node-level label scarcity

Academic network  Social network  Recommender system Molecular graph
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N Label Scarcity Problems on Graphs

* Instance-based Label Scarcity

» Edge-level label scarcity

Drug-drug interaction  Multimer structure prediction Knowledge graph E-commerce
ccccccc X Concept o GO
@ O | o CCCCCC m
Sir, P o O @ 50 /
s n® 00 6 N e
] ST .
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[Image from Microsoft] Product sharing

Baek, et al. “Learning to extrapolate knowledge: Transductive few-shot out-of-graph link prediction .” NeurlPS’20
Gao, et al. “Protein multimer structure prediction via prompt learning.” ICLR’24

Zhu, et al. “Few-shot link prediction for event-based social networks via meta- learning. ” DASFAA’23
20



N Label Scarcity Problems on Graphs
* Instance-based Label Scarcity

» Graph-level label scarcity
Predicting properties/categories for subgraphs/whole graphs with limited labeled data

Social Network Molecular Graph Protein Graph
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Reddit thread graph classification Property prediction Property prediction

Bai, et al. “Unsupervised Inductive Graph-Level Representation Learning via Graph-Graph Proximity.” IJCAI’19
Chauhan, et al. “Few-shot learning on graphs via super-classes based on graph spectral measures.” ICLR’20
Zhu, et al. “Dual-view Molecular Pre-training.” KDD’23

21
Zhang, et al. “Protein Representation Learning by Geometric Structure Pretraining. ” ICLR’23



B Structure Scarcity Problems on Graphs

* Long-tailed distribution
* learn from an imbalanced distribution : a large number of nodes have few connections

e Cold-start

* Learn representations for new nodes with no or very few connections

Goal Application domain

Academic network
Social network

Long-tailed E-commerce network

1stribution . L :
distributio Protein-protein interaction
Air traffic control
ocial network
Cold start S

E-commerce network




Structure Scarcity Problems on Graphs

* Long-tailed distribution

High-resource part Low-resource part
@‘ Majority class Minority class
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(a) Degree distribution (b) Classification performance

Liu, et al. “A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and Future Directions. ” arXiv’23

Tang, et al. “Investigating and Mitigating Degree-Related Biases in Graph Convolutional Networks.” CIKM’20
23



B Structure Scarcity Problems on Graphs

* Cold-start learning: new nodes with few connections
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Proportion of ads

Figure 1: Histogram of the number of samples over different Figure 1: A GNN model for recommendation.

proportions of ads of the KDD Cup 2012 search ads dataset.

5% of ads accounted for over 80% of samples; Classic GNNs may have limited effectiveness
95% ads had a very small amount of data. in addressing cold-start problems

Pan, et al. “Warm Up Cold-start Advertisements- Improving CTR Predictions via Learning to Learn ID Embeddings.” SIGIR’19

Hao, et al. “Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.” WSDM’21
24



B Overall Taxonomy

« Taxonomy of few-shot learning technigues on graphs

Few-shot Learning on Graphs: Techniques

Meta-Learning Approaches

Pre-Training Approaches

—  Structure-based Enhancement

Pre-Training Strategies

_— Node-level enhancement

— Edge-level enhancement

—  Subraph-level enhancement

— Adaptation-based Enhancement

Contrastive Strategies

Generative Strategies

Hybrid Strategies

Integration with LLMs

Adaptation by Fine-Tuning

|: Graph-wise adaptation
Task-wise adaptation

Parameter Efficient Adaptation

Hybrid Approaches

Prompt tuning on graphs

Parameter-effeicient fine-tuning

25
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- Meta-learning technigues on graphs

» Standard meta-learning techniques

Learn a prior ¢ from
the training tasks

2

c <

= @©
Meta- = - lAdapt
learning support

Car  Ship

f o (&) - car

“Learn to learn”

Testing
tasks
A

C. Finn et al. “Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks.” ICML 2017.
27



- Meta-learning technigues on graphs

» Standard meta-learning on graph

Transferable Prior

Q Base classes @ Novel classes

(a) Toy graph with base and novel classes

......................................................................

.......................................................................

.............................................................................

Support Query |

Meta-test tasks (novel classes)

(b) Few-shot node classification



¥ Enhanced meta-learning approaches on graphs

Meta-Learning Approaches

— Structure-based Enhancement

Node-level enhancement

Edge-level enhancement

Subraph-level enhancement

— Adaptation-based Enhancement

Graph-wise adaptation

Task-wise adaptation

29



8 Structure-based Enhancement on Graphs

* Node-level enhancement: GPN
Differentiating node weights in a task to reflect their varying structural importance

Meta-training <

: | 4100
Ly | I
| 1 )#:00

\ e o e e e e e e e e e e = = |

'a_00n 0 'a OO

I 12|
Meta-test ! somsl :

: I ): 00

Figure 2: (Left) Episodic training on attributed networks. In each episode, we create a semi-supervised few-shot node classifi-
cation task by random sampling; (Right) The architecture of the proposed framework Graph Prototypical Networks (GPN).

Node Valuator: Estimate node importance scores

K. Ding, et al “Graph prototypical networks for few-shot learning on attributed networks.” CIKM’20
30



Structure-based Enhancement on Graphs

* Node-level enhancement: FAAN
Few-shot Knowledge Graph (KG) completion
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Figure 1: Illustration of dynamic properties in few-shot
KG completion: (a) An entity has diverse roles in dif-
ferent tasks; and (b) References show distinct contribu-
tions to a particular query.
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Figure 2: The framework of FAAN: (a) Adaptive neighbor encoder for entities; (b) Transformer encoder for entity
pairs; (c) Adaptive matching processor to match K -shot references and the query.

Adaptive attention: Learn adaptive entity and reference representations.

J. Sheng, et al “Adaptive attentional network for few-shot knowledge graph completion.” EMNLP’20
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Structure-based Enhancement on Graphs

 Edge-level enhancement: HMNet
»Leverage auxiliary information associated with edges

--------------------
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Fig. 2. ITllustration of the proposed HMNet model.

Matching networks for both entities and relations

S. Xiao, et al. “HMNet- Hybrid Matching Network for Few-Shot Link Prediction.” DASFAA’21
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8 Structure-based Enhancement on Graphs

 Edge-level enhancement: RALE

to capture long-range dependencies between distant node

»Leverage

consider paths passing through hubs

Graph encoder

task

Support

Query

Base @ Novel {7} Hub
classes classes i nodes

(a) Toy graph and example task

. (b1) Segment sampling (b2) Path construction

?

X node
> embedding —
(LIIT]
H H \ 2 \\
@ @ Support nodes Task-level RL
i:'.'.'.'.'.'.'.'.'. . . relative ‘ » embedding
P2 - 1 Do, D3 location (RL) g (IIIT]
S ‘_)'_)‘ \
» p3 @ @ ’—::::=-:Query §
Da'i P4 pf,'l Graph-level g"‘ AL ]
.'.'.'.'.'.'.'.'.'.'.'. = @ - absolute = emmbeddmg
. > . > . Ds i - S iTub n(:)des.‘ location (AL)
(b3) Location embedding

(b) Location embedding at task and graph levels

Figure 3: Overview of the proposed model RALE.

= Paths between each query node and the support nodes: Task-level dependencies
= Paths between each query node and the hub nodes: Graph-level dependencies
= Hubs: nodes with high network centrality scores such as degree or PageRank

Z. Liu, et al “Relative and Absolute Location Embedding for Few-Shot Node Classification on Graph.” AAAI'21

s

via MAML with
task adaptation on
support and back-
progation of task

IQJISSE[D)

loss on query

(c) Meta-learner
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Structure-based Enhancement on Graphs

 Edge-level enhancement: MetaHIN

Backpropagation on

. Content-based HIN-based Semz:mtlc-enhanced Support Set Sy, - ;i Embedding e il query setin meta-training — " |
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— | | | @ | | | 1 _ : em1 Aggregation - eml Prediction :
: @ T DF@D @ H P0={g,w} | |
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. \ - . uz uzy,; | : N ' = '.
r @ L _ <z’ r s | LoUM oMM MDA 00y = {ghL,wii}l  P3 = UMDM : I
o ~ T i — P P o : A i
' us I adaptation , ﬂ : l @ | ':D:' | @ | | o | H Semantic-wise adaptation Task-wise adaptation .;l Base Model I
: ER A G S _ TN I RS -~ _' T 7wt loss on supportset — ~ T w.rt. loss on support set — f _ { h } |
(a) An example of HIN ' (c) Model-level alleviation R & ! e b i P whl —w 0 = 19¢> Nw i
(a) Semantic-enhanced Task Constructor : (b) Co-adaptation Meta-learner

Figure 1: An example of HIN and existing data or model-

level alleviation for cold-start recommendation. Figure 2: Illustration of the meta-training procedure of a task in MetaHIN. (a) Semantic-enhanced task constructor, where

the support and query sets are augmented with meta-path based heterogeneous semantic contexts. (b) Co-adaptation meta-
learner, with semantic- and task-wise adaptations on the support set, while the global prior 0 is optimized on the query set.
During meta-testing, each task follows the same procedure except updating the global prior.

= HIN: nodes and edges in a graph belong to different types
= Meta-paths: heterogeneous semantic relationships (UM, UMAM, UMDM, UMUM)

Y. Lu, et al “Meta-learning on Heterogeneous Information Networks for Cold-start Recommendation .” KDD’20
34



Structure-based Enhancement on Graphs

 Subgraph-level enhancement: G-Meta
(¢]
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1 |
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K. Huang, et al “Graph Meta Learning via Local Subgraphs.” NeurlPS’20
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8 Structure-based Enhancement on Graphs

 Subgraph-level enhancement: GEN

. < Seento S " :
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Figure 3: The overall framework of our
model for each task. We extrapolate knowl-
edge by using a support set .S with induc-
tive and transductive learning, and then pre-
dict links with the output embedding ¢’.

= Extrapolate knowledge through the neighbors (one-hop subgraph) of the support set

J. Baek, et al “Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph Link Prediction.” NeurlPS’20
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8 Structure-based Enhancement on Graphs

 Subgraph-level enhancement: Meta-tail2vec
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(a) Toy network

(b) Locality-aware tasks

(c) Locality-aware meta-learning

Figure 3: Overall framework of our locality-aware tail node embedding model meta-tail2vec. (Best viewed in color.)
Locality-aware tasks: support set sampled from the neighborhood subgraph of the query node

Z. Liu, et al “Towards Locality-Aware Meta-Learning of Tail Node Embeddings on Networks.” CIKM’20
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a Adaptation-based Enhancement on Graphs

 Customization of a globally shared prior into a localized or
specialized model for each task

TABLE V: Adaptation-based meta-learning enhancement for
few-shot learning on graphs.

Method Adaptation Meta Task
enhancement | learner | Node Edge Graph

GFL [36] graph MAML | V X X
MI-GNN [145] graph hybrid X X
MetaTNE [32] task Protonets | v/ X X
AMM-GNN [65] task MAML | V X X
AS-MAML [148] step size MAML X X v
MetaDyGNN [137] hybrid MAML X v X




Adaptation-based Enhancement on Graphs

» Graph-wise adaptation: GFL

(b) Hierarchical Graph  (b)
Representation Gate

hi1 e _+ hf

AGG° (a) Graph Structured
Prototype

A Q(H \ — PG};IN — —

e X L
‘1\4;//;__‘,// " Sg, _ﬁwf'—- PGNN —{ J——
S/ 1
\

/Y ; : ;
T —{pow ——
iy

(©) Auxiliary Graph
Reconstruction Q Gi

= Recognize the topological variances across different graphs
= Customize a global prior for each individual graph (class prototypes tailored to each graph)
= Apply gate function to the global prior

H. Yao, et al. “Graph Few-Shot Learning via Knowledge Transfer.” AAAI'20
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a Adaptation-based Enhancement on Graphs

» Graph-wise adaptation: MI-GNN

[c)
©

©)

Training graphs Gt

—_————— - - — —_————— - - —

G;-conditioned

Support loss

L(S:,6:)
‘ Fine-tune
Dual-adapted model 6;

+

Task (query) loss

L(Qi' 91’)
1

. . 1
Optimize via J

backpropagation

Query embeddings
f(v, 9-’),Vv € Q;

T
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1 Fine-tune

Support loss

Predict @

/ /
l Support \: { Support \I task prior 6,
| [
| 2 |
ar; | ! I Sample (S;, Q;) T
: : : 0 : onG; € GY G;-specific transformation
' ' > (y;: scaling, B;: shifti
I d | : ! ! (v;: scaling, B;: shifting)
! RIS | (2) |
Support node | |
with label ¢ : e e : : o 0 :
l I l ]
QL el ey L Query General knowledge
with label ¢ Task prior 0
(in training) Testing graphs gte Graph prior
Query node ;ST PO
without label { Support \| { Support \I
(in testing) | | | | .
: I : I Given (§;, Qt]e)
I | | I onG EG _ G;-specific transformation
: e : | " (yj: scaling, B;: shifting)
| [
| ! | 2 | Gj-conditioned
| | .
task prior 0;
| ) l\ Query ) P j

——— e~

(a) Training/testing graphs and tasks

(b) Graph-level adaptation

L(S;,6))

(c) Task-level adaptation

Figure 2: Overall framework of MI-GNN, illustrating the pipeline on a training graph G; and a testing graph G;.

= Employ a Feature-wise Linear Modulation (FiLM) to modulate the global prior for each graph

Z. Wen, et al. “Meta-inductive node classification across graphs.” SIGIR’21
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a Adaptation-based Enhancement on Graphs

e Task-wise ada

otation: MetaTNE

Input Optimization Module
4 I A I
: Loss | Gradients are backpropagated
Loss | Gradients are backpropagated | with a probability of 1 -7
| with a probability of T ————— y
: | . \ | HEE Positive ‘
Y | “ P(:)Srltt::des Transformation Function |- |~ MMM support nodes ‘
Graph Structure Structural Module | PP M Query node (+)
—J Query node i Weight sharing ‘ ‘
L --]io] [ LINE, DeepWalk, > ] Negative \ Query node (-) |
[iJo]i]---Tt]o] Node2vec, etc. | £ +t nod Transformation Function | HEE . ‘
Nodes . ‘ Support nodes T ] Negative
: \ B support nodes |
L[ fof-=To] 1] Embeddings tfask-agnostic embeddings | LTask-specific embeddings |
[N e et
Labels
Known Label Distribution » Few-Shot Task Sampling Meta-Learning Module Distance-based Classifier
A
Lookup
A 4

A Novel Label

Positive and negative
support nodes

Task-specific embeddings

A 4

Transformation Function

Y

Task-agnostic embeddings

A 4

Query nodes

= Multi-label few-shot classification: same node could be associated with different labels in different tasks
= Adaptation for the node embeddings (the query set in each task)

L. Lan, et al. “Node classification on graphs with few-shot novel labels via meta transformed network embedding.” NeurlPS’20
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B Adaptation-based Enhancement on Graphs
* Task-wise adaptation: AMM-GNN
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Figure 1: The overview of the proposed AMM-GNN framework. Left: In the meta-training phase, multiple tasks are sampled to
train the meta-learning model, and we obtain two parameter sets 0 and ¢. Right: In the meta-testing phase, we use parameter
sets ¢ and 0 for attribute matching and gradient descent respectively, and obtain the classifier f (-) for a new sampled task 7;.

= Customize a task-specific feature matrix for adaptation

N. Wang, et al.. “Graph Few-shot Learning with Attribute Matching.” CIKM’20
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B Adaptation-based Enhancement on Graphs

e Others: AS-MAML
F& S
) yd

QuerylGraphs
_f(ﬁ:)_} 9?) Adaptation J Adaptation f(93, 93)
m ]
”””” . \\\ f (Hrl ’ 6}(1) . \\\\
[ mE - s o .
. / EAccuracy .
v AN, Loss /
.\ ’ .// Accuracy Accuracy .
' 'i/:,'/ . """""" > Step Controller <~ ° .
Embedding Classifier Step size T Embedding Classifier
Support Layers Layers ep stze Layers Layers
Graphs

= Improve adaptation from an optimization standpoint
= Reinforcement learning-based controller to determine the optimal step size
for the adaptation process

N. Ma, et al. “Adaptive-Step Graph Meta-Learner for Few-Shot Graph Classification.” CIKM’20
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N Adaptation-based Enhancement on Graphs
* Others: MetaDyGNN

Global )
Parameters Back Propagation

Dynamic GNN - —« Parameter m o Chacky ek
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= Adaptation for dynamic graphs: time- and node-wise

C. Yang, et al. “Few-shot Link Prediction in Dynamic Networks.” WSDM'22
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- Summary

* EXIisting research often enhances a . structural augmentation or
refining the adaptation process

* Drawbacks:

» Require for a base set during the meta-training phase
» Falil to leverage the vast amount of to learn a more comprehensive prior
» Limited by the i.i.d. In task distribution, and cannot handle

Can we address a diverse range of few-shot tasks on graphs without an
extensively annotated base set, while utilizing abundant unlabeled graphs?
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B Pre-training on Graphs

* Pre-training stage utilizes self-supervised method
* Prior knowledge are then adapted to downstream tasks

- _Ci"itzajtlv_e E’:a_l‘lllilg_ - |OOLabeled O Unlabeled ‘ ‘ ‘Tuned Frozen

| e o o
Graph encoder N Positive pairs: high similarity :

@@ @@ vl Pre-trained graph encoder ¢ Pre-trained graph encoder
|

I

I

I

| F 4

| Negative pairs: low similarity |

| "‘ |

| ~ ‘\I ‘

©-® D@ - promps
I F

Pre-train Task head
loss

]/
Task head [«

J )y @ |
@ Downstream loss @ Downstream loss
S @ J @ J

8
W i
Adaptation with fine-tuning Prompt tuning

(a) Unlabeled graph data (b) Pre-training stage (c) Downstream adaptation



N Pre-training Strategies

 Graph pre-training strategies mainly fall into:
» Contrastive strategies

» Generative strategies



8 Contrastive Strategies

» Contrasting instances at various scales within a graph

>Samp|e positive and nega‘tive Instances Method | Instance | Augmentation | Graph types

GRACE [72] node uniform general
GCC [30] graph uniform general
i . GraphCL [40] graph uniform general
> POSItIVG | nStan CeS C I Oser tO the targ et SimGRACE [74] graph perturbing encoder general
GraphLoG [73] dataset uniform general
DGI [29] cross-scale uniform general
1 1 InfoGraph [42] | cross-scale uniform general
> Neg atlve Instan CeS fu rther to the targ et SUbg-COn m cross-scale uniform general
MVGRL [149] | cross-scale diffusion general
. . - JOAO [41] graph adaptive to loss general
Pl‘e-tl’alnlng data 7;31‘& Target InStanCe 0 GCGM [150] node adaptive to loss general
You et al. [151] graph view generator general
-y - GCA [152] node adaptive to instance general
POSI'[IVG Samp|eS P{) Negatlve Samp|eS M) HeCo [153] node uniform hetero.
CPT-HG [154] | cross-scale uniform hetero.
: . PT-HGNN [155] | cross-scale uniform hetero.
ContraStlve IOSS SelfRGNN [76] node curvature over time dynamic
_ DDGCL [156] graph uniform dynamic
> P exp( sin(ha.ho) ) CPDG [75] cross-scale | temporal-aware sampling | dynamic

— ZOET In 2S¥o T GearNet [157] graph uniform 3D

pre

sim asho sim(h ’hO
Tacr, oxp(ZEERL) LT, o, o (L)
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B Generative Strategies

 Reconstruct parts of the graph

Reconstruction objective Graoh
Method node node d adj. graph other :[ P
] feat. deg. “U2¢ matrix feat. info. ype
>StrUCtUI‘e reconstruction VGAE [43] X X X v X X general
- GPT-GNN [39] | v X v X X X  general
- Entire graph structure MaskGAE [77] | x ¢ v  x  x  x  general
NWR-GAE [161]| Vv v X X X X  general
- Part of graph structure LaGraph [162] | v x x x v x genea
GraphMAE [163]| Vv X X X X X  general
GraphMAE2 [78]| v X X X X X  general
Liu et al. [164] v X X X X X KG
- Wen et al. [79] v X v X X X KG
» Feature reconstruction MPKG [165] | v x ¢  x « 7 KG
_ Tet PT-DGNN [166] | x X v X X X  dynamic
Orlgln featu re STEP [167] v X X X X X dynamic
- I PMGT [168] v X v X X v MMG
Latent embeddlng ColdGPT [169] v X X X X v MMG
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a Fine-tuning

* Prior knowledge are transferred to downstream tasks by
Initializing a downstream model with the pre-trained weights

» Task-specific projection head » ODbjective gap between pretext and
downstream tasks

»Update the parameters in » Updating all parameters is inefficient
- Pretrained model
- Task head



N Prompt tuning

MLM | _ | great MLM | | no CLS | ____| label:positive
head terrible v/ head utterly v/ head label:negative v/
: Vocab V ' VocabV X Label space
[ [CLs] it's a|[MASK ]| movie in every regard , and |[MASK ]| painful to watch . [SEP] ] [ No reason to watch . [SEP] J
(a) MLM pre-training (b) Fine-tuning
MLM | | great (label:positive)
head (label:negative) v/
. Label mapping M())
[ [CLs] No reason to watch . It was |[MASK]|. [SEP] A funride. It was great . [SEP] The drama discloses nothing . It was . [SEP] J
b——— Input —————— Template — F— Demonstration for label:positive i | Demonstration for label:negative i
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Prompt tuning

® U n Ifl ed tel I l I ate Feature | Structure | Multiple Prompt Downstream Task
Paper Template e qe e
prompt | prompt | pretext tasks | Initialization | Node Edge Graph
GPPT [48] | subgraph-token similarity: sim(s,,t,) | input | X | X |  random | V X X
VPGNN [178] |  node-token matching: match(h,,ty,) | x | v | X | random | V X X
> Al | g ns th e p retext an d GraphPrompt [19] readout | x x andom | v v <
MOP [179 ) ) PR readout X X random X v X
GraphPrompt+ [80] subgraph similarity: sim(s.,, s.) all layers X X random v v v
downstream losses ProNoG [ 180] readout | x x conditional | v v v
MDGPT [181] readout X X pretext tokens | v v v
MultiGPrompt [84] node similarity: sim(h,, h,,) all layers X v pretext tokens | v v v
HetGPT [116] input X X random v X X
GPF [182] L input X X random v v v
IGAP [115] universal feature/spectral space signal » 9 random v " v
® P rOI I I pt SGL [90 | dual-template: CL(hy, h,), GL(%xy,%,) | X | v | v | random | X X v
HGPrompt [83] | dual-template: sim(s.,s»), graph template | readout | X | X | random | V v v
SAP [85] | view similarity: sim(MLP(X),GNN(X, A))| x| v | v |  random | V X v
> I\/I Od ify th e O ri g i n al ULTRA-DP [86] | node-node/group similarity: sim(h,, h,) | input | v | v | random | V v X
node attribute reconstruction: M“JE(XU,XU) e e
) ) VNT [87] structure recovery: MSE({hu, | input ‘ X ‘ X ‘ meta-trained ‘ v X P
I n p Ut/el I lbed d I n g for ProG [49] | subgraph classification: CLS (b) | X | v | X | meta-trained | v v v
- DyGPrompt [183] X . T input X X conditional v v X
the p re—tral ned l I lOdeI TIGPrompt [184] temporal node similarity: sim(ht,u, ht,v) input X X time-based v v X
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- GraphPrompt

-“Contextual ~~ s e . Contextual ~
- . ,”s’u graph of no evo\\ (a) Pre-tralmng Wlth ,"su eraph of no evl\\
* Motlvation 0 2 d link prediction O
> Gap between graph pre- =) Sim?
training and downstream &
tas ks - Learnable node - -L_earnable graph
classification —¢ ¢— classification
* Challenges e ey
»What is the unified task 8 AL T A8 K
AR K, i | S T
template? 2N s@\;(\g) (T Sim‘?\;(\%’} V8
$How to design task-speci fic Node class prototypes Gratll cha Dok
(b) Node classification (c) Graph classification

prompts? )

Liu, et al. “Graphprompt: Unifying pre-training and downstream tasks for graph neural networks.” WWW’23.
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- GraphPrompt

Unified task template
GNN Encoder ¢
. .. Learnable node Learnable graph
Link Prediction 6=1 READOUT classification prompt classification prompt
. . Ir P . =~ ptl. Ptz
sim(sy, Sg) > sim(sy, sp) PO .
. . Q- t‘ ’,l' X i JI‘Ii —
Node Classification(NC) B | R . — -
1 AW P . oo e o | 2 Sz N E
S¢ =7 Z So; 2 ) ’~. .:'_" L@ g A /i."vzu(j: I G R N 4G @,HE Stzes
k i e | Vol N N NI .' PRGN >
(Ul, €D Jfi=c E_ &S "o % m /, ----- ~§‘,s |.‘ V3 'f \S]:n?:r:_;_::v::::f-_::::::;:i::: : G2 |“ :. ?3-;--;;:::\ ------ ) <
: Sim : ‘| kS /’ ] I”-A‘\ a'-“'\ 1'.1:: : :; ~ ‘\\ . 1 ll\ Sta,{;ll": ta.c2
¢j = arg max sim(sy;, Sc) £ p ‘-? @ : Yoo} (.68 (a3 £ B S ' é"’ H
| p / =oe RO O NIRRT tesoodititocoo=d ‘=
/ ceC , ’ I-E:ﬂ'.-l:-ﬁi-f::—.’.’: % Graphclass 7
7 Node class v prototypical suhgraphI J
G -
Graph Classification(GC) 2002 profotypical subgraph
Optimize with pre-training loss (Eq.(11)) Optimize with prompt tuning loss (Eq.(14))

. 1
Sc = Z 5G; (a) Toy graphs (b) Pre-training (c) Prompting for node classification (left) or graph classification (right)

k (Gi,Li)ED,L,‘ZC
Figure 2: Overall framework of GRapHPROMPT.

L; = arg max sim(s G 5¢) mean embedding of (sub)graphs
ceC

class label

A Notation for NC and GC Pre-Training Objective Prompt Design
y = argmax sim(sx., Sc) Lpre(©) = - Z In exp(sim(s?, Sq)/7) stx = READOUT({p; O hy : v € V(Sx)})
Sy = READOUT({]’IO ‘0 € V(Sx)}) (0,,6) € Toe Zue{a,b} GXP(SH’H(SU, Su)/T)

Liu, et al. “Graphprompt: Unifying pre-training and downstream tasks for graph neural networks.” WWW’23.
56



N Generalized Graph Prompt

* Motivation

» Can more advanced pretext tasks be unified under the subgraph
similarity calculation template?

»How to utilize hierarchical knowledge across multiple layers of
the pre-trained graph encoders

Yu, et al. “Generalized graph prompt: Toward a unification of pre-training and downstream tasks on graphs”. TKDE 2024.



N Generalized Graph Prompt

* Any standard contrastive pretext task on graphs can be unified
under the loss:

> ac Pose exp(sim(s,.s,)/7)
£(©) =~ Y,er.In

Zhlﬁ Nego EKD{SiIT][:Sb TEU);{T)

Target instance o Positive instance a Negative instance b
LP [39] a node v a node linked to v a node not linked to v
DGI [34] a graph GG a node in &G a node in G’, a corrupted graph of G
InfoGraph [36] a graph GG a node in ¢ anode in G' # G
GraphCL [35] an augmented graph &; from an augmented graph G; from an augmented graph G'; from
P — a graph G by strategy ¢ a graph GG by strategy j a graph G’ # G by strategy j
GCC [22] a random walk induced subgraph | a random walk induced subgraph a random walk induced subgraph
B G, from a node v’s r-egonet G7 # G7 from v’s r-egonet GEI from v’s r’-egonet, v’ £ r

Yu, et al. “Generalized graph prompt: Toward a unification of pre-training and downstream tasks on graphs”. TKDE 2024.
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B Generalized Graph Prompt

* Layer wise prompt design

[D:Dpn
R é _| Graph- || Graph-| | Graph- | b ’
Encoder! Encoder] °~~~ |Encoderf Hp“
i"a — _| Graph- | % Graph-2 | ... Graph- [ I H — > reapout— | | | |
Encoder! Encoder Encoder? pl P
_ + Hyp s
5 - Ty -
Graph- Graph- | | Graph-
Encoder!  |Encoder?” " |Encoder? () E HPL 3 .
Prompts Layer-wise modification Fusion
L
P={p’p!,...,p"} H,, = GRAPHENCODER, (X, A; O) Hp =Y, ,wH,

H'*! = AGGr(p! ©@ H, A; 6111)

Yu, et al. “Generalized graph prompt: Toward a unification of pre-training and downstream tasks on graphs”. TKDE 2024.
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B HGPrompt

* Motivation

»How to unify homogeneous graphs and heterogeneous graphs?

»How to transfer task-specific heterogeneous knowledge?

&)
- - ‘
Qr\ / ’Q\ -
aj \ / m;; /l I
1 s (0% d
7 = se\

Q.__-oﬁ—-—'ﬂ

2

Homogeneous graph Heterogeneous graph

Yu, et al. “HGPrompt: Bridging Homogeneous and Heterogeneous Graphs for Few-shot Prompt Learning.” AAAI’24.
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- HGPrompt

GNN/HGNN Encoder
i Feature prompt l Heterogeneity prompt Feature prompt l Heterogeneity prompt
READOUT pa® — READOUT  phet pat —» READOUT  pi*
/Q O\ Sim 5 PN
] K ] ' | B A
@ :~—~q@(§)} RCa¥
‘\\ ! .\‘ S ) 1 ”-,.-’! | Q o 0
ST - T R " Y- @
e S R ;TS s ‘A
So. N S5 gy Rk S o E /' ac
T ) &2 <t T AGG - -@F 1) AGG \“.5
. ~ . . ) \ I #, R 3 5]
;r . \" S]m ;_ \‘1 "zé \\\" /1 : I:% : : \\ L "'§ N .
r:::}_-."(-‘, I\ kv} .rJ ‘. f: E“~ S I ‘.\ - ’ : \. ? E“‘ \ .:
o A} . _f S / v 1 - wl Z
e =0 g2 A ! - -
T T \ e Sy iR
QLgy So S, -2 Node class Graph class
\f"\‘l— = N — -
L . rototypes
Triplet (0,1,2) \ y / prototyp v prototypes
4 D
= Graph template Graph template

(a) Pre-training graphs (b) Pre-training (link prediction) (c) Downstream node classification (d) Downstream graph classification

Dual templates Dual prompts

Task template
Feature prompt
READOUT({p"* © h,

Heterogeneity prompt
AGG({(1 + p'') ® READOUT(S") | S* € GT(S)})

Graph template sim(sy, 84) > sim(sy, sp)

GT(G) = {G°YU{Gi:ie A)

veV(S)}

{; = arg max.cc sim(S,,, S¢)
L;j = argmax,cc sim(sg,, S¢)

I o
.

Yu, et al. “HGPrompt: Bridging Homogeneous and Heterogeneous Graphs for Few-shot Prompt Learning.” AAAI’24.
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N ProNoG g S

* Motivation SN
el g _ <7

» Graphs exhibit different homophily >

ratio depending on nodes label R — s |

________________ PP e PORET i PO ]
» How to capture node specific
homophily pattern?

Homophily graph Heterophily graph

901 u, L ug 80+
801 |
e =70
5 701 =
2 us / U 60
S 60 4 =
: 5 I

= ] S a04
St - »
LY VE vz M
.9 401 | S 204
= 30 <
£ L F 107
g 201 Vo a v I I
S i
m 10 1 0 T T T T T

\ Label @ Music @ Sports @ Movies 0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

“ & & S Homophily ratio of nodes
C,D@ _\,_,e“‘a <& @G}\ ¥ .Q‘J‘é— Class Gender  Hobby PuLy
& & S e Homophilc edge ratio 2/, 4/, Wisconsin Squirrel Chameleon Citeseer [ Cora
(a) Varying non-homophilic patterns (b) Dependence of homophiliy ratio (c) Diverse non-homophilic patterns across nodes in the same graph
across different graphs on the target label

Yu, et al. “Non-homophilic graph pre-training and prompt learning.” SIGKDD’25.
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l ProNoG

Contrastive pre-training method loss function Definition of homophily task
L1 =- Z In P(u, Ay, Bu), (4) DEFINITION 1 (HoMoPHILY TASK). On a graph G = (V,E), a pre-
ueV training task T = ({Ay : u € V},{By, : u € V}) is a homophily task

YacA, Sim(hy, hg)
2acA, Sim(hy, hg) + Y pe g, sim(hy, hy)’

if and only if, Vu € V,Va € A, Vb € B, (u,a) € EA (u,b) ¢ E. A

P(u Aw Bu) = task that is not a homophily task is called a non-homophily task. O

(5)

THEOREM 1. For a homophily task T, adding a homophily sample - . '
always results in a smaller loss than adding a non-homophily sample. For non'.homo_phlhc graphs, espemally those with low '
homophily ratio, non-homophily tasks are a better choice

T 2. Consid h G = (V,E) with a label ] . ..
HEOREM onsiaer a grap (V. E) with a label mapping compared to homophily tasks when optimizing the training loss.

functionV — Y, and let y, € Y denote the label mapped tov € V.
Suppose the label mapping satisfies that

Vu,a,b € V,yy = ya A yy # yp = sim(u,a) > sim(u, b).

Let Er denote the expected number of homophily samples for a ho-
mophily task T on the graph G. Then, ET increases monotonically as
the homophily ratio H(G) defined w.r.t. Y increases.

Table 6: Positive and negative samples for homophily and non-homophily methods.

Pre-training task | Positive instances Ay, ‘ Negative instances B, | Homophily task
Link prediction [26, 62, 64] a node connected to node u nodes disconnected to node u Yes
DGI [48] nodes in graph G nodes in corrupted graph G’ No
GraphCL [60] an augmented graph from graph G augmented graphs from G’ # G No
GraphACL [55] nodes with similar ego-subgraph to node u | nodes with dissimilar ego-subgraph to node u No
Yu, et al. “Non-homophilic graph pre-training and prompt learning.” SIGKDD’25.
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l ProNoG
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Non-homophily - ~ & Tuned
pre-training loss Node emb Readout Subgraph Frozen
matrix emb matrix
)
Graph Pre-trained C diti t Downstream
encoder graph encoder ondition-ne lOSS
Prompt Prompting

matrix
(a) Pre-training

Figure 2: Overall framework of PrRoNoG.
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(b) Downstream adaptation with conditional prompting

Prompt tuning
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Yu, et al. “Non-homophilic graph pre-training and prompt learning.” SIGKDD’25.

64



- DyGPrompt

* Motivation
» How to design bridge temporal variations » How to capture evolving patterns

across time and different task objectives across different nodes and time points
. =
¢ o 7000 5
: (3 | o
" s ~ y i ) : : Y 6000»(-;'.U
' ‘ § * 90 : kg . 50000§
Professor & - § 25 © @,
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% 3 Yo . =
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(-?-\oi (?f)fﬁgffﬁ‘( (9—\402' (-9_{1‘ g ° . 3 . = -
}/' ‘ J . § | g B : 5 g .. 1000 ©
“ Link prediction 2 Node classification night) 3 e T ¥ ol E
ar IIIOI‘I‘IiI‘Ig? active at noon? > 1234567891011121314151617181920
Student ’ Dynamic variation suspended ’ User
(a) Users’ comments over time (b) Envolving node-time patterns
Yu, et al. “Node-Time Conditional Prompt Learning In Dynamic Graphs.” ICLR’25.
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- DyGPrompt

o Z
Time & : [ Pre-trained Pre-trained dynamic «'L'. 1 S2  Downstream
[ encoder Dynamic graph encodeﬂ time encoder [ graph encoder } ~ 6 ;% o Loss (Eq. 11)
A l T 0 A Class 2 & E
to &1 ty t3 a (¢ @S&n@*@“ > _)ﬁ

S | 7 2 Node | |&§
k3 Sim tme conditioned | |E
5|t ()2l @*@ . condition-net time prompt &
= < >
e Sim ;

. t, (V) 2B V)ae-y) | | - Time- e

E i @S Cha concjlviggg e t‘: cogllditioned E

i— i i \ B " t

; fg (@Ln(@_w_(@#J 1‘ node prompt | | o

Pre-training loss e by 3 Node feature ®
(Eq. 3)
(a) Toy dynamic graph (b) Pre-training (¢) Prompt tuning for downstream tasks
Dual prompts Dual condition prompts
Node prompt Time prompt Time conditioned node prompts Node conditioned time prompts
x;%¢ = p"% O xq fime — plime o f, plode = TCN(fi™; k) Pyme = NCN(x}%¢; &)
i?ﬁqjle _ l—jrﬂmde 0 X?ﬁqjle "5111;10 _ f)l.:tigc o féimc

Yu, et al. “Node-Time Conditional Prompt Learning In Dynamic Graphs.” ICLR’25.
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N MultiGPrompt

* Motivation

»How to leverage diverse pretext tasks for graph models in a
synergistic manner?

»How to transfer both task specific and global pre-trained
knowledge to downstream tasks?

Yu, et al. “MultiGPrompt for Multi-Task Pre-Training and Prompting on Graphs.” WWW’24.
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Yu, et al. “MultiGPrompt for Multi-Task Pre-Training and Prompting on Graphs.” WWW’24.



¥ MDGPT & SAMGPT

Product R User Paper 337 30

o Domain A
A variation P\_ ’é\_ fo\ _ —_
L e \ ?’ Link S?\ —
(& (A& 2" prediction ‘-(-; 304 I 145
9 .
3 s <2
L [ r El _Jé -
\ Laptop Theory =
i o . Calse Based \gde 25 I 40

Pre-training

 Motivation

Adaptation
E
§
(E]

 classification T'arg'et: Cora Target: Photo
. . . Single-domain Cross-domain Multi-domain = gﬁﬁl g ggﬁ;ﬁfm (s%:l dpfﬁg}ﬁf)
> HOW to al Ign mU|t|'d0ma| n (a) Various transfer scenarios (b) Observation of domain conflicts
graphs in the pre-training phase
In both feature and structure level Nodes Edges . caure  Node —Avg.  Avg.  Avg
dimension classes nd spl cc
Cora 2,708 10,556 1,433 7 389 630 0.24
Citeseer 3,327 9,104 3,703 6 273 931 0.14
Pubmed 19,717 88,648 500 3 449 633 0.06
> H q Iti-d . . Photo 7,650 238,162 745 8 31.13 405 040
ow to adapt multi-domain prior Computers | 13,752 491,722 767 10 3575 338 0.34
knowledge to downstream tasks in Facebook | 22,470 342,004 128 4 1522 497 035
different domains? LastFM 7,624 55,612 128 18 7.29 523 0.21
) nd: node degree, spl: shortest path length [3], cc: clustering coefficient [8].

Yu, et al. “Text-free multi-domain graph pre-training: Toward graph foundation models.” ArXiv’'24.

Yu, et al. “SAMGPT: Text-free Graph Foundation Model for Multi-domain Pre-training and Cross-domain Adaptation.” WWW’25.
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8 MDGPT

Domain tokens

&Tuned  Frozen

Dlmensmn alignment

Source Source Source
domain, domain, domain;

Pre train loss

Multi-domain pre-training
Dimension alignment
X; = DAs, (X;)
DAg. : R|V|Xd5i — R|V|XJ

i”®

Semantic alignment
X; = ts, © X;,

Yu, et al. “Text-free multi-domain graph pre-training: Toward graph foundation models.”

Hgs = GE(Gs, Xs; 9),

Mixing II\II&» & Unifying  Mixing |:|::|:|‘ SUnifying
prompt prompt prompt prompt
Aggregate( % ? ) ————  Aggregate(® J@)
” T v

- . Pre-traine Pre-traine
Dimension Dlmensmn
alienment graph ali nment graph

encoder

Graph classification
G downstream loss

Target domain

encoder

Node classification
downstream loss

2,

Target domain

Downstream adaptation

Dimension alignment Unifying prompt

X = DA7(X)

Mixing prompt

Puni

H = GE(G, Puni @ X: Opre) + GE(G, Pmix @ X; Opre),

arXiv preprint.
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N SAMGPT
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Figure 2: Overall framework of SAMGPT.

Structure tokens Structure alignment Structure adaptation

Multi-domain pre-training Downstream adaptation
Structural alignment Holistic prompt Speciﬁc prompt

hi, = Aggr(hl " {tg @ hl ' ue No}:0'), Yo e Vi hi =Ager(hy ! {phy Oy ' u € No}i Ope) Ploe = 2K, A’t’

Yu, et al. “SAMGPT: Text-free Graph Foundation Model for Multi-domain Pre-training and Cross-domain Adaptation.” WWW’25.
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¥ MDGPT & SAMGPT

* For all baselines, adding more datasets tends to cause domain conflicts.

* In contrast, MDGPT & SAMGPT consistently perform better when more source
domains are introduced.

40 ] B
>
Number of source domains <
Method ~
1 2 3 4 Q
%307
GRAPHPROMPT | 35.53+1206 37.13+11.79 36.90+11.23 38.54+11.84
GCOPE 390.47+12.14 36.63+ 946 35.28+1199 38.61+12.74
SAMGPT 40.43+11.00 41.97+11.01 42.30:1156 45.95+12.96
20-

| 2 3 4
Number of source domains

Bl oG I GraphPrompt [ ] GCOPE [ MDGPT

Figure 4: Data ablation study with a growing
number of source domains.

Yu, et al. “Text-free multi-domain graph pre-training: Toward graph foundation models.” arXiv preprint.

Yu, et al. “SAMGPT: Text-free Graph Foundation Model for Multi-domain Pre-training and Cross-domain Adaptation.” WWW’25’



- Summary

« EXisting research often focus on graphs, fail to leverage the vast amount of
to learn a more comprehensive knowledge

* LLMs have achieved significant performance

Can we leverage LLMSs to integrate textual data and thereby improve the performance of
graph few-shot learning?
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N Graph + PLM

* Pre-training:
» Contrastive pre-training

» Language modeling

 Adaptation:
» Prompt-tuning

» Parameter-effeicient fine-tuning (PEFT)



B Graph + PLM: Pre-training

» MoleculeSTM: Contrastive pre-training

(a) Contrastive Pretraining

M, encode f, project p, project p, encode f,
—_—
oha — N (1 A bDjj LT 1]
N /
N /
5 N7 P4
= N\ =}
<C 7 N >
irin i 4 Penicillin G
Aspirin is a Contrast I
commonly used | encode f; project py q ‘7 project p¢ encode f; SO;_'U”" is |tthfe
drug for the -_— —_—) — 44— | sodium salt form
treatment of pain I:Ij:l qf benzylpenicil-
and fever. lin.

[LT1] L1 [ [T

Latent Representation of Latent Representation of Latent Representation of Joint Latent Representation
Chemical Structure Textual Description Generative Model

Graph-Text contrastive learning: Graph encoder + Text encoder = projector layers

S. Liu, et al. "Multi-modal molecule structure—text model for text-based retrieval and editing." Nature Machine Intelligence 2023
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a Graph + PLM: Pre-training

» G2P2: Contrastive pre-training

Papers grounded on a citation network Text-node interaction £

Language /@D\ Visual QA ...
models a

re .. 9
4)
targetnode Ze Zety | Zela | ... | Zels

Pp—— S I S Graph encoder + Text encoder -
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The translation .. \@ Text-summary interaction £,
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Texts of the papers. N T N LT L O [ summary-Text
Text encoder
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7] Node-summary interaction L3
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Graph encoder Z2 Zoty | Zptp) .. Zzts

®; (GNN)

summary
textemb. Z.S Z.S 7S
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Z. Wen, et al. "Augmenting low-resource text classification with graph-grounded pre-training and prompting." SIGIR’23
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N Graph + PLM: Pre-training
* PATTON: Masked language modeling + Masked node prediction

- |Link Prediction |

mm—————- NMLM NMLM NMLM i
Z _i--- MNP 4 MNP A MNP IS R?‘-{an!(mg| II
@O th [m k]:: RO N N etrieval
t ' ' ‘ 'Classmcatlon

Graph-based Aggregation

| L g
Two pretraining strategies s % é%

@// E E Graph-based Aggregation
b. MNP <«-- ® Finetuning

] neighl?or aggregation @// @
JicLs] :;i:inh?;?:n state [CLS] T [CLS] T [CLS] T Inpl'It @ Z\i @@ / a
[l word token hidden state Doc 1 @ Doc 2 @ Doc 3 @ - @

@ Pretraining O A Text-rich Network

\
context,
/

B. Jin, et al. "PATTON : Language Model Pretraining on Text-Rich Networks." ACL’23
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N Graph + PLM: Pre-training

» GaLM: Graph-aware language model pre-training

encode text information graph-aware supervision
(2) warming-up GNN .
= : >
. . @ backpropagate gradients to f(Ogyy) —
= LMs of GNN _ .A’.
° Gam | I aggregator] _’ | deCOder] o—a??
< . F@a) r .
co-training LMs with GNN aggregator
® g gereg %
GC LCO
pt

backpropagate gradients to (0, Ognn)

LLM-encoded node embeddings - Graph encoder
Link prediction task—> Pre-train both the LLM and the graph encoder

H. Xie, et al. "Graph-aware language model pre-training on a large graph corpus can help multiple graph applications." KDD’23.
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B Graph + PLM: Pre-training

* InstructGLM: Language model pre-training

Natural language—>
Describe graph structures

1-hop prompt with meta node feature

i Categorize the central node: (<node_4>, ‘toward cloud computing evolution’)

\_ Which category should <node_4> be classified as?

is connected with (<node_76>, [title_76]), (<node_21>, [title_21]), ... within

one hop. \n distributed computing

3-hop prompt with intermediate paths

Categorize the central node: <node_17> is connected with <node_909>,
<node_1682>, ... within three hops through (<node_32>, and <node_561>),
(<node_16980> and <node_98>), ..., respectively. \n

software engineering ]
Which category should <node_17> be classified as?

structure-free prompt
Categorize the central node: <node_169341> is featured with its
title: ‘unsupervised attention guided image to image translation’
and abstract: ‘Current unsupervised image-to-image translation
techniques struggle to focus their attention on individual objects
without altering the background. ...". \n
Which category should <node_169341> be classified as?

InstructGLM computer vision

Node Classification

Link Prediction

<node_1006>

2-hop prompt with meta node feature & intermediate nodes
Perform link prediction for the central node: (<node_0>, ‘difference
target propogation’) is connected with (<node_511>, [title_511]),
(<node_6>, [title_6]), ... within two hops through (<node_49x,[title_49]),
(<node_12>, [title_12]), ..., respectively. \n
Which other node will be linked to <node_0> within two hops through
<node_2001>?

1-hop prompt without meta node feature

Perform link prediction for the central node: <node_2867> is connected
with <node_48605>, <node_609>, <node_656>, <node_1998>, ... within
one hop. \n

Will <node_174> be connected with <node_2867> within one hop?

R. Ye, et al. " Language is All a Graph Needs." EACL’24.
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B Graph + PLM: Pre-training

Citation
Network

* One for all: LLM + GNN pre-training

Literature

Category
Description
9

Is the paper
about Bio?

Molecule
Property
Description
)

Node
( ™ Classification
Molecule
rap
LLM -\ Molecule Classification
effective to GNN
gHTS Assay?
5 2% o .
a9 Relation 1 i y , .
Kno“’lel‘llge 150 Type / \ Did Jobs I —\ Link
Grap ﬁi_ b Description 'I ‘\‘ _— found Apple‘) ] \| Predlctlon
I’ ‘\ I’ “
’ \ ! \
s AN / \
More data and tasks. -—- S~ el o
| | | | | | | |
Cross-domain Graph Data Task Description ~ LLM-based Feature/Task Feature Graph Task-dependent GNN-based Graph
Embedding Prompt Graph Embedding
LLM: text/task embedding

Downstream Task

Prediction
GNN: prompted graph

H. Liu, et al. "One for all: Towards training one graph model for all classification tasks." ICLR’24.
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B Graph + PLM: Adaptation

* Prompt-tuning
» Parameter-effeicient fine-tuning (PEFT)

TABLE IX: Summary of prompt tuning on text-attributed

graphs.
Paber Instruction | Learnable | Downstream Task
P Text Graph prompt | Node Edge Graph
G2P2 [44] vector
G2P2* [82] condition-net

GraphGPT [170]
InstructGLM [175]
GIMLET [185]
OFA [45]
HiGPT [186]

X

NN NN RN
ENENENENE
X X X X

NN NENENEN
X NX X X X X
X NN X X X X




a Graph + PLM: Prompt-Tuning

* G2P2

»Discrete prompt-tuning: zero-shot
» Trainable prompt-tuning: few-shot

Label texts of N classes

Discrete prompt

Label texts of N classes

y1 = NLP

y> = Recommendation

vy = Computer vision

Graph contexts of target

D

The BERT
model ...

Y1 = NLP Pre-trained
y, = Recommendation “paper of” +y; [—P|transformer 67
yy = Computer vision
¢ \4 v \4
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| |
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\ 4
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(a) Zero-shot

Trainable prompt emb.

Visual QA ... T~—>
initialize

Language

models are

The

translation

[h1 - hy ,h ]
’ ’ ’ y .
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[hy, -,y hy, transformer 67
5 in (a)
[hll.“IhM JhyN] ¢ ¢ ¢ ¢
I W, W, Wy
| |
Classification weights
h, [TT]
hy, [1TT]
: Y y
backpropagation [Z1W1 [Z1W2| - [Z1Wn
target
node emb. |21
Pre-trained

(b) Few-shot

GNN 82 in (a)

Z. Wen, et al. "Augmenting low-resource text classification with graph-grounded pre-training and prompting.” SIGIR’23.
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B Graph + PLM: Prompt-Tuning

* One for all

Supervised & Zero-shot Scenarios . Few-shot Scenario

(© Node of Interest ﬁ Query NOI
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ﬁ NOI Graph i ©
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H. Liu, et al. "One for all: Towards training one graph model for all classification tasks." ICLR’24.
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M Graph + PLM: PEFT
 MoICA

{ }[ﬁ]

-5

i Pretrained
CC(=0)0C1=CC 90(_0)001 cC The molecule’s Input ! weights
=ce= C1C(—O)O o O D [ | Input =ce= C1C( oo J| @ D oo 'UPAC pame is B\ 2 Roee:

Language Model o [ Language Model -U -Ul\ |
L Uni-Modal Adapter:

Generate |Acetylsalicylic acid appears as Generate [2-acetyloxybenzoic acid} LoRA
odorless white crystals ...

Figure 5. Mol CA’sfine-tune stage for molecule-to-text generation.

Figure 4: MolCA's pretrain stage 2 The example shows the prediction of a molecule’ s I[UPAC name.

by molecule captioning.

Cross-Modal Projector: bridge the gap between graph structural and textual representations
Uni-Modal LoRA Adapter: efficient downstream adaptation

Z. Liu, et al. “MolCA: Molecular Graph-Language Modeling with Cross-Modal Projector and Uni-Modal Adapter”” EMNLP’23
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Graph + PLM: PEFT

* GraphGPT: only fintune projector
»Aligh graph to LLM
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Figure 2: The overall architecture of our proposed GraphGPT with graph mstructlon tuning paradigm.

J. Tang, et al. "GraphGPT: Graph instruction tuning for large language models.” SIGIR’24.
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Graph + PLM: PEFT

» GraphTranslator

Language Response | (1} . (] ‘ i Stage 1 Training Phase
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Figure 2: The overall framework of our GraphTranslator, which aligns GM to LLM by Translator for open-ended tasks. We
train the lightweight Translator module following atwo-stage paradigm, with the alignment data generated by our Producer.

M. Zhang, et al. "GraphTranslator: Aligning Graph Model to Large Language Model for Open-ended Tasks." WWW’24
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Summary

* Pre-training approaches employ self-supervised pretext tasks on unlabeled data

* Pre-training approaches are more effective in scenarios where labeled data are
limited to novel tasks without a pre-existing set of annotated tasks.

« When a large annotated base set Is available, meta-learning tends to perform better
as It can leverage related meta-training tasks derived from the base set.

 Parameter-efficient adaptation strategies, including prompt tuning, adapter tuning
and LoRA, present a more promising direction for few-shot learning on graphs.
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B Hybrid Approaches

» Adopt pretext tasks to pre-train a

graph encoder g G"“"“I’“"“““"
> Unlabeled data for pre- 2 | Pretext task
training § l
+ The pre-trained model is adapted oo
In conjunction with meta-learning \ Admtation / SR |t encoder
» Annotated base set for meta- | (c) Downstream Adaptation |

learning
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(b) Induced graphs for edges

Unify node level and edge level
tasks as graph level tasks

Prompt graph
Gp = (P.S) P =A{pr.p2-.p2}

Prompt modification

5 P
Xi = Xi+ 2 Lzll WikPk

— o(pr -x!), ifo(pr-x')>6
ik 0, otherwise

First pre-train a graph encoder, then apply
meta-learning to the prompting phase

Sun, et al. "All in one: Multi-task prompting for graph neural networks.” SIGKDD’23.
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N VNT

O S oareely labeled bace ] © cow-shot novel cl Source FSNC tasks Prompt dictionary D
darsely labeile dse Classes ew-5not novel Classes
parsely Target FSNC task
:- Support Query :
Neural networks : > :
,,,,, Node structure recovery | @
® Embedding layer i ]
€ — . Sample pseudo :
....... v ——mmm =y . ' Virtual node prompis P! . target task
| Nodeembeddings 1 MECL 1 o : v
- ! I esrmt O E 1 INENENE  TENS
Pretrained |_ ! gty e .
GT ! : Vsl _BE "
o e
- — J
4 £"¥71™ Decision boundary
e () () f Transformer ] < pr 3
il T e 2 ...- '_'
'@ @ - l |E|\,’EI"S J qu—_" _'% &~ - .. Inferenced prompt
i ", n o feent representation for
{ees} Explainable Al Node attribute reconstruction S l-_"',," - ,Trg_ % target FSNC task
{e} e %I ot
l Y J l T J ‘ )
Input Graph Virtual Node Tuning (VNT) Graph-based Pseudo Prompt Evolution (GPPE)

First pre-train a graph transformer Prompt modification

Prompts [E!||1Z'] = L) ([E°||P]) e ROVFPIXF

P = [PI; 3 Pps ___;pp]_ Tan, et al. “Virtual node tuning for few-shot node classification.” SIGKDD’23.
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Y Meta-BP

* Integrate meta-learning with pre-trained GNNs in the black-box setting

g—- Input Meta-testing Tasks
S y ,
I . . Black-box < ] Tisj
I Minimal Sufficient Tis1
” Inf ti T Pre-trained ks
” nformation s —— :
2 I . o [ GNN Input| :  SupportSet i 5
ﬂ I Extl'actl(lll === _...=f'.1'.11'.1!11'.:'.1!'.1'.1!'.11:'.!!1‘.'.!Zl‘. """ ' g
I H H
é ” @ - 3 ® Output i Query Set X
) YL ) P e o
g T | . a
= Sampling | ” Update Classifier 0] Adaptation Prediction | &
‘= v I ra
R . ~~
# | Ter,j + 1 =
8 [Tea 4
= A ———— : -
E i Support Set : % Extract § g i g
Query Set
Meta-training Tasks Graph Meta-learner Subnetwork Subnetwork

Figure 1: The step-by-step illustration of Meta-BP. (1) The black-box pre-trained GNN outputs node representations for sub-
sequent components while remaining inaccessible itsalf; (2) Graph meta-learner built on (1) exploits both graph pre-training
and meta-learning; (3) Graph meta-learner learns the representations Z to capture minimal sufficient information from the
pre-trained GNN tailored to the meta-tasks; (4) A subnetwork is derived from the graph meta-learner during meta-training to
improve generalization; (5) The subnetwork is anticipated to rapidly adapt to the meta-testing tasks.

Zhang, et al. “Unlocking the Potential of Black-box Pre-trained GNNs for Graph Few-shot Learning.” AAAI 2025
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l Outline

Speaker/host

9.00am Opening Yuan Fang
9.05am Introduction Shirui Pan
9.15am Problems and Applications Yuan Fang
9.45am Meta-Learning Approaches Yuxia Wu
10.15am Q&A Yuxia Wu
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11.00am Pre-training Approaches (Pre-LLM) Xingtong Yu
11.35am LLM Era Yuxia Wu
12.05am Hybrid Approaches Yuxia Wu

12.15am Future Research Avenues, Q&A Yuan Fang



Future Avenues In Problem Settings

» Structure scarcity learning on graphs

EXisting solution:

Support Query
[ @ @w
=
i .......................................................................
Y Meta-train tasks (base classes)
K
>
§ Support Query
N>
OWE:

Meta-test tasks (novel classes)

Constrain:

Structure-rich

Structure-scarce

Independent and Identically Distributed (i.i.d.)

Future direction:

Base tasks

Novel tasks

Pre-training

Adaptation

Bridge the gap between base and novel tasks
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8 Future Avenues in Problem Settings

* Few-shot learning on large-scale graphs

Average Average Average Average MaxSCC Graph
Category  Name Scale #Graphs #Nodes #Edges Node Deg. Clust. Coeff. Ratio Diameter
products medium 1 2,449,029 61,859,140 50.5 0.411 0.974 27
Nod proteins medium 1 132,534 39,561,252 597.0 0.280 1.000 9
O§b§7 arxiv small 1 169,343 1,166,243 13.7 0.226 1.000 23
papersl100M large 1 111,059,956 1,615,685,872 20.1 0.085 1.000 25
mag medium 1 1,939,743 25,582,108 21.7 0.098 1.000 6
rpa medium 1 576,289 30,326,273 73.7 0.223 0.999 14
collab small 1 235,868 1,285,465 8.2 0.729 0.987 22
Link ddi small 1 4,267 1,334,889 500.5 0.514 1.000 5
ogbl- citation medium 1 2,927,963 30,561,187 20.7 0.178 0.996 21
wikikg medium 1 2,500,604 17,137,181 12.2 0.168 1.000 26
biokg small 1 93,773 5,088,434 47.5 0.409 0.999 8
molhiv small 41,127 25.5 27.5 2.2 0.002 0.993 12.0
Graph molpcba medium 437,929 26.0 28.1 2.2 0.002 0.999 13.6
ogbg- ppa medium 158,100 243.4 2,266.1 18.3 0.513 1.000 4.8
code medium 452,741 125.2 124.2 2.0 0.0 1.000 13.5
Dataset Nodes Edges Classes splitting (Train/Validation/Test) Task
Flickr 89,250 899,756 7 0.50/0.25/70.25 Multi-Class Classification
Reddit 232,965 11,606,919 41 0.66/0.10/0.24 Multi-Class Classification
ogbn-products 2,449,029 61,859,140 47 0.10/0.02/0.88 Multi-Class Classification

Challenges: Finer-grained adaptation strategies to deal with potential variations among distant localities on a large graph.
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B Future Avenues in Problem Settings

* Few-shot learning on complex graphs

Ali Contrastive
= Sec 3.2

S SR "

Pro;ect Reparameter ze

Dynamic graph

» Dual knowledge graph

(Fused textual &visual structural knowledge) — — m— TS
IR R — etk |
“ L) ext e i . | |
A photo of a [dog]” — —_— = ' ‘ ‘ ‘ |
P [dog] Encoder Py : i i 1 | lexisting link|
[ti-modal h T | j flowers ! | | ¥ e
M u tl = 0 a g rap Textual nodes ‘;" a . cal m—— ! : } : . i
Visual nodes ®® S —_— N ! i ! } : | ]
] - person 1 I P ;! |
Q Y ! . 1 L Vo |
I dog ! = 1l B |
Visual & i ! el IR L 1 .
Encoder SrTrTrmrTrTrT T : I Tl I Tl Is -l Interval

S. Liu, et al. “Pre-training Molecular Graph Representation with 3D Geometry.” ICLR’22
X. Li, et al."GraphAdapter: Tuning Vision-Language Models With Dual Knowledge Graph.”NeurlPS’23

C. Yang, et al. “Few-shot Link Prediction in Dynamic Networks.” WSDM’22
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8 Future Avenues in Problem Settings

* Few-shot learning on cross-domain graphs

[ Product R User [z Paper
Domain R
variation ro\_ A_ ro\

\ 2 Link
/Q\" prediction

Text-Attribute Multi-domain Graph

Pre-training
B
R

| .5
[

Citation Literature
Network Dcategot'.ry 4 i Text-Free
escription 5 A A A L E S i i
. T R R A R R P avion ey | S Multi-domain Graph
‘g_‘ B I Desktop ‘ :f Deskrop F'C_qlse Based\gde
= Ly by, T Gl N .
< ! ! classification
Molecular Molecule Single-domain Cross-domain Multl—domaln
Graph Property
Description
I 6 conttiv ey e Downsiea
GNN
3 P = OR
Knowledge ;'f\\. 3, Relation R ®Fre 8 oo
Graph L Type tréall\:ﬁd Prompt
P R ; Description Trandferring
Nodes Coordinators @ Projection & Tuned @ Frozen

H. Liu, et al. “One for All: Towards Training One Graph Model for All Classification Tasks.” ICLR’24
X. Yu, et al. “Text-Free Multi-domain Graph Pre-training: Toward Graph Foundation Models.” ArXiv 2024

H. Zhao, et al, “All in One and One for All: A Simple yet Effective Method towards Cross-domain Graph Pretraining.”KDD’24
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B Future Avenues in Techniques

* Improving interpretability

> Output

Input d Black Box

Inable Al



B Future Avenues in Techniques

 Foundation models on graphs

Deep Graph Learning Graph Foundation Model
[’ End-to-End ‘: ! Pre-training ::{ Adaptation |
| i !
i ! H ::i !
| O}é’ 1132 &P - &l |
! i | 5 i: i
. i i |
s I as a
1 [l [l [l
| CCIOC Il @@ i QO W® !
i (o’o i s _ii__’ o’o) E
| Tl 1 : LT " 4 |
| i v 0" i
! | - ? L ? PR '
: RS Of?@g@ !
| iff 1 \ t 1
| il v i |
: i : Pretext Task ;i: !
i 11 (e.g., link prediction) i i
[l N I IoTIITIUIIITIITIIIIITTII T 71 1
: SNy : '
| it _ Homogenization !
= ;ﬁ? il op; ;@ PWr !
I i1 o k) | Pt '
: Il Qﬁj K =O%§O |
: il S !
. Downstream Task 1| Downstream Tasks :
\(e.g., node classification)||: \  (Node-, Edge-, Graph-level Tasks) :
I[ " ‘I :’ Y Emergence i
1 Q 1
1 c : 1 c 1
i g ! i g * In-context Learning i
L5 i | S * Graph Reasoning i
I = e & * Zero-shot Generation !
\ S i a . !
1 [l l ase H
i #Parameters i ! #Parameters !
N e e e e e e ’ N o e e ,/

J. Liu, et al. “Graph Foundation Models: Concepts, Opportunities and Challenges.” TPAMI’'25
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N Q&A

Thank you! Questions?

* This tutorial is based on the following survey paper & github repo:

g A Survey of Few-Shot Learning on Graphs: from
Meta-Learning to Pre-Training and Prompt Learning

Wen, Jianyuan Bo, Xinming Zhang, Steven C.H.Hoi

https://arxiv.org/abs/2402.01440v4

\.

Xingtong Yu, Yuan Fang, Zemin Liu, Yuxia Wu, Zhihao =

~

Awesome Few-Shot Learning on Graphs

This repository provides a curated collection of research papers focused on few-shot
learning on graphs. It is derived from our survey paper: A Survey of Few-Shot
Learning on Graphs: From Meta-Learning to Pre-Training and Prompting. We will
update this list regularly. If you notice any errors or missing papers, please feel free to
open an issue or submit a pull request.

https://github.com/smufang/fewshotgraph

* Also related to / partially based on the following:

-
Graph Foundation Models: Concepts, Opportunities
and Challenges (TPAMI 2025)

Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen,
Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang,
Lichao Sun, Philip S.Yu, Chuan Shi

https://ieeexplore.ieee.org/document/10915556

\

~

r
GFMPapers: Must-read papers on graph foundation
models (GFMs)
o T E

This list is currently maintained by members in BUPT GAMMA Lab. If you like our
project, please give us a star .. on GitHub for the latest update.

We thank all the great contributors very much.

https://github.com/BUPT-GAMMA/GFMPapers



https://arxiv.org/abs/2402.01440v4
https://ieeexplore.ieee.org/document/10915556
https://github.com/smufang/fewshotgraph
https://github.com/BUPT-GAMMA/GFMPapers
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