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Welcome to Big Al era!

» Driving Forces:
« Technology advances
« Availability of big data for training
« Availability of powerful GPU

» Performance improves with size.
* “The race to scale” begins...

» The new thing (2021--)
« HUGE neural networks
« VAST amounts of training data
« MASSIVE compute power for training
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Al'is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) trained on broad
data (generally using self-supervision at scale) that can be adapted to a wide range of downstream tasks.
We call these models foundation models to underscore their critically central yet incomplete character.
This report provides a thorough account of the opportunities and risks of foundation models, ranging
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Foundation Models

A foundation model is a model that is trained on broad data and can be adapted to
a wide range of downstream tasks.
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» Representative Examples =k o ® i@ o oy
« Large Language Models (LLMS)

* E.g., ELMo with millions of parameters to GPT-4 with trillions of parameters.
* Vedio Models: SORA




Graph Foundation Models

A graph foundation model (GFM) is a model pre-trained on extensive graph data,
adapted for diverse downstream graph tasks.

» Motivation
« Existing LLMSs struggle to model graph data
. ) JIAWEI LIU, CHENG YANG", Beijing University of Posts and Telecommunications, China
o EUCI Idean data V.S. NON- EUCI Idean data ZHIYUAN LU, JUNZE CHEN, YIBO LI, Beijing University of Posts and Telecommunications, China

MENGMEI ZHANG, TING BAI, Beijing University of Posts and Telecommunications, China

® I I YUAN FANG, Singapore Management University, Singapore
Existing LLMs struggle to handle graph tasks YU F o g Mt Uiy, S

° node/edge/graph_|eve| tasks PHILIP S. YU, University of llinois Chicago, USA

CHUAN SH|T, Beijing University of Posts and Telecommunications, China

> S CO p e Of th i S tu to r i a I Foundation models have emerged as critical components in a variety of artificial intelligence applications, and

showcase significant success in natural language processing and several other domains. Meanwhile, the field of

Towards Graph Foundation Models: A Survey and Beyond

- graph machine learning is witnessing a paradigm transition from shallow methods to more sophisticated deep
[ J . .
CO n Ce pt Of g rap h fo u n d atl O n m O d e I learning approaches. The capabilities of foundation models to generalize and adapt motivate graph machine
learning researchers to discuss the potential of developing a new graph learning paradigm. This paradigm
o R ece nt p o g Fess enlvisions mo.dels.that are pre-@ned on.extensive graph data and can be adapted for vat-ious graph tasks‘.D.espite
this burgeoning interest, there is a noticeable lack of clear definitions and systematic analyses pertaining to
this new domain. To this end, this article introduces the concept of Graph Foundation Models (GFMs), and
° -
G N N based m eth Od S offers an exhaustive explanation of their key characteristics and underlying technologies. We proceed to classify
the existing work related to GFMs into three distinct categories, based on their dependence on graph neural
° -
L L M based methOdS networks and large language models. In addition to providing a thorough review of the current state of GFMs,
this article also outlooks potential avenues for future research in this rapidly evolving domain.
GNN+LLM-based methods P Py ToTe

e Future directions
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v Graph Foundation Models

* Progress in Related Work

» Challenges and Future Direction




Foundation Models

A foundation model is any model that is trained on broad data and can be adapted
to a wide range of downstream tasks.!]

Language Vision Speech
@) OpenAl x GPT4 0O Meta x DINOv2 Google x uswm
Language foundation models Vision foundation models Speech foundation models show
show initial signs of universal exhibit strong image the capability to recognize
Al capabilities. understanding capabilities. hundreds of languages.

Foundation models have become a reality in domains like language, vision, and speech.

[1] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brun-skill, et al., “On the opportunities and risks
of foundation models,” arXiv preprint arXiv:2108.07258, 2021.




Characteristics of Foundation Mode

Two Characteristics of Foundation Models:
« Emergence: As a foundation model scales up, it spontaneously manifests novel capabilities.

« Homogenization: The model’s versatility enables its deployment across diverse applications.
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Wei J, Tay Y, Bommasani R, et al. Emergent abilities of large language models[J]. arXiv preprint arXiv:2206.07682, 2022.




Factors Driving Foundation Model Succ
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Figure 1: The Transformer - model architecture.

SSL Transformer




anguage Foundation Models

Large Language Models (LLMSs) refer to pre-trained language models with massive
parameters and are typical representatives of foundation models.
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Large Language Models

Data

it not cool that ping pong is not included in rio 2016

» Language data: text or spoken content in a human language

e sequential data
 Euclidean data
Backbone Architectures

» Mostly based on Transformer

« e.0., BERTHI GPT-30
» Pre-trained with pretext tasks:

« next word prediction (NWP)

« masked language modeling (MLM)...
Downstream Tasks

» Hundreds of downstream tasks

* e.g., machine translation, sentiment analysis...

l Tokenization

it H not | cool

that ‘ ‘ ping pong is

not included ‘ in ‘ rio || 2016

Language Data

If we were predicting words, .
we would need to predict 7

hard

~1 million classes

__v| shabby

1

Attention > is > not > too K__

# preds shape (B, T, # classes) \\\ T
# would be (B, T, 1le7) g

road

loss = cross_entropy(preds, targets)
4

likely next
word

1 million other
possible words

unlikely
next word

Next Word Prediction (NWP)

[1] Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805, 2018.
[2] Brown T, Mann B, Ryder N, et al. Language models are few-shot learners[C]. NeurlPS 2020, 33: 1877-1901.




Graphs

Graphs are a general language for describing and modeling complex systems.
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Graph Machine Learning

« Graph G is an ordered pair (V, E), where V' is the node set and E is the edge set.

« Graph machine learning refers to the application of machine learning to graph data,
commonly known as graph learning or graph models.

Shortest Path Problem Long Tail Distribution

o st )
Graph algorithms Network Science
* Dijkstra » Barabasi

Graph neural networks Graph embedding Graph signal processing
* GCN » DeepWalk » Shuman
@ e .".-{ ignal 1/ont e Graj
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Graph Representation Learning

Graph Representation Learning (GRL): embed each node of a graph into a low-
dimensional vector space

B . . oz g
- * o Reconstruct e e, e
Embed .
Shallow model Deep model
» Random walk based » GNN based
* e.g, DeepWaIk node2vec e e.g., GCN, GraphSage, GAT
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&
->DFS &




Data in GNN

Data

» Graph data
* non-Euclidean data ot | s

> Various domains Graph Image (Grid)  Language (Seq.)
» social networks

* molecules
e E-commerce...

» Various types

[ not | included | in | rio | 2016 |

* homogenous graph Social Networks  Molecules E-commerce

« heterogenous graph - v v

* hypergraph... AT/T\\ o mz
A A g4 v, GRS |,

Hbmogenéous Heterogeneous Hypergraph




Tasks in GNN

Downstream Tasks

» Node-level tasks
* node classification
* node regression
* node clustering...

» Edge-level tasks
* link prediction
 shortest path prediction
* maximum flow prediction...

» Graph-level tasks
« graph classification — Category A?
Graph

. grapﬂ genzratioq Category?  Classification
* grapnh condensation...

Node
Classification>

Link
Prediction

Category Al

 Category C?




Graph Models Meet Large Language

LLMSs cannot solve graph-related problems.

« LLMs struggle to model graph structure semantics.
« LLMs struggle to handle diverse graph tasks.

it not cool that ping pong is not included in rio 2016
t l Tokenization
it || not | cool | that H ping pong | is
not | included in rio || 2016
Graph Classification Node Classification  Link Prediction
T 2 = tikely next
- (4 1 - class = word
»F 2 B2 e
=Y .
o >7>T »‘L 2 : lmiltllonothev
I aS kS Communy Detection _ Graph Embedding  Graph Genera! on | Atentlon [ s [t [ [ 1 possiblewords
ZacN? preds shape (B, T, # classes)
&y e e -

Graph models do not possess the capabilities of LLMSs.

« Limited expressive power

« Deep GNNSs: over-smoothing/over-squassion ISsues
« Lack emergence capability

e Cannot support multiple tasks

2 4 B 8 10
MNumber of Transformation Depth I,

Performance Decline Information Bottleneck
of Deep GNNs in GNNs




Graph Foundation Models

A graph foundation model (GFM) is a model pre-trained on extensive graph
data, adapted for diverse downstream graph tasks.
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(b) Graph Foundation Models.

Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, Chuan Shi. Towards Graph Foundation
Models: A Survey and Beyond. arXiv 2023.




Characteristics of Graph Foundation

Two Characteristics

Emergence oy
(00 /e’] Node
» Novel capbility when larger model or more ;cr _____ é:) [ P ]
graph data ¢ \
» graph reasonin R r A
g ph y g el Graph P—r
grap generation.. . y Foundation [ elaccieation J
kModel (GFM))

Homogenization

» Apply to different formats of tasks
* node/edge/graph tasks

Link
Prediction




Key Techniques of Graph Found
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Pre- tralnlng

Key Technigues of GFMs §; :
> Pre-training: neural networks are trained on a v cf? &O
large graph dataset in a self-supervised manner e B
* contrastive pre-training: contrastive positive ;
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GFMs v.s. LLMS

Similarities: common goal and similar learning paradigm
Differences: (1) different data and tasks; (2) technological differences

Language Foundation Model Graph Foundation Model
C e Goal Enhancing the model’s expressive power and its generalization across various tasks
Similarities
Paradigm Pre-training and Adaptation
Non-Euclidean dat h ixture of Euclid
Intrinsic ~ Data Euclidean data (text) on-Euet ean. a (graphs) or a ml.x re OF Buehdedn
, (e.g., graph attributes) and non-Euclidean data
differences
Task Many tasks, similar formats Limited number of tasks, diverse formats
Backbone Architectures Mostly based on Transformer No unified architecture
Extrinsic Homogenization Easy to homogenize Difficult to homogenize
differences
Domain Generalization  Strong generalization capability Weak generalization across datasets

Emergence Has demonstrated emergent abilities No/unclear emergent abilities as of the time of writing




v Progress in Related Work

» Challenges and Future Direction




Taxonomy of Related Work

No GFMs until now, but a lot of explorations is on the way.
Categorize existing explorations into three distinct groups according to the

dependence on GNNs and L

| Ms

Towards Graph Foundation Models

|

|
GNN-based Models

— Backbone Architectures

\: Message Passing-based 4.1.1
Graph Transformer-based 4.1.2

— Pre-training

\: Contrastive Methods 4.2.1
Generative Methods 4.2.2

L Adaptation

\: Fine-Tuning 4.3.1
Prompt-Tuning 4.3.2

[
LLM-based Models

— Backbone Architectures
\: Graph-to-Token 5.1.1
Graph-to-Text 5.1.2

—| Pre-training

\: Language Modelling 5.2.1
Masked Language Modelling 5.2.2

— Adaptation

\: Manual Prompting 5.3.1
Automatic Prompting 5.3.2

GNN+LLM-based Models

— Backbone Architectures

GNN-centric 6.1.1
Symmetric 6.1.2
LLM-centric 6.1.3

— Pre-training

E GNN or LLM-based 6.2.1
Alignment-based 6.2.2

] Adaptation

i: Fine-Tuning 6.3.1
Prompt-Tuning 6.3.2




GNN-based Models

Seeking to enhance current graph learning through innovative approaches in GNN
model architectures, pre-training, and adaptation.

» Architectures: Graph Transformer, e.g., Specformer (ICLR23), CoBFormer (ICML24)
» Pre-training: Graph Pretraining, e.g., PT-HGNN (KDD21), GraphPAR (WWW?24)
» Adaptation: Graph Prompt, e.g., All In One (KDD23), MultiGPrompt (WWW24)

mie- Predictions

|
|
|
|
== Predictions m—
|
|
|

1-hop aggregation

2-hop ageregation |

— o o o o e — e e

(a) Message Passing. (b) Graph Transformer.




LLM-based Models

Exploring the feasibility of transforming graphs into text or tokens to leverage
LLMs as foundation models.

» Graph-to-Token: transform graphs into tokens and then input them into LLMs
* e.g., InstructGLM

» Graph-to-Text: transform graphs into texts and then input them into LLMs
* e.g.,, NLGraph (NIPS24), LLM4Mol

§
] |
I —Pg -Lb Predictions I LLM —}g -|-> Predictions
| I
Graoh to token [Categer entral node: (<node 43, Title 4> ) is ()
0 _p_—)- tdt (<n d 1> Ttl 1), (< ode_2>, Title 2), Tnstruction .‘. O Graph fo fext Th tﬂ fpp rf is: Can language . Th tﬂ Instruction

of Paper_1 is: Explor g...Pp_l cites Paper_4 ..

(¢n d 9, Title e hop. lihi h ategory should |E Question: The category of Paper_4 is .

(<node_4>, Title 4Abt 't4)b categorized? ERe

(2) Graph-to-token. (b) Graph-to-text.




GNN+LLM-based Models

Exploring synergies between GNNs and LLMs to enhance graph learning.

» GNN-centric Models: utilize LLM to extract node feature and make predictions using GNN
* e.g., SimTeG, TAPE

» Symmetric Models: align the embeddings of GNN and LLM
* e.g., GraphTranslator (WWW?24), G2P2 (SIGIR23), ConGrat

» LLM-centric Models: utilize GNNSs to enhance the performance of LLM
e e.g., Graph-Toolformer

S —

|
|

N ! - : on
O .‘E : A]lgﬂmﬂﬂtl — Adaptati :
|
|

E O . ' (£ .Q
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v Challenges and Future Direction




Challenges in Model

Model Architectures
> It remains unknown whether current architectures
are optimal choices.
» Multimodal foundation models Pretraining
. . _ Data Masked Video Encoder
« Using graph to extend the multiple modalities... %

Masked Video
Reconstruction

@ age 9 Cross Model Attention
M Od EI Tral n I n g m Video @ Multimodal Video Encoder ) ?u“tir?ot('ial
» Is there uniform pretext tasks for graph 1] ren Video Text Encoder Learning
» Some ideas from other directions
« knowledge distillation A
. . Kinetics, ActivityNet, MSR-VTT, DiDeMo, UFC101-HMDBS1,
« reinforcement learning from human feedback D GRS TR
Action Understanding Video-Language Alignment  Video Open Understanding

* model editing...

Multimodal Foundation Models




Challenges in Data and Evluation

Data Quantity and Quality
» Limited amount of open-source large-scale graph data

e concentrated in a single domain ) )
» Using augmentation strategies IO -

e graph structure learning R

 feature completion 3 Comtsubcrmt |

* |abel mixing... ( T ‘
Evaluation v W grverrong R g M\ s s
» Lacking labels in open-ended tasks | S/ A </ o

« human evaluation a\\/ A _\\/ £

*  meta-evaluation o o
» Evaluating robustness, trustworthiness, holistic perform%{la eh.Augmentatlon




Challenges in Applications

Killer Applications

» It is not yet clear that graph foundation models can similarly catalyze groundbreaking
applications in graph tasks.

» Promising fields
e Uurban computing
* drug development...

Safety

» Black-box nature introduces safety concerns.
« hallucination
« privacy leaks

» Promising technologies
« counterfactual reasoning...
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