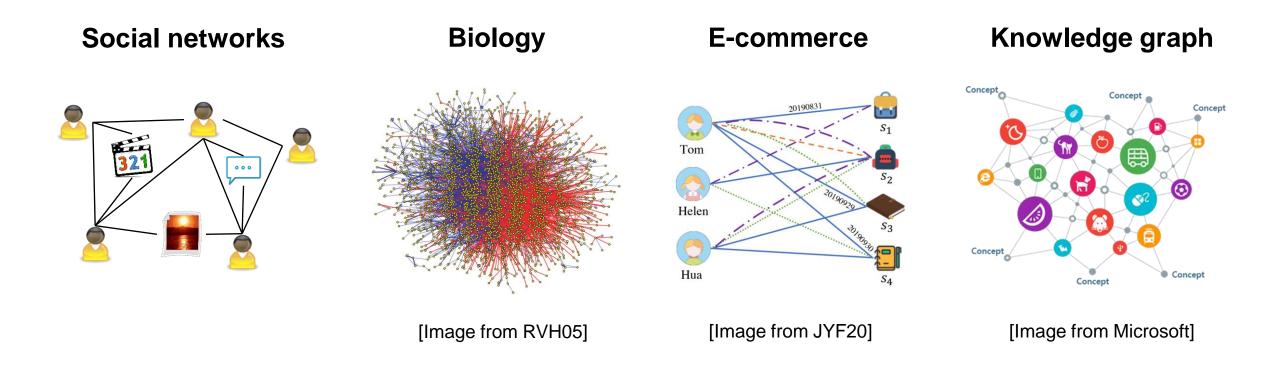
# Would prompt work for graph learning? An exploration of few-shot learning on graphs

#### Yuan FANG

School of Computing and Information Systems
Singapore Management University

WWW'25 International Workshop on Resource-Efficient Learning for the Web 29 April 2025






### Outline

- Introduction: Data and problems
- Overview of few-shot methodologies
- Can prompt work on graph + text?
- Can prompt work on graph alone?
- Conclusion

## Complex big data as graphs



[RVH05] Towards a proteome-scale map of the human protein—protein interaction network. J. Rual, et al. Nature: 437(7062), 2005. [JYF20] Temporal Heterogeneous Interaction Graph Embedding For Next-Item Recommendation. Y. Ji, et al. ECML-PKDD 2020.

## Data, Problems and Methods

#### **Data**

Graphs/Networks

Heterogeneous graphs

User interaction graphs

Knowledge graph

### **Problems**

Few-shot learning on graphs

Node-level

Edge-level

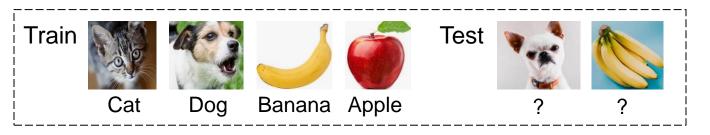
Graph-level

### **Methods**

Meta-learning

Self-supervised learning / Pre-training

Prompt-based learning


### **Outline**

- Introduction: Data and problems
- Overview of few-shot methodologies
- Can prompt work on graph + text?
- Can prompt work on graph alone?
- Conclusion

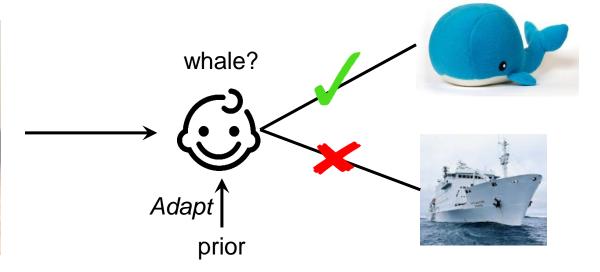
## Why supervised learning does not work?

7

## Supervised learning



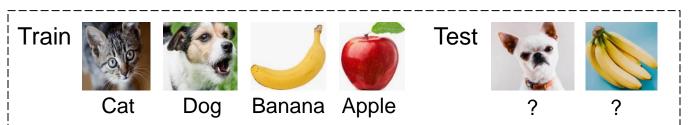
Learn a classifier

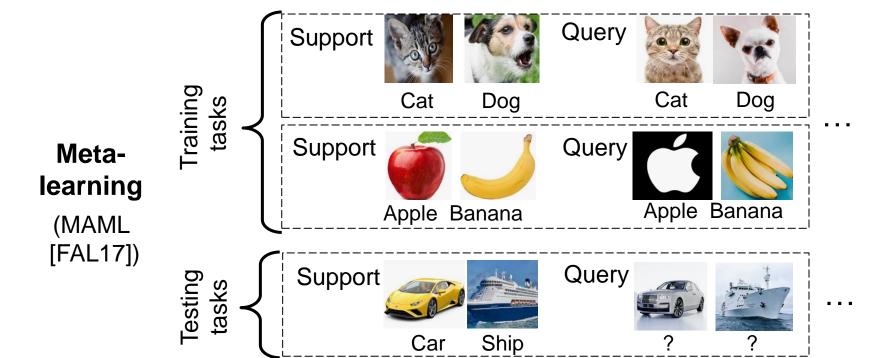

$$f_{\theta}(\mathbf{V}) \to \mathrm{dog}$$

Need many, many labelled data! Hard to deal with novel classes.

How humans learn?




One example of toy whale




Even toddlers can learn novel classes very quickly with one/few examples...by generalizing from prior knowledge.

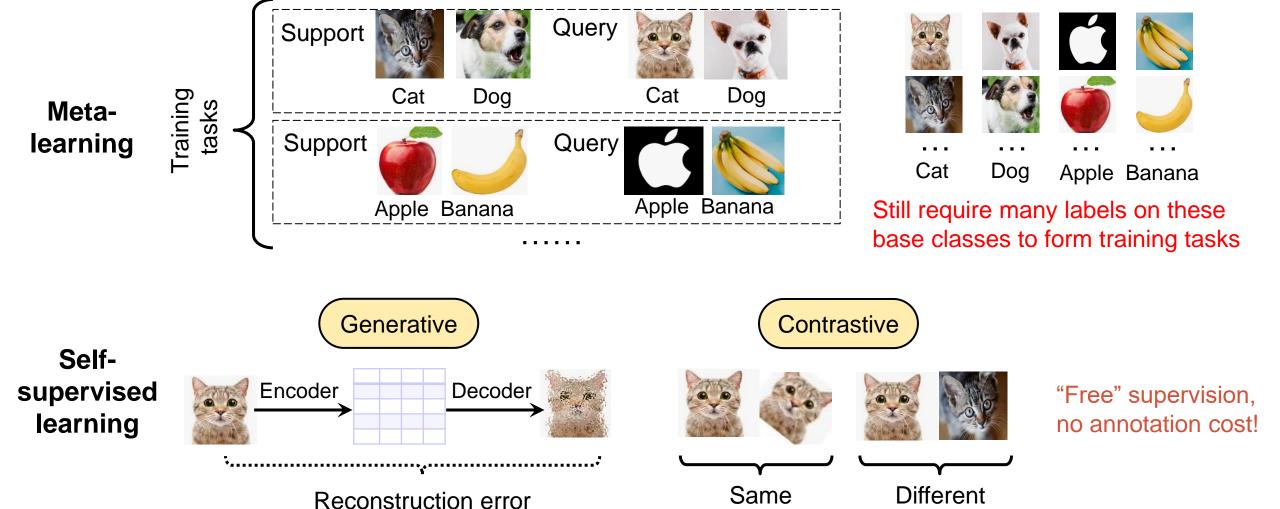
8



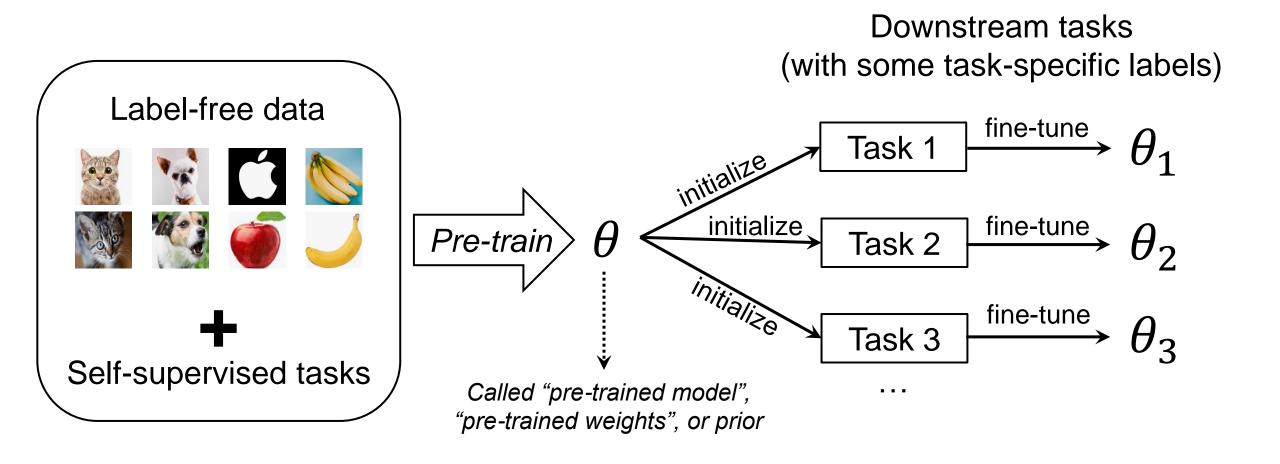




Learn a classifier


$$f_{\theta}(\mathbf{V}) \to \mathrm{dog}$$

Need many, many labelled data! Hard to deal with novel classes.


[FAL17] Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. C. Finn et al. ICML 2017.

## Self-supervised learning

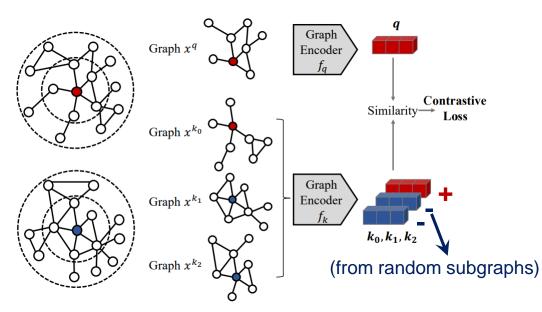
9



## Self-supervised learning / Pre-training



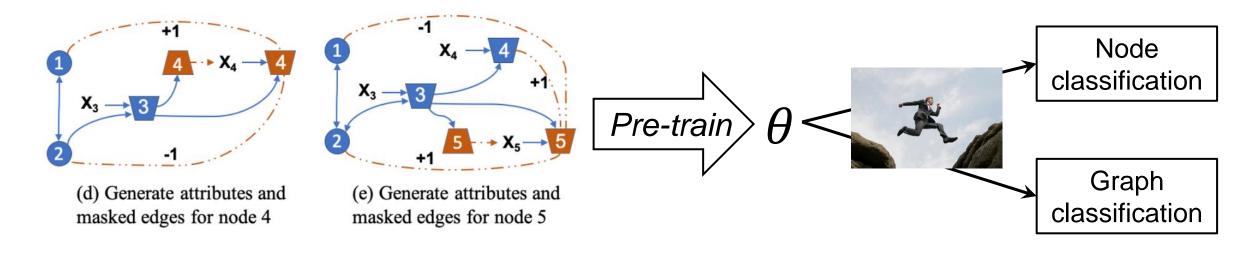
## Graph pre-training: Generative vs. contrastive


Key: Design self-supervised pre-training tasks on graphs

Generative

- (d) Generate attributes and masked edges for node 4
- (e) Generate attributes and masked edges for node 5

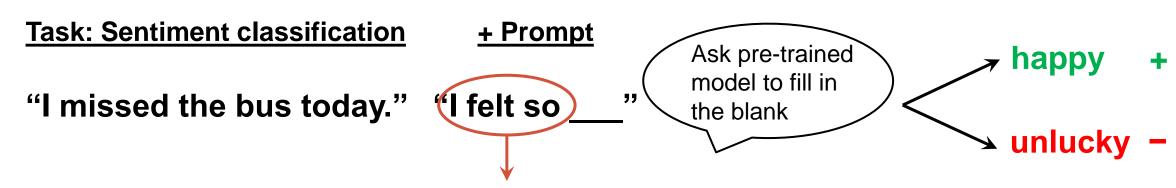
[Image from HDW20]


#### Contrastive



[Image from QCD20]

## Problem with pre-training approaches


The gap between pre-training and downstream objectives

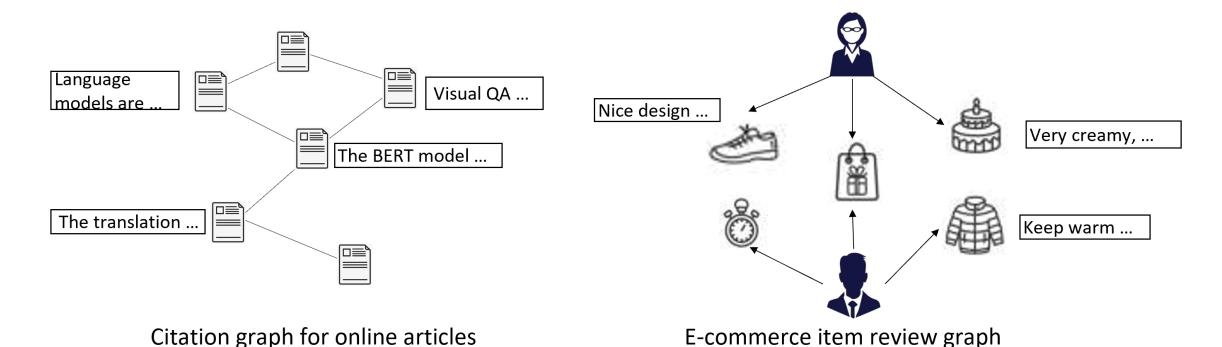


- And the fine-tuning step...
  - Can be expensive for large pre-trained models
  - may overfit if there are very few labels from downstream tasks

## Bridging the gap: Pre-train, prompt

- Problem: Gap between pre-training and downstream tasks
- Prompt [LYF23]: an alternative to "pre-train, fine-tune"
  - Originated in NLP, an instruction to reformulate the original task to unify with pre-trained model (e.g., masked language modeling)

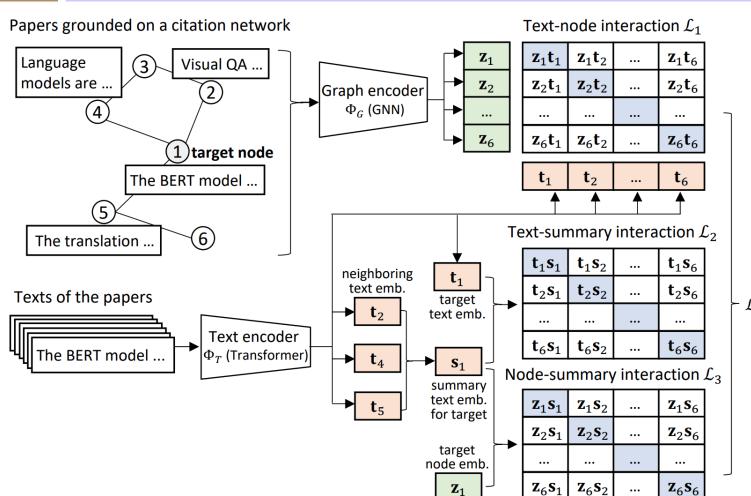



Zero-shot: Handcrafted (prompt engineering)

Few-shot: Learnable word vectors (prompt tuning)

### Outline

- Introduction: Data and problems
- Overview of few-shot methodologies
- □ Can prompt work on graph + text?
- Can prompt work on graph alone?
- Conclusion


## Graph data often associate with texts



So, if there is a **jointly pre-trained graph-text model**, we can easily apply natural language-based prompts to graphs.

## Graph-grounded pre-training and prompting (G2P2)

19

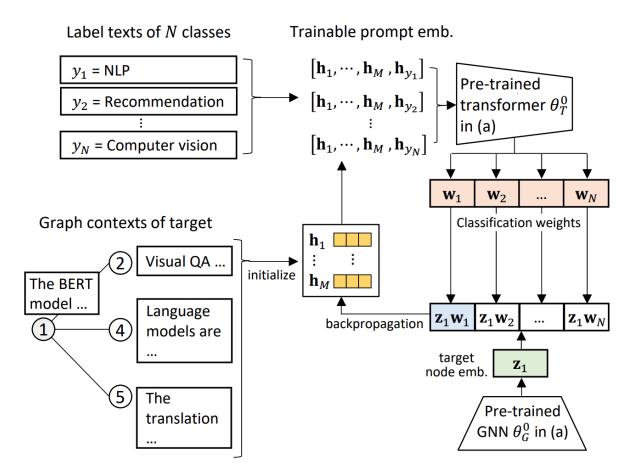


Learns a dual-modal embedding space by jointly training a **text encoder** and **graph encoder** 

## Exploits three contrastive strategies

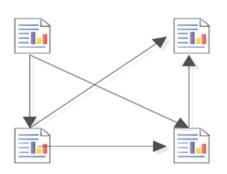
- Text-node contrast
- Text-summary contrast
- Node-summary contrast

(a) Graph-grounded contrastive pre-training

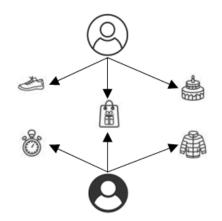

[SIGIR23] Z. Wen and Y. Fang. Augmenting Low-Resource Text Classification with Graph-Grounded Pre-training and Prompting.

## Graph-grounded pre-training and prompting (G2P2)

## Zero-shot node classification with discrete prompts


#### Label texts of N classes Discrete prompt $y_1 = NLP$ Pre-trained "paper of" + $y_i$ transformer $\theta_T^0$ $y_2$ = Recommendation $y_N$ = Computer vision $\mathbf{W}_2$ classification weights target node emb. Pre-trained $|\mathbf{z}_1\mathbf{w}_1|\mathbf{z}_1\mathbf{w}_2$ $\mathbf{Z}_1$ $\mathbf{z}_1 \mathbf{w}_N$ GNN $\theta_G^0$ predict $y_1$

## Few-shot node classification with continuous prompt tuning




### Datasets to evaluate G2P2

| Dataset           | Cora    | Art       | Industrial | M.I.      |
|-------------------|---------|-----------|------------|-----------|
| # Documents       | 25,120  | 1,615,902 | 1,260,053  | 905,453   |
| # Links           | 182,280 | 4,898,218 | 3,101,670  | 2,692,734 |
| # Avg. doc length | 141.26  | 54.23     | 52.15      | 84.66     |
| # Avg. node deg   | 7.26    | 3.03      | 2.46       | 2.97      |
| # Classes         | 70      | 3,347     | 2,462      | 1,191     |



**Cora** is a collection of research papers with citation links



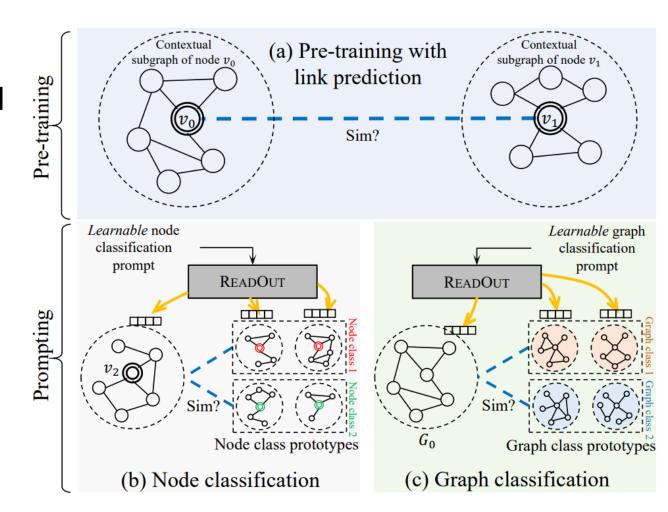
Art, Industrial and Music Instruments (M.I.) are three Amazon review datasets

## Empirical performance of G2P2

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Cora                |                     | Art                 |                    | Industrial          |                  | M.I.               |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------|---------------------|---------------------|--------------------|---------------------|------------------|--------------------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Accuracy            | Macro-F1            | Accuracy            | Macro-F1           | Accuracy            | Macro-F1         | Accuracy           | Macro-F1         |
| thorong the state of the state  | GCN           | 41.15±2.41          | 34.50±2.23          | 22.47±1.78          | 15.45±1.14         | 21.08±0.45          | 15.23±0.29       | 22.54±0.82         | 16.26±0.72       |
| *O(*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $SAGE_{sup}$  | 41.42±2.90          | $35.14 \pm 2.14$    | 22.60±0.56          | $16.01 \pm 0.28$   | 20.74±0.91          | $15.31 \pm 0.37$ | 22.14±0.80         | $16.69 \pm 0.62$ |
| 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TextGCN       | 59.78±1.88          | $55.85 \pm 1.50$    | 43.47±1.02          | $32.20\pm1.30$     | 53.60±0.70          | $45.97 \pm 0.49$ | 46.26±0.91         | $38.75 \pm 0.78$ |
| Qui de la companya de | GPT-GNN       | 76.72±2.02          | 72.23±1.17          | 65.15±1.37          | 52.79±0.83         | 62.13±0.65          | 54.47±0.67       | 67.97±2.49         | 59.89±2.51       |
| 40/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DGI           | 78.42±1.39          | $74.58 \pm 1.24$    | 65.41±0.86          | $53.57 \pm 0.75$   | 52.29±0.66          | $45.26 \pm 0.51$ | 68.06±0.73         | $60.64 \pm 0.61$ |
| 0,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $SAGE_{self}$ | 77.59±1.71          | 73.47±1.53          | 76.13±0.94          | $65.25 \pm 0.31$   | 71.87±0.61          | $65.09 \pm 0.47$ | $77.70 \pm 0.48$   | $70.87 \pm 0.59$ |
| Tooling Tooling Tooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BERT          | 37.86±5.31          | 32.78±5.01          | 46.39±1.05          | $37.07 \pm 0.68$   | 54.00±0.20          | 47.57±0.50       | 50.14±0.68         | 42.96±1.02       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BERT*         | 27.22±1.22          | $23.34 \pm 1.11$    | 45.31±0.96          | $36.28 \pm 0.71$   | 49.60±0.27          | $43.36 \pm 0.27$ | 40.19±0.74         | $33.69 \pm 0.72$ |
| ROPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RoBERTa       | 62.10±2.77          | 57.21±2.51          | 72.95±1.75          | $62.25 \pm 1.33$   | 76.35±0.65          | $70.49 \pm 0.59$ | 70.67±0.87         | $63.50 \pm 1.11$ |
| O CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RoBERTa*      | 67.42±4.35          | 62.72±3.02          | 74.47±1.00          | 63.35±1.09         | 77.08±1.02          | $71.44 \pm 0.87$ | 74.61±1.08         | 67.78±0.95       |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P-Tuning v2   | 71.00±2.03          | 66.76±1.95          | $76.86 \pm 0.59$    | <u>66.89</u> ±1.14 | 79.65±0.38          | $74.33 \pm 0.37$ | 72.08±0.51         | 65.44±0.63       |
| tonion;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G2P2-p        | 79.16±1.23          | 74.99±1.35          | 79.59±0.31          | 68.26±0.43         | 80.86±0.40          | 74.44±0.29       | 81.26±0.36         | 74.82±0.45       |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G2P2          | <b>80.08</b> *±1.33 | <b>75.91</b> *±1.39 | <b>81.03</b> *±0.43 | $69.86*\pm0.67$    | <b>82.46</b> *±0.29 | $76.36*\pm0.25$  | $82.77^* \pm 0.32$ | $76.48*\pm0.52$  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (improv.)     | (+2.12%)            | (+1.78%)            | (+5.43%)            | (+4.44%)           | (+3.53%)            | (+2.7%)          | (+6.53%)           | (+7.92%)         |

G2P2 outperforms the best baseline by around 3–7%.

### Outline


- Introduction: Data and problems
- Overview of few-shot methodologies
- Can prompt work on graph + text?
- Can prompt work on graph alone?
- Conclusion

### Two challenges

- How to unify various pre-training and downstream tasks on graph?
- How to design prompts on graph?

### Insights

- A unified task template based on subgraph similarity computation
- Use a learnable prompt to guide graph readout for different tasks



### Unified task template

#### **Link prediction**

Triplet (v, a, b), s.t. v is linked to a, but not b:  $sim(\mathbf{s}_v, \mathbf{s}_a) > sim(\mathbf{s}_v, \mathbf{s}_b)$ 

#### **Node classification**

$$\ell_j = \arg\max_{c \in C} \operatorname{sim}(\mathbf{s}_{v_j}, \tilde{\mathbf{s}}_c)$$

#### **Graph classification**

$$L_j = \arg\max_{c \in C} \operatorname{sim}(\mathbf{s}_{G_j}, \tilde{\mathbf{s}}_c)$$

All tasks converted to subgraph similarity computation!

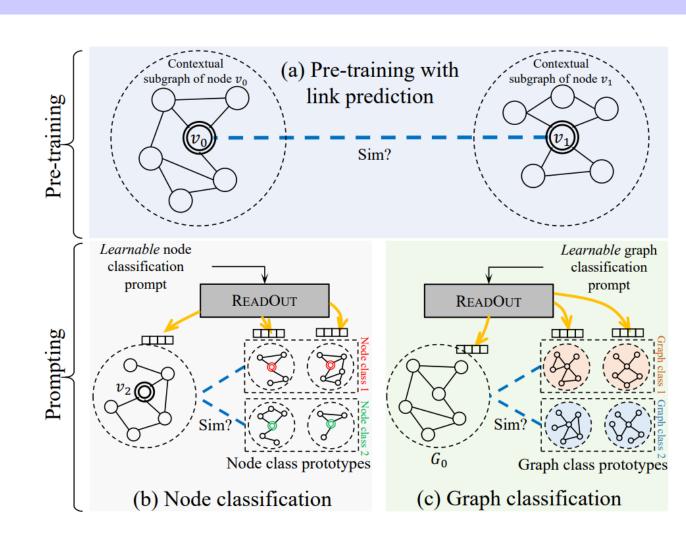
 $\mathbf{s}_{x}$ : (sub)graph embedding of x (x is a node or graph)

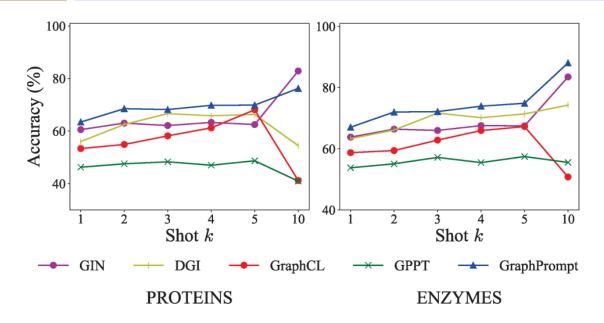
 $\tilde{\mathbf{s}}_c$ : class c's prototype (a virtual subgraph, by aggregates all subgraph embeddings in the class)

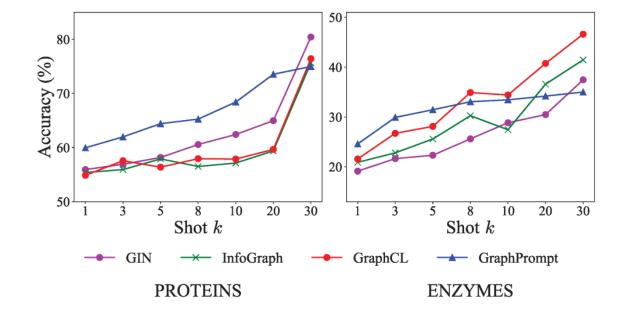


#### Prompt design

Different downstream tasks require different subgraph readout → Use task-specific learnable prompts


## Prompt vector added to the readout layer of the pre-trained GNN


 $\mathbf{s}_{t,x} = \text{ReadOut}(\{\mathbf{p}_t \odot \mathbf{h}_v : v \in V(S_x)\})$ 


 $\mathbf{s}_{t,x}$ : (sub)graph embedding of x for a task t

 $\mathbf{h}_{v}$ : node v's embedding vector

 $\mathbf{p}_t$  or  $\mathbf{P}_t$ : learnable prompt vector or matrix for task t







Impact of shots on few-shot node classification.

Impact of shots on few-shot graph classification.

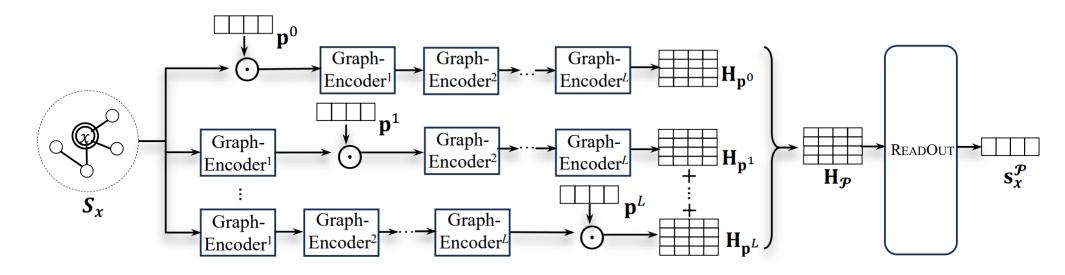
Few-shot: Significantly better

Few-shot: Significantly better

<u>10-shot:</u> Still competitive (as graphs are small – 10 shots are a lot) <u>On ENZYMES:</u> worse performance on ≥20 shots (only 600 graphs – 20 shots/class ~ 20% labels)

#### Comparison of parameter efficiency

Significantly fewer parameters/FLOPs than:


- Supervised model (GIN [XHL19]),
- "Pretrain, fine-tune" model (GraphPrompt-ft),
- Existing prompt model (GPPT [SZH22])

| Methods        | Flickr |         |  |  |
|----------------|--------|---------|--|--|
| Methods        | Params | FLOPs   |  |  |
| GIN            | 22,183 | 240,100 |  |  |
| GPPT           | 4,096  | 4,582   |  |  |
| GraphPrompt    | 96     | 96      |  |  |
| GraphPrompt-ft | 21,600 | 235,200 |  |  |

| Methods        | PROT   | EINS   | ENZYMES |        |  |
|----------------|--------|--------|---------|--------|--|
|                | Params | FLOPs  | Params  | FLOPs  |  |
| GIN            | 5,730  | 12,380 | 6,280   | 11,030 |  |
| GPPT           | 1,536  | 1,659  | 1,536   | 1,659  |  |
| GRAPHPROMPT    | 96     | 96     | 96      | 96     |  |
| GRAPHPROMPT-ft | 6,176  | 13,440 | 6,176   | 10,944 |  |

## Generalized Graph Prompt

- Support more pre-training tasks beyond link prediction
  - DGI, InfoGraph, GraphCL, GCC, ...
- Layer-wise prompts



### **Outline**

- Introduction: Data and problems
- Overview of few-shot methodologies
- Can prompt work on graph + text?
- Can prompt work on graph alone?
- Conclusion

### Conclusion

- Few-shot learning on graphs: different kinds of graphs/tasks
- Learning and transferring/using prior is the key
- Prompt is a promising paradigm...



Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, Chuan Shi. **Graph Foundation Models: Concepts, Opportunities and Challenges.** *Accepted by IEEE TPAMI.* <a href="https://arxiv.org/pdf/2310.11829.pdf">https://arxiv.org/pdf/2310.11829.pdf</a>



Xingtong Yu, Yuan Fang, Zemin Liu, Yuxia Wu, Zhihao Wen, Jianyuan Bo, Xinming Zhang, Steven C.H. Hoi. **A Survey of Few-Shot Learning on Graphs: from Meta-Learning to Pre-Training and Prompt Learning.** <a href="https://arxiv.org/pdf/2402.01440">https://arxiv.org/pdf/2402.01440</a>

## Acknowledgement

#### Student/post-doc co-authors







Chenghao Liu



Zhihao Wen



Xingtong Yu



Deyu Bo

#### Main collaborators

Prof. Steven Hoi, Singapore Management University

Prof. Chuan Shi, Beijing University of Posts and Telecommunications

Prof. Xinming Zhang, University of Science and Technology of China

#### Main funding sources

- One-shot learning: A crucial learning paradigm towards human-like learning. National Research Foundation, Singapore under its Al Singapore Programme (AISG Award No: AISG-RP-2018-001).
- Learning with less data. Agency for Science, Technology and Research (A\*STAR) under its AME Programmatic Funds (Grant No. A20H6b0151).
- Universal pre-training of graph neural networks. Ministry of Education, Singapore, under its Academic Research Fund Tier 2 (Proposal ID: T2EP20122-0041).
- Lee Kong Chian Fellowship, 2021, Singapore Management University.

## Thank you

## Questions?

Email: <a href="mailto:yfang@smu.edu.sg">yfang@smu.edu.sg</a>

Full publications, codes and data are available at <a href="http://www.yfang.site/">http://www.yfang.site/</a>