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Complex big data as graphs
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Biology

[Image from RVH05]

Social networks

[Image from Microsoft]

Knowledge graphE-commerce

[RVH05] Towards a proteome-scale map of the human protein–protein interaction network. J. Rual, et al. Nature: 437(7062), 2005.

[JYF20] Temporal Heterogeneous Interaction Graph Embedding For Next-Item Recommendation. Y. Ji, et al. ECML-PKDD 2020. 

[Image from JYF20]



Data, Problems and Methods
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Adapt

Why supervised learning does not work?
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Cat        Dog     Banana   Apple ?            ?          

Train TestSupervised  

learning

Learn a classifier

𝑓𝜃  → dog

How 

humans 

learn?

Even toddlers can learn novel classes very quickly with 

one/few examples…

whale?

One example of toy whale

prior

by generalizing from prior knowledge.

Need many, many labelled data!

Hard to deal with novel classes.

[Images from the Web]



From supervised learning to meta-learning
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support

𝑓𝜙′  → car

Adapt

[FAL17] Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. C. Finn et al. ICML 2017.

“Learn to learn”

(MAML

 [FAL17])



Decoder

Self-supervised learning
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no annotation cost!



Self-supervised learning / Pre-training
10

Label-free data

Self-supervised tasks

𝜃

+

Pre-train

Called “pre-trained model”,

“pre-trained weights”, or prior

…

Downstream tasks 

(with some task-specific labels) 

Task 1

Task 2

Task 3

initialize

fine-tune

fine-tune

fine-tune

𝜃1

𝜃2
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Graph pre-training: Generative vs. contrastive
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 Key: Design self-supervised pre-training tasks on graphs

Generative Contrastive

[Image from HDW20]

[Image from QCD20]

+
-

-

(from random subgraphs)

[HDW20] GPT-GNN: Generative Pre-Training of Graph Neural Networks. Z. Hu et al. KDD 2020

[QCD20] GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. J. Qiu et al. KDD 2020



Problem with pre-training approaches
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 The gap between pre-training and downstream objectives

𝜃Pre-train

Node 

classification 

Graph 

classification

 And the fine-tuning step..

 Can be expensive for large pre-trained models

 may overfit if there are very few labels from downstream tasks 



Bridging the gap: Pre-train, prompt
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 Problem: Gap between pre-training and downstream tasks

 Prompt [LYF23]: an alternative to “pre-train, fine-tune”

 Originated in NLP, an instruction to reformulate the original task to unify 

with pre-trained model (e.g., masked language modeling)

[LYF23] Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in 

Natural Language Processing. P. Liu, et al. ACM Computing Surveys: 55(9), 2023.

Task: Sentiment classification

“I missed the bus today.” 

+ Prompt

“I felt so ___” 

happy     +

unlucky  −

Zero-shot: Handcrafted (prompt engineering)

Few-shot: Learnable word vectors (prompt tuning)

Ask pre-trained 

model to fill in 

the blank
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Graph data often associate with texts
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So, if there is a jointly pre-trained graph-text model, we can 

easily apply natural language-based prompts to graphs.



Graph-grounded pre-training and prompting (G2P2)
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Learns a dual-modal embedding 

space by jointly training a text 

encoder and graph encoder 

Exploits three contrastive 

strategies

o Text-node contrast

o Text-summary contrast

o Node-summary contrast

[SIGIR23] Z. Wen and Y. Fang. Augmenting Low-Resource Text 

Classification with Graph-Grounded Pre-training and Prompting.



Graph-grounded pre-training and prompting (G2P2)

20

Zero-shot node classification 

with discrete prompts

Few-shot node classification 

with continuous prompt tuning



Datasets to evaluate G2P2
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Cora is a collection 

of research papers 

with citation links

Art, Industrial and Music 

Instruments (M.I.) are three 

Amazon review datasets



Empirical performance of G2P2
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G2P2 outperforms the best baseline by around 3–7%.
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GraphPrompt: Pre-train, prompt on graph only
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 Two challenges

 How to unify various pre-training and 

downstream tasks on graph?

 How to design prompts on graph?

 Insights

 A unified task template based on 

subgraph similarity computation

 Use a learnable prompt to guide 

graph readout for different tasks

[WWW23] Z. Liu, X. Yu, Y. Fang and X. Zhang. GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural Networks.



GraphPrompt: Pre-train, prompt on graph only
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Unified task template

Link prediction

Triplet (𝑣, 𝑎, 𝑏), s.t. 𝑣 is linked to 𝑎, but not 𝑏:

Node classification

𝐬𝑥: (sub)graph embedding of 𝑥 (𝑥 is a node or graph)

෤𝐬𝑐: class 𝑐’s prototype (a virtual subgraph, by aggregates all subgraph embeddings in the class)

Graph classification

All tasks converted to subgraph 

similarity computation!



GraphPrompt: Pre-train, prompt on graph only
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Prompt design

Different downstream tasks require 

different subgraph readout 

→ Use task-specific learnable prompts 

𝐬𝑡,𝑥: (sub)graph embedding of 𝑥 for a task 𝑡

𝐡𝑣: node 𝑣’s embedding vector

𝐩𝑡 or 𝐏𝑡: learnable prompt vector or matrix for task 𝑡

Prompt vector added to the readout 

layer of the pre-trained GNN



GraphPrompt: Pre-train, prompt on graph only
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Few-shot: Significantly better

10-shot: Still competitive  

(as graphs are small – 10 shots are a lot)

Few-shot: Significantly better

On ENZYMES: worse performance on ≥20 shots

(only 600 graphs – 20 shots/class ~ 20% labels) 



GraphPrompt: Pre-train, prompt on graph only
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Significantly fewer parameters/FLOPs than:

▪ Supervised model (GIN [XHL19]), 

▪ “Pretrain, fine-tune” model (GraphPrompt-ft),

▪ Existing prompt model (GPPT [SZH22])

[XHL19] How Powerful are Graph Neural Networks? K. Xu et al. ICLR 2019

[SZH22] GPPT: Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks. M. Sun et al. KDD 2022

Comparison of parameter efficiency



Generalized Graph Prompt
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 Support more pre-training tasks beyond link prediction

 DGI, InfoGraph, GraphCL, GCC, …

 Layer-wise prompts

[TKDE24] Generalized Graph Prompt: Toward a Unification of Pre-Training and Downstream Tasks on Graphs. Xingtong 

Yu, Zhenghao Liu, Yuan Fang, Zemin Liu, Sihong Chen, Xinming Zhang. In IEEE TKDE 36(11), 2024, pp. 6237--6250.
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Conclusion
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 Few-shot learning on graphs: different kinds of graphs/tasks

 Learning and transferring/using prior is the key 

 Prompt is a promising paradigm… 

Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, 

Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, Chuan Shi. Graph Foundation 

Models: Concepts, Opportunities and Challenges. Accepted by IEEE 

TPAMI. https://arxiv.org/pdf/2310.11829.pdf 

Xingtong Yu, Yuan Fang, Zemin Liu, Yuxia Wu, Zhihao Wen, Jianyuan Bo, 

Xinming Zhang, Steven C.H. Hoi. A Survey of Few-Shot Learning on 

Graphs: from Meta-Learning to Pre-Training and Prompt Learning. 

https://arxiv.org/pdf/2402.01440 

https://arxiv.org/pdf/2310.11829.pdf
https://arxiv.org/pdf/2402.01440
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Thank you

Questions?

Email: yfang@smu.edu.sg 

Full publications, codes and data are available at

http://www.yfang.site/ 

35

mailto:yfang@smu.edu.sg
http://www.yfang.site/

	Slide 1
	Slide 2: Outline
	Slide 3: Complex big data as graphs
	Slide 4: Data, Problems and Methods
	Slide 6: Outline
	Slide 7: Why supervised learning does not work?
	Slide 8: From supervised learning to meta-learning
	Slide 9: Self-supervised learning
	Slide 10: Self-supervised learning / Pre-training
	Slide 11: Graph pre-training: Generative vs. contrastive
	Slide 15: Problem with pre-training approaches
	Slide 16: Bridging the gap: Pre-train, prompt
	Slide 17: Outline
	Slide 18: Graph data often associate with texts
	Slide 19: Graph-grounded pre-training and prompting (G2P2)
	Slide 20: Graph-grounded pre-training and prompting (G2P2)
	Slide 21: Datasets to evaluate G2P2
	Slide 22: Empirical performance of G2P2
	Slide 23: Outline
	Slide 24: GraphPrompt: Pre-train, prompt on graph only
	Slide 25: GraphPrompt: Pre-train, prompt on graph only
	Slide 26: GraphPrompt: Pre-train, prompt on graph only
	Slide 27: GraphPrompt: Pre-train, prompt on graph only
	Slide 28: GraphPrompt: Pre-train, prompt on graph only
	Slide 29: Generalized Graph Prompt
	Slide 31: Outline
	Slide 32: Conclusion
	Slide 33: Acknowledgement
	Slide 35: Thank you

