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Complex big data as graphs
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[RVHO5] Towards a proteome-scale map of the human protein—protein interaction network. J. Rual, et al. Nature: 437(7062), 2005.



Data, Problems and Methods
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Few-shot problems on graphs

Node classification Graph classification
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[AAAI21] Z. Liu, Y. Fang, C. Liu and S. C. H. Hoi. Relative and Absolute Location Embedding for Few-Shot Node Classification on Graph.
[WWW23] Z. Liu, X. Yu, Y. Fang and X. Zhang. GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural Networks.
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Why supervised learning does not work?

Learn a classifier
Supervised v
learning fg( 4 ) — dog

Need many, many labelled data!
Hard to deal with novel classes.

whale?

Adapt
prior

One example of toy whale

Even toddlers can learn novel classes very quickly with

one/few examples... by generalizing from prior knowledge.
[Images from the Web]



From supervised learning to meta-learning

_ 8 |
Learn a classifier
Supervised o
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Need many, many labelled data!
Hard to deal with novel classes.
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[FAL17] Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. C. Finn et al. ICML 2017.



Self-supervised learning

Dog

Cat

Apple Banana
Still require many labels on these
base classes to form training tasks

(Contrastive)
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“Free” supervision,
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Reconstruction error



Self-supervised learning / Pre-training

Downstream tasks

/ \ (with some task-specific labels)
Label-free data

Task 1 fine-tune) 91
Pre-tra} 6

\Self-superwsed taSkS/ Called “pre-trained model’,

“pre-trained weights”, or prior

Task 2 fme—tune) 92

fine-tune
Task 3 > 83




Graph pre-training: Generative vs. contrastive

o Key: Design self-supervised pre-training tasks on graphs
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(d) Generate attributes and
masked edges for node 4
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(e) Generate attributes and
masked edges for node 5
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[Image from QCD20]

[HDW20] GPT-GNN: Generative Pre-Training of Graph Neural Networks. Z. Hu et al. KDD 2020
[QCD20] GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. J. Qiu et al. KDD 2020



Graph pre-training: Spatial vs. Spectral

( Spatial ) ( Spectral )

Explicit (local) structures and node features Implicit node (global) positions on graph topology
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[NeurlPS23] Deyu Bo, Yuan Fang, Yang Liu, Chuan Shi. Graph Contrastive Learning with Stable and Scalable Spectral Encoding



Pre-training on heterogeneous graphs

o Pre-training tasks to capture relation- and subgraph-level semantics

Ay

Various types of node/edge
capture rich semantics

(a) A heterogeneous graph

Negatwe samples from incansrstent relation
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(b) Relation-level pre-training task

Subgraph loss
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(c) Subgraph-level pre-training task

[CIKM21] X. Jiang, Y. Lu, Y. Fang and C. Shi. Contrastive Pre-training of GNNs on Heterogeneous Graphs



Pre-training on heterogeneous graphs

o Pre-training tasks to capture schema-level semantics

Schema Schema-level task

@ 17 fou)

Similarity CU”E’:;:'WISCM

O O A O

Paper Venue Author Field

publish/published
contain/contained
O A write/written
U cite/cited

Semantic

Encoder @

[KDD21] X. Jiang, T. Jia, C. Shi, Y. Fang, Z. Lin and H. Wang. Pre-training on Large-Scale Heterogeneous Graph.



Problem with pre-training approaches

o The gap between pre-training and downstream objectives

P - . e iy —
- X, — " oae
“ > x4 : SO > . .
) X + classification
X3 — /-' (3‘ \I 9
: + | Pre-train j'\
/ =, -
[_;1,//' --\._\+_1_§..,x.5,-g {
(d) Generate attributes and (e) Generate attributes and G raph _
masked edges for node 4 masked edges for node 5 classification

o And the fine-tuning step..
Can be expensive for large pre-trained models
may overfit if there are very few labels from downstream tasks



Bridging the gap: Pre-train, prompt

Problem: Gap between pre-training and downstream tasks

Prompt [Lyr23): an alternative to “pre-train, fine-tune”

Originated in NLP, an instruction to reformulate the original task to unify
with pre-trained model (e.g., masked language modeling)

happy +
< unlucky -

Task: Sentiment classification + Prompt

“I missed the bus today.” _”

Zero-shot: Handcrafted (prompt engineering)
Few-shot: Learnable word vectors (prompt tuning)

Ask pre-trained
model to fill in
the blank

[LYF23] Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in
Natural Language Processing. P. Liu, et al. ACM Computing Surveys: 55(9), 2023.
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Graph data often associate with texts

Language

= | Visual QA ...
models are / — Nice design ... /ﬁ\
\ 0=
The BERT model ...
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@ % Very creamy, ...

0= / < %
The translation ... - Keep warm ...
e
Citation graph for online articles

E-commerce item review graph

So, if there is a jointly pre-trained graph-text model, we can
easily apply natural language-based prompts to graphs.




Papers grounded on a citation network

Language
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o target node

The BERT model ...

The translation ...

Texts of the papers

—©®

HH The BERT model ...

Text encoder
—> @ (Transformer)

Text-node interaction £,

Zy Z.t, | Z1t, Z,tg
Graph encoder Z2 2ot | Zptp Zyts
@, (GNN)
Zg Zety | Zgts Zgts
t, t, ts
T T A A
Text-summary interaction £,
t;S, | t4S tis
neighboring t, |- 1°1) 172 176
text emb. t,s; | t58; t,S
target L,
—» t; text emb.
t6S1 | teS2 L6Se
P b [P s |- . .
Node-summary interaction L3
summary
Ll text emb. Z.S Z.S Z.S
ts for target e e 176
target [ %
node emb.
Z; |~ Z6S1 | ZeSy ZsSe

(a) Graph-grounded contrastive pre-training

Graph-grounded pre-training and prompting (G2P2)

Learns a dual-modal embedding
space by jointly training a text
encoder and graph encoder

_ . EXxploits three contrastive
strategies

o Text-node contrast

o Text-summary contrast
o Node-summary contrast

[SIGIR23] Z. Wen and Y. Fang. Augmenting Low-Resource Text
Classification with Graph-Grounded Pre-training and Prompting.



Graph-grounded pre-training and prompting (G2P2)

Zero-shot node classification

with discrete prompts

Label texts of N classes
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Few-shot node classification
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Datasets to evaluate G2P2

Dataset Cora Art  Industrial M.L
# Documents 25,120 1,615,902 1,260,053 905,453
# Links 182,280 4,898,218 3,101,670 2,692,734
# Avg. doc length 141.26 54.23 52.15 84.66
# Avg. node deg 7.26 3.03 2.46 2.97
# Classes 70 3,347 2,462 1,191
Cora is a collection ,ﬁ,ﬂv\. Art, Industrial and Music
of research papers Instruments (M.l.) are three
with citation links & ,\T/.% Amazon review datasets

o



Empirical performance of G2P2

| Cora | Art ‘ Industrial ’ M.L

‘ Accuracy Macro-F1 | Accuracy Macro-F1 ‘ Accuracy Macro-F1 ’ Accuracy Macro-F1

GCN 41.15+2.41 34.50+2.23 22.47+1.78 15.45+1.14 21.08+0.45 15.23+0.29 22.54+0.82 16.26+0.72
SAGEqsyp 41.424+2.90 35.14+2.14 22.60+0.56 16.01+0.28 20.74+0.91 15.31+0.37 22.14+0.80 16.69+0.62
TextGCN 59.78+1.88 55.85+1.50 43.47+1.02 32.20+1.30 53.60+0.70 45.97+0.49 46.26+0.91 38.75+0.78
GPT-GNN 76.72+2.02 72.23+1.17 65.15+1.37 52.79+0.83 62.13+0.65 54.47+0.67 67.97+2.49 59.89+2.51
DGI 78.42+1.39 74.58+1.24 65.41+0.86 53.57+0.75 52.29+0.66 45.26+0.51 68.06+0.73 60.64+0.61
SAGEgf 77.59+1.71 73.47+1.53 76.13+0.94 65.25+0.31 71.87+0.61 65.09+0.47 77.70+0.48 70.87+0.59
BERT 37.86+5.31 32.78+5.01 46.39+1.05 37.07+ 0.68 54.00+0.20 47.57+0.50 50.14+0.68 42.96+1.02
BERT" 27.22+1.22 23.34+1.11 45.31+0.96 36.28+0.71 49.60+0.27 43.36+0.27 40.19+0.74 33.69+0.72
RoBERTa 62.10+2.77 57.21+£2.51 72.95+1.75 62.25+1.33 76.35+0.65 70.49+0.59 70.67+0.87 63.50+1.11
RoBERTa* 67.42+4.35 62.72+3.02 74.47+1.00 63.35+1.09 77.08+1.02 71.44+0.87 74.61+1.08 67.78+0.95
P-Tuning v2 | 71.00+2.03 66.76+1.95 | 76.86+0.59 66.89+1.14 ‘ 79.65+0.38 74.33+0.37 ’ 72.08+0.51 65.44+0.63
G2P2-p 79.16+1.23 74.99+1.35 79.59+0.31 68.26+0.43 80.86+0.40 74.44+0.29 81.26+0.36 74.82+0.45
G2P2 80.08"+1.33 75.91"+1.39 | 81.03%+0.43 69.86"+0.67 | 82.46"+0.29 76.36"+0.25 82.77%+0.32 76.48%+0.52

(improv.) (+2.12%) (+1.78%) (+5.43%) (+4.44%) (+3.53%) (+2.7%) (+6.53%) (+7.92%)

G2P2 outperforms the best baseline by around 3—7%.
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GraphPrompt: Pre-train, prompt on graph only

o Two challenges igmatosieoe, (@) Pre-training with [ Snee T
_ _ o o link prediction )
How to unify various pre-training and €| / /N~ &+ &
downstream tasks on graph? e Sim?
How to design prompts on graph? = _
= Leamoble oodc Learnoble graph
. da;if;;;::lon —4( ylri cla;s:afli:l:t[lon
] In S|ghts READOUT READOUT
- op o _oIm n.__OIm
Aunified task template basedon 5| 7 <) E ,% S0,
Su bgraph Slmllarlty COmpUtatlon g* P v ‘E:, L_'_'_'_'_"_"_‘_'_\'_i‘:_"__‘;:_l'_ié {r 'n:, :L_::::‘_:‘_:‘_‘_:‘_:‘_—
=8 ‘a—ph'g

Use a learnable prompt to guide o (0 o s 96
. G,
graph readout for different tasks

Node class prototypes Graph class prototypes

(b) Node classification (c) Graph classification

—

[WWW?23] Z. Liu, X. Yu, Y. Fang and X. Zhang. GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural Networks.



GraphPrompt: Pre-train, prompt on graph only

( Unified task template)

Link prediction
Triplet (v, a, b), s.t. v is linked to a, but not b:
sim(sy, Sg) > sim(sy, sp)

Node classification

f; = arg max sim(sy, S¢)
/ ceC 7

Graph classification

L; = argmax sim(sg., S¢)
J 5 ceC /

All tasks converted to subgraph
similarity computation!

s,. (sub)graph embedding of x (x is a node or graph)

Pre-trilining

Pronipting

N

—

______

Learnable node
classification
prompt

(b) Node classification

.. (a) Pre-training with
»  link prediction

......

=
-
-~
-~

,'lsubgraph of node v; ™

e =

Learnable graph
—\l’ ylri classification
prompt
READOUT READOUT
oo oo oo -
[T =R 12 o Py
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oo oco oS E o e = Lot omooaa=o =
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.S N 15 e T N =
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AR s 15 i 12
T R = i S e e Sl
Node class prototypes Graph class prototypes

S.. class c’s prototype (a virtual subgraph, by aggregates all subgraph embeddings in the class)

(c) Graph classification



GraphPrompt: Pre-train, prompt on graph only

( Prompt design )
Different downstream tasks require
different subgraph readout

- Use task-specific learnable prompts

Prompt vector added to the readout
layer of the pre-trained GNN

st.x = READOUT({pr © hy : v € V(Sx)})

St x. (sub)graph embedding of x for a task ¢

h,: node v's embedding vector
p; or P;: learnable prompt vector or matrix for task t

Pre-trilining

Pronipting

N

—

______

Learnable node
classification
prompt

(b) Node classification

.. (a) Pre-training with
»  link prediction

______

=
-
-~
-~

R subgraph of node v, ™

e =

Learnable graph
—\» T classification
prompt
READOUT READOUT
[EEEE| |
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I “ ! “|r
1 1 12
P ‘1\ _" \ 12
IR I
” DSt On e e
~ :' VAN
. ~ ' ‘I r -8
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N ' w
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Node class prototypes

Graph class prototypé§

(c) Graph classification
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GraphPrompt: Pre-train, prompt on graph only

1001
) /——/'—"//
601 o
1 2 3 4 5 10 40 1 2 3 4 5 10
Shot k Shot k
GIN DGI —e— GraphCL —— GPPT —&—  GraphPrompt
PROTEINS ENZYMES

Impact of shots on few-shot node classification.

Few-shot: Significantly better

10-shot: Still competitive

(as graphs are small — 10 shots are a lot)
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1 3 5 8 10 20 30 i 3 5 8 10 20 30
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—eo— GIN —»— InfoGraph —e— GraphCL —&— GraphPrompt
PROTEINS ENZYMES

Impact of shots on few-shot graph classification.

Few-shot: Significantly better

On ENZYMES: worse performance on 220 shots

(only 600 graphs — 20 shots/class ~ 20% labels)



GraphPrompt: Pre-train, prompt on graph only

Comparison of parameter efficiency Methods Flickr
Params FLOPs
Significantly fewer parameters/FLOPs than: GIN 22.183 240,100
= Supervised model (GIN [XHL19]), GPPT 4,096 4,582
» “Pretrain, fine-tune” model (GraphPrompt-ft), GRAPHPROMPT % 96
- EX|St|ng prompt model (GPPT [SZHZZ]) GraruPrompT-ft | 21,600 235,200
PROTEINS ENZYMES
Methods Params FLOPs | Params FLOPs
GIN 5730 12,380 | 6,280 11,030
GPPT 1,536 1,659 | 1,536 1,659
GRAPHPROMPT 96 96 96 96
GraPHPrROMPT-ft | 6,176 13,440 | 6,176 10,944

[XHL19] How Powerful are Graph Neural Networks? K. Xu et al. ICLR 2019
[SZH22] GPPT: Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks. M. Sun et al. KDD 2022



Generalized Graph Prompt

1 Support more pre-training tasks beyond link prediction
DGI, InfoGraph, GraphCL, GCC, ...

o Layer-wise prompts

[TTT]
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+
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READOUT

Generalized Graph Prompt: Toward a Unification of Pre-Training and Downstream Tasks on Graphs. Xingtong Yu, Zhenghao

Liu, Yuan Fang, Zemin Liu, Sihong Chen, Xinming Zhang. https://arxiv.org/pdf/2311.15317.pdf



https://arxiv.org/pdf/2311.15317.pdf

HGPrompt: Extending to heterogeneous graphs

Two challenges

o Gap between homogeneous and heterogeneous graph
o Different downstream tasks focus on heterogeneous aspect

Pre-Train Downstream
A A

. ' v Feature prompt Het t )
I n S | g h tS N P P eterogeneity promp

________

o Dual-template: sk Template |

Task + Graph template ,—M | Op -

Pre-trained Y
Model

O O : READOUT o AGG — LOS&?
i Functior,

o Dual-prompt:
Feature + Heterogeneity prompt

Y
Graph Template
(a) Target scenarios (b) Dual-template (¢) Dual-prompt

[AAAI24] Xingtong Yu, Yuan Fang, Zemin Liu and Xinming Zhang. HGPrompt: Bridging Homogeneous
and Heterogeneous Graphs for Few-shot Prompt Learning. https://arxiv.org/pdf/2312.01878.pdf
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Conclusion

Few-shot learning on graphs: different kinds of graphs/tasks
Learning and transferring/using prior is the key
Prompt is a promising paradigm...

Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, Chuan Shi. Towards Graph
Foundation Models: A Survey and Beyond.

% Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang,
https://arxiv.org/pdf/2310.11829.pdf

V2 THE WWW?24 Lecture-Style Tutorial: Towards Graph Foundation Model.
AN WE B Tuesday, May 14, 2024, Half-Day (AM), Singapore
CONFERENCE

Chuan Shi, Cheng Yang, Yuan Fang, Lichao Sun and Philip Yu


https://arxiv.org/pdf/2310.11829.pdf
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Thank you

Questions?

Email: yfang@smu.edu.sq

Full publications, codes and data are available at
http://www.yfang.site/
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