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Complex big data as graphs
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[RVHO5] Towards a proteome-scale map of the human protein—protein interaction network. J. Rual, et al. Nature: 437(7062), 2005.



Overview: Data, Problems and Methods
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Low-resource problems on graphs

Label scarcity

Novel classes emerge frequently
with very few labelled data.

Explainable Al

[Image from AAAI21a]
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Structure scarcity

Graphs are characterized by structural
information. Nodes with less structural
contexts yield poor performance.
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Low-resource method: Meta-learning

_ 6
Learn a classifier
Supervised v
learning fQ( A ) - dOg

Need many, many labelled data!
Hard to deal with novel classes.

whale?

Adapt
prior

One example of toy whale

Even toddlers can learn novel classes very quickly with

one/few examples... by generalizing from prior knowledge.
[Images from the Web]



Low-resource method: Meta-learning

Learn a classifier
Supervised v
: “
learning fB( A ) — dog
Need many, many labelled data!
Hard to deal with novel classes.
Learn a prior ¢ from
I 9 the training tasks
S0 <
©
Meta- If_g L lAdapt
learning support
(MAML u J¢ (E2) — f¢/
[FAL].?]) - Car  Ship
£ f ' (€8) — car
G g <
= “Learn to learn”

.
[FAL17] Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. C. Finn et al. ICML 2017.



Low-resource method: Pre-training
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= Cat Dog Apple Banana
Still require many labels on these
base classes to form training tasks
(Generative) (Contrastive)
Self- Sy i
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Low-resource method: Pre-training
_ 9 |

Downstream tasks

/ \ (with some task-specific labels)
Label-free data

Task 1 fine-tune) 91
Pre-tra} 6

\Self-superwsed taSkS/ Called “pre-trained model’,

“pre-trained weights”, or prior

Task 2 fme—tune) 92

fine-tune
Task 3 > 93




Low-resource method: External knowledge

Object detection Recommendation
(a) Office scene: FRCNN (left) fails to detect keyboard, but
KG-CNet (right) does due to the presence of laptop. User interaction Knowledge
External knowledge graph graph
Laptop, keyboard, . Actor (A) &
and mouse often User (U) - Movie (M) | - ector (D)

keyboard ‘-:?’:—‘":4:375. .‘ keyboard § ;&ét:‘;‘.fi nouse
i — | O S appear together.

(b) Outdoor scene: FRCNN (left) fails to detect surfboard, but
KG-CNet (right) does due to the presence of person.

A person

_ <::| “standing” on a
i sea is usually on a

surfboard

[Image from IJCAIL7] [Image from KDD20]
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[CIKM20]

meta-tail2vec: Meta-Learning of Tall Node Embeddings

o Tail nodes with very few links are ubiquitous
Newcomers
Existing less “active” nodes

Node degree

- Tail nodes are not sufficiently modeled 1??3;2- ra“r’fﬁd;i"asé"r_‘ée
. . . . a) Degree distribution
Limited structural information

Existing methods regard all nodes uniformly using
the same model

MicroF
© o o

o Problem: Given the embedding vectors of nodes
learned from a base embedding model, can we oo e
refine/improve the embeddings of the tail nodes?

(b) Classification performance



meta-tail2vec: Meta-Learning of Tall Node Embeddings

Assumption: Head nodes have high-quality embeddings.

Insights: Predict high-quality embeddings based on head nodes
Using a head node to simulate a mini-regression task
Perform link dropouts on head nodes to simulate tail nodes
Locality-aware tasks: support set sampled from neighboring nodes

|\/|eta-|eaming Mini-regression task on a head node
Each task has a unigue local context D support S,
Learn a prior from head node tasks @ ) ) >d link @E Ez

. ropouts
Adapt the prior to the tail node tasks (@ 6 : %;2
(@) oy




meta-tail2vec: Meta-Learning of Tall Node Embeddings

o
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meta-tail2vec: Meta-Learning of Tail Node Embeddings

Visualization of base embeddings
by SDNE, and their respective

refinement by meta-tail2vec on the
Email dataset.

Solid points - tail nodes
Hollow points - head nodes

Each color represents one class.
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(a) Base embeddings

(b) meta-tail2vec



Tall-GNN: End-to-end tail representation learning

meta-tail2vec: Two-stage approach
Stage 1. Use any base model to generate node embeddings
Stage 2: Refine the tail node embeddings by meta-learning

Tall-GNN: end-to-end approach [kpp21a]
Inspired by meta-tail2vec
Transfer knowledge from head to tail nodes
Perform link dropout on head nodes to simulate tail nodes

Adapt a global prior to individual nodes (but use a different meta-learning
mechanism based on FiLM [psvi8))

[PSV18] FiLM: Visual reasoning with a general conditioning layer. E. Perez et al. AAAI 2018.



[KDD20]

MetaHIN: Cold-start recommendations

Collaborative filtering User-item graph
— G = N User (U) Movie (M)
c = / Problem: Cold-start \

recommendation

How about new users or items?

An instance of structure-scarce
learning on the user-item

@eraction graph. /

V('CCo/o

[Image from the Web]
New user



MetaHIN: Cold-start recommendations

Interaction Knowledge
graph graph [ MetaHIN ]
—— A A
User (U) Movie (M) Actor (A) & External Met_a—
Director (D) knowledge learning

Content-based HIN-based meta-learrgd prior : _meta—trall}l;g\l
Age: 25; . | ®] |
Genc%yer' Male Sans 2t (UMaM) meta-testing | _ —wfdh |
' ugmsdimy(UMDM)| !~ ) =" Ug |
~ | @ L o= @ |
.o | T Ll
i . U3 ' adaptation 1 qy 1 !
U3 - e i L _/

(b) Data-level alleviation (c) Model-level alleviation

(a) An example of HIN*

* HIN: Heterogeneous Information Network [SLZ17]
[SLZ17] A survey of heterogeneous information network analysis. C. Shi et al. TKDE: 29(1), 2017



MetaHIN: Cold-start recommendations
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MetaHIN: Cold-start recommendations

Improvement of MetaHIN over
SOTA In four code-start or non-
cold-start scenarios

UIC > UC ~ IC > Non-cold-start

Impact of size of support set on
MetaHIN and SOTA

Larger support, better performance;
MetaHIN is robust: On small support sets,
its performance is the least impacted.

Improvement (%)

I Existing Items for Existing Users (Non-cold-start) Wl Existing Items for New Users (UC)
I New Items for Existing Users (IC) B New Items for New Users (UIC)
20.0 24.0 24.0
16.5 20.0 18.0
13.0 16.0 12.0
9.5 12.0 6.0
6.0 8.0 0.0
MAE RMSE MAE RMSE MAE RMSE
(a) DBook (b) MovieLens (c) Yelp
(a) Improvement in different scenarios
& MetaHIN = MeLU =~ NeuMF ® HERec
0.90 1.30 1.30
0.83 1.18 1.15
0.75 1.05 1.00
0.68 0.93 0.85
0.60 0.80 0.70

5 10 20 30 40 50 60 70 80 90

size of support set size of support set
(a) DBook (b) MovieLens

(b) Impact of size of support set

5 10 20 30 40 50 60 70 80 90 5 10 20 30 40 50 60 70 80 90

size of support set
(c) Yelp
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[SIGIR21]

MI-GNN: Meta-inductive, cross-graph GNNSs

Training graphs Testing graphs
0 Semi-supervised learning peopie @) @5 oot (1% Oopeote | [reore@ )
A classic paradigm for % C -, \..\pet ;
learning with insufficient - %0 ] PR W 2%
labelled data C, Gy 0 G,
Exploits the intrinsic R et \ p:
| people — ant | ? —m Pt eople — ant
structures between labelled L"__'f'__? _____ - N/ e ? =4
and unlabelled data 2\ g k /g\pmp'e \
L? g——— ? ? g ?
:\__' ________ %_;_: ?% ‘l‘/ plant ’ *—% '
Gz 64. GZ
ses \ sese j \\ "o /‘
(a) Transductive approach (b) Conventional inductive approach
(e.g. label propagation [ZGLO03]) (e.g. most modern GNN5s)
Z6L03] Semi-S od Learming Using Gauss Only able to utilize unlabelled One-model-fits-all; ignores
emi-supervise earning using Gaussian : : .
Fields and Harmonic Functions. X Zhu et al. ICML 2003. nodes in a Smgle graph. graph/task differences.



MI-GNN: Meta-inductive, cross-graph GNNSs

o Using meta-learning to dynamically adapt the inductive model to
take care of both graph-level and task-level differences

Training graphs

Testing graphs

---------------------------------------------------------------------
__________________

\
c;/m ™ people | ,y peopleo U pet Support set
\ T , “/ ' , . : Testlng task 1
/ \ 01 601 == | | query set
? @ W plant q) :\ :
G
3 ) O
Q#—/ﬁ pet N ——
N\ 6~
£ people 6, * Testlng task 2
an :
?% f plant Graph-level Task-level
Gy adaptation ~ adaptation
\. J - > T >
(FiLM) (MAML)




MI-GNN: Meta-inductive, cross-graph GNNSs

Performance w.r.t. similarity to training graphs

Transductive: Minimal change in performance as no training
graphs needed.

Inductive: Significant drop in performance when the testing
graphs have low similarity.

Meta-Inductive: Robust, with only small decrease in
performance when the testing graphs have low similarity.

Med  High

Similarity to training graphs

Low

Med

Similarity to training graphs
Low

High

Transduct Induct Meta-Induct
Training settings

(a) Accuracy

Transduct Induct Meta-Induct
Training settings

(b) Micro-F1
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[AAAI213]

RALE: Few-shot learning on graphs

o Problem: Few-shot node classification  supportiquery are randomly distributed in

traditional meta-learning. How to capture
Explainable Al their structural dependencies on a graph?

[N\

Sui)port Query

Support Query

D& @

Base classes
(sufficient labels)

SVM
Neural networks

Meta-train tasks
(base classes)

Novel classes ]7)’ rqnsferable ......
rior
(a feW IabEIS/CIaSS) -----------------------------------------------------------------
v
. Support Query
Explallnable Al Meta-test tasks
Fair ML (novel classes) ?

(a) Base and novel classes on graph

(b) Few-shot node classification



RALE: Few-shot learning on graphs

Two challenges... How to

Capture long-ranged dependencies between nodes in a task?
Align dependencies across tasks to converge on a common prior?

|nsights: Use hub nodes Hub nodes: Structurally important nodes,

Within task: Define relative
locations between support
and query nodes

Globally: Define absolute
locations of tasks on a graph

PBM99] The PageRank Citation Ranking: Bringin ) , )
E)rd er to] the Wet?. L. Page, et al. WWW 3999_ ang (a) Task-level relative location (b) Graph-level absolute location



Pre-training

Limitation of meta-learning

Need enough base class labels to construct the meta-training tasks.
What if we don’t have sufficient labels for meta-training?

Pre-training

Downstream tasks

/ \ (with some task-specific labels)
Label-free data .

fine-tune
;‘j '; B & X Task 1 > 91

E ’5’1 2 ,‘ Pre-train > @ 5 Task 2 |metune, 92

+ fine-tune
Task 3 > 0
\Self-SUperVISed taSkS/ Called “pre-trained model’,

‘pre-trained weights”, or prior




Pre-training on graphs
o Key: Design self-supervised pre-training tasks on graphs

o Major strategies: Generative and contrastive

( Generative ) ( Contrastive )
%} Graph 1
‘\\ Graph x4 Encoder -
\\ \“ £
" (%7 ) Similarity—> o
Graph x%o
; +

\ . i Graph
(d) Generate attributes and (e) Generate attributes and / oy Craphx Encoder
masked edges for node 4 masked edges for node 5 { o} ko, ky, k;
[Image from HDW20] )/ Graph x' % (from random subgraphs)
[HDW20] GPT-GNN: Generative Pre-Training of Graph Neural Networks. Z. Hu et al. KDD 2020 [Image from QCD20]

[QCD20] GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. J. Qiu et al. KDD 2020



Pre-training on heterogeneous graphs

[CIKM21]

o Pre-training tasks to capture relation- and subgraph-level semantics

a1 131
D2
a, =
P3
a3 Pa
= 2
Ay Ps

Various types of node/edge
capture rich semantics

(a) A heterogeneous graph

: p pr t
(@ 8) R T

i ((E.3).(8 §) )

Negatwe samples from inconsistent relation

—{(@.8),(8.%)—

Slmlla rity

=

Similarity

Relation loss —
rel

Negative samples from unrelated nodes

> L

(b) Relation-level pre-training task
-] \
(4 & E) \.
1 a
1 &1P2 Subgraph loss
Slrrjslrltyﬂ s
Meta graph instance{( Cz a, t4 az p3 t3 }
Queued Negative Samples

(c) Subgraph-level pre-training task



[KDD21b]

Pre-training on heterogeneous graphs

o Pre-training tasks to capture schema-level semantics

Schema Schema-level task

@ 17 fou)

. Contrastive
publish/published \ Similarity Loss L che
Semantic

contain/contained
. En r
O /\ write/written code @

cite/cited

O O A O

Paper Venue Author Field




Problem with pre-training approaches

o The gap between pre-training and downstream objectives

P - . e iy —
- X, — " oae
“ > x4 : SO > . .
) X + classification
X3 — /-' (3‘ \I 9
: + | Pre-train j'\
/ =, -
[_;1,//' --\._\+_1_§..,x.5,-g {
(d) Generate attributes and (e) Generate attributes and G raph _
masked edges for node 4 masked edges for node 5 classification

o And the fine-tuning step..
Can be expensive for large pre-trained models
may overfit if there are very few labels from downstream tasks



[AAAI21D]

Bridging the gap: Learning to pre-train

Pre-training is not aware of the fine-tuning step
Learning to pre-train
Simulate the fine-tuning step within pre-training
Use meta-learning to adapt to the simulated task

CPre-training data) DP"¢ ={G,,G,,...,Gy} [Pretrain > 0

C Meta-task ) Construct a meta-task for a graph 7 = (S5, 9)
Fine-tune w.r.t. the loss on §; — 6’ } Simulate the fine-tuning

Update 6 w.r.t. the loss on Q  with g’ | SteP on adownstréam
task during pre-training

But not a fundamental solution... Simulated task # actual task



Bridging the gap: Pre-train, prompt

Problem: Gap between pre-training and downstream tasks

Prompt [Lyr23): an alternative to “pre-train, fine-tune”

Originated in NLP, an instruction to reformulate the original task to unify
with pre-trained model (e.g., masked language modeling)

happy +
< unlucky -

Task: Sentiment classification + Prompt

“I missed the bus today.” _”

Zero-shot: Handcrafted (prompt engineering)
Few-shot: Learnable word vectors (prompt tuning)

Ask pre-trained
model to fill in
the blank

[LYF23] Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. P. Liu, et al. ACM Computing Surveys: 55(9), 2023.



GraphPrompt: Pre-train, prompt on graphs

o Two challenges

How to unify various pre-training and
downstream tasks on graph?

How to design prompts on graph?

o Insights

A unified task template based on
subgraph similarity computation

Use a learnable prompt to guide
graph readout for different tasks

Pre-trilining

N

Prorripting

______

“ Contextual ~~ "
subgraph of node v, ™

(a) Pre-training with
*  link prediction

[WWW23]

......

Contextual

& subgraph of node v; \\

Learnable node Learnable graph
classification —\l T classification
prompt prompt
READOUT READOUT
T a1 [EEEE| |
I EPE TN T LT
~ \\ : r/ \1 ’/ \‘ :E:_ :’I “ !/ “ L=
’:‘\ Iy ":2 ;, ’:I‘ 1 " 1 e
¥ - I \\ ! \\ If ! - 1 \\ /’ &
v : ~ Tt A = T {' ‘. - Lol ==zl =
1N N P ~ e T o
. i N a Y P i A e
[ \ =
Sim? ™ i @ : Sim? Nt % ) l\% -
I \\ ’ * _ 1 \‘ r
_____ AT il Iy === Lo ooo o Siat ol
Node class prototypes Go Graph class prototypes

(b) Node classification

(c) Graph classification



GraphPrompt: Pre-train, prompt on graphs

( Unified task template)

Link prediction
Triplet (v, a, b), s.t. v is linked to a, but not b:
sim(sy, Sg) > sim(sy, sp)

Node classification

f; = arg max sim(sy, S¢)
/ ceC 7

Graph classification

L; = argmax sim(sg., S¢)
J 5 ceC /

All tasks converted to subgraph
similarity computation!

s,. (sub)graph embedding of x (x is a node or graph)

Pre-trilining

Pronipting

N

—

______

. (a) Pre-training with

......

=
-
-~
-~

,'lsubgraph of node v; ™

. - . ’ A
; link prediction g \
J’ l'! "‘
I ) 1
|I ——————— : -— - l|
] ~ 1 1)
' Sim? ! H
A I
\ !
Al
Learnable node Learnable graph
classification —\l l'i classification
prompt prompt
READOUT READOUT
oo oo oo -
b .= T 'C‘r - I == AT
-~ 15 ” o
Ve TN o 7 TN N
: ” It i 1— \ (I - S
[ S T T T LR [N P S ra oy
! N :,’ >\ d :_ b S :,’ *\ ; \:;
Sim? ™ D ot Sim? S 15
:\\ g N ’ :; ! \\ ro N : o
-~ # 0 ~ K #

]

Node class prototypes

(b) Node classification

-
1
A
!
I
A

Graph class prototypes

(c) Graph classification

S.. class c’s prototype (a virtual subgraph, by aggregates all subgraph embeddings in the class)



GraphPrompt: Pre-train, prompt on graphs

( Prompt design )

Different downstream tasks require
different subgraph readout
- Use task-specific learnable prompts

Prompt vector
st.x = READOUT({p; O hy : v € V(Sx)})

Prompt matrix
st.x = READOUT({P;h, : v € V(S5x)})

St x. (sub)graph embedding of x for a task ¢
h,: node v's embedding vector
p; or P;: learnable prompt vector or matrix for task t

Pre-trilining

Pronipting

N

—

- = -

_-~” Contextual ™~
,* subgraph of node v,
s

] .
' ! Sim?
1 I
A '
AY
Learnable node
classification —\I
prompt
READOUT
o Orm
[T m . 15
:ir’ \\‘ r/ 3 :%
e
\ -~ ’E‘\\ ;o :Mj
':/ e L e Lo N
1 \ l_ _,-’_‘-n._ T _'_'-:._ -l =z
Il ',’ '\\ . :__
Sim? N e @ '
(A} g 1=
\x # ~ !
T R = i
Node class prototypes

(b) Node classification

.. (a) Pre-training with
*  link prediction

______

=
-
-~
-~

R subgraph of node v, ™

Learnable graph
T classification
prompt
READOUT
171711

LoSestoooe T L &

Graph class prototypé§

(c) Graph classification



Accuracy (%)

100

oo
=

[=2)
=]

B
L]

GraphPrompt: Pre-train, prompt on graphs

1001
) /——/'—"//
601 o
1 2 3 4 5 10 40 1 2 3 4 5 10
Shot k Shot k
GIN DGI —e— GraphCL —— GPPT —&—  GraphPrompt
PROTEINS ENZYMES

Impact of shots on few-shot node classification.

Few-shot: Significantly better

10-shot: Still competitive

(as graphs are small — 10 shots are a lot)

S0

o0
(=]

40

-]
=]

30

Accuracy (%)

(=)
[

20

50

1 3 5 8 10 20 30 1 3 5 8 10 20 30
Shot k& Shot &
—eo— GIN —»— InfoGraph —e— GraphCL —&— GraphPrompt
PROTEINS ENZYMES

Impact of shots on few-shot graph classification.

Few-shot: Significantly better

On ENZYMES: worse performance on 220 shots

(only 600 graphs — 20 shots/class ~ 20% labels)



GraphPrompt: Pre-train, prompt on graphs

Comparison of parameter efficiency

Significantly fewer parameters/FLOPs than:

[XHL19] How Powerful are Graph Neural Networks? K. Xu et al. ICLR 2019

Supervised model (GIN [XHL19]),
“Pretrain, fine-tune” model (GraphPrompt-ft),
Existing prompt model (GPPT [SZH22])

Flickr

Methods Params FLOPs

GIN 22,183 240,100

GPPT 4,096 4,582

GrarPHPRrROMPT 96 96

GrarHPrOMPT-ft | 21,600 235,200

PROTEINS ENZYMES

Methads Params FLOPs | Params FLOPs
GIN 5,730 12,380 | 6,280 11,030
GPPT 1,536 1,659 1,536 1,659
GraPHPRrROMPT 96 96 96 96
GrarHPROMPT-ft | 6,176 13,440 | 6,176 10,944

[SZH22] GPPT: Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks. M. Sun et al. KDD 2022
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Future directions

Prompt on Complex graphs Temporal Heterogeneous Interaction Graph
Heterogeneous graphs? User Atributes  User flem T Atributes
Dynamic graphs? e T Schoolbeg

Tom R, B 2

Multi-modal graph learning? T =
Text on graphs? [SIGIR23] Helen Notebook
Image on graphs? s . B 2
Leveraging big models in other Hua
forms of data click --- favorite  —.— cart - buy

[Image from JYF20]

[JYF20] Temporal Heterogeneous Interaction Graph Embedding For Next-ltem Recommendation. Y. Ji, et al. ECML-PKDD 2020.



Take-home messages

o Low-resource learning on graphs: structure, label

o Learning and transferring/using prior is the key

o Prompt is a promising paradigm
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Recommendation.

Z. Liu, K. Nguyen and Y. Fang. Tail-GNN: Tail-Node Graph Neural Networks.
X. Jiang, T. Jia, C. Shi, Y. Fang, Z. Lin and H. Wang. Pre-training on Large-Scale Heterogeneous Graph.

Z. Liu, Y. Fang, C. Liuand S. C. H. Hoi. Relative and Absolute Location Embedding for Few-Shot Node
Classification on Graph.

Y. Lu, X. Jiang, Y. Fang and C. Shi. Learning to Pre-train Graph Neural Networks.
Z. Wen, Y. Fang and Z. Liu. Meta-Inductive Node Classification across Graphs.
X. Jiang, Y. Lu, Y. Fang and C. Shi. Contrastive Pre-training of GNNs on Heterogeneous Graphs.

Z. Liur, X. Yu?, Y. Fang and X. Zhang. GraphPrompt: Unifying Pre-Training and Downstream Tasks for
Graph Neural Networks. (Accepted)

Z. Wen and Y. Fang. Augmenting Low-Resource Text Classification with Graph-Grounded Pre-training and
Prompting. (Accepted)

[Additional references of others’ work are given on individual slides.]
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Why Join Us?

We offer full scholarships to PhD students covering tuition fees and monthly stipends, with additional conference travel
support.

Through the research journey with the team, you will have a great opportunity for self-development and generating
high-quality publications at top-tier conferences and journals. Our team has published extensively and consistently in
top venues such as KDD, SIGIR, AAAI, TKDE and more.

Overall, SMU is ranked No. 40 globally (No. 16 in Asia) in the broad Al category and No. 84 globally (No. 15 in Asia)
in the overall CS discipline according to CSRankings; No. 104 globally in OS 2022 Subject Ranking (Computer
Science and Information Systems).

Requirements for PhD Student

Obtained/expected to obtain Bachelor or master's degree in Computer Science or related fields at a reputable
university

Excellent academic performance with strong foundation in computing and other STEM subjects

Prior research experience or publications in data mining and machine learning a strong plus

Strong programming/implementation skills required; working knowledge of deep learning stack a plus
Intellectual curiosity to explore the unknown

Good communication and teamwork skills


https://www.yfang.site/hiring

Thank you

Questions?

Email: yfang@smu.edu.sq

Full publications, codes and data are available at
http://www.yfang.site/
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