Low-resource Learning on Graphs

Yuan FANG

School of Computing and Information Systems Singapore Management University

RecSys'23 International Workshop on Deep Learning Practice for High-Dimensional Sparse Data Sept. 18, 2023, Singapore

School of Computing and Information Systems

Introduction: Data, problems and methods

- Structure-scarce learning on graphs
- Label-scarce learning on graphs
- Future directions and conclusion

Complex big data as graphs

[RVH05] Towards a proteome-scale map of the human protein-protein interaction network. J. Rual, et al. Nature: 437(7062), 2005.

Overview: Data, Problems and Methods

Low-resource problems on graphs

Label scarcity

Novel classes emerge frequently with very few labelled data.

Explainable AI $\{u_1\}$ **SVM** $\{v_1, v_2, \dots, v_5\}$ Vg Fair ML V8 $\{u_2\}$ 22 Vo Neural networks $\{v_6, v_7, v_8, v_9\}$ Novel classes Base classes

[Image from AAAI21a]

Structure scarcity

Graphs are characterized by structural information. Nodes with less structural contexts yield poor performance.

Low-resource method: Meta-learning

How humans learn? whale? whale? (Adapt) (Adapt) prior

One example of toy whale

Even toddlers can learn novel classes very quickly with one/few examples...by generalizing from prior knowledge.

[Images from the Web]

Low-resource method: Meta-learning

[FAL17] Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. C. Finn et al. ICML 2017.

Low-resource method: Pre-training

8

Still require many labels on these base classes to form training tasks

"Free" supervision, no annotation cost!

Low-resource method: Pre-training

Low-resource method: External knowledge

Object detection

(a) Office scene: FRCNN (left) fails to detect keyboard, but KG-CNet (right) does due to the presence of laptop.

(b) Outdoor scene: FRCNN (left) fails to detect surfboard, but KG-CNet (right) does due to the presence of person.

External knowledge

Laptop, keyboard,

and mouse often

appear together.

Recommendation

[Image from KDD20]

[Image from IJCAI17]

Introduction: Data, problems and methods

Structure-scarce learning on graphs

Label-scarce learning on graphs

Future directions and conclusion

- Tail nodes with very few links are ubiquitous
 - Newcomers
 - Existing less "active" nodes
- Tail nodes are not sufficiently modeled
 - Limited structural information
 - Existing methods regard all nodes uniformly using the same model
- Problem: Given the embedding vectors of nodes learned from a base embedding model, can we refine/improve the embeddings of the tail nodes?

- 13
- Assumption: Head nodes have high-quality embeddings.
- Insights: Predict high-quality embeddings based on head nodes
 - Using a head node to simulate a mini-regression task
 - Perform link dropouts on head nodes to simulate tail nodes
 - Locality-aware tasks: support set sampled from neighboring nodes

Meta-learning

- Each task has a unique local context
- Learn a prior from head node tasks
- Adapt the prior to the tail node tasks

Mini-regression task on a head node

Visualization of base embeddings by SDNE, and their respective refinement by meta-tail2vec on the Email dataset.

Solid points - tail nodes Hollow points - head nodes

Each color represents one class.

(a) Base embeddings

(b) meta-tail2vec

Tail-GNN: End-to-end tail representation learning

meta-tail2vec: Two-stage approach

- Stage 1: Use any base model to generate node embeddings
- Stage 2: Refine the tail node embeddings by meta-learning
- □ Tail-GNN: end-to-end approach [корога]
 - Inspired by meta-tail2vec
 - Transfer knowledge from head to tail nodes
 - Perform link dropout on head nodes to simulate tail nodes
 - Adapt a global prior to individual nodes (but use a different meta-learning mechanism based on FiLM [PSV18])

17

[KDD20]

18

(a) An example of HIN^{*}

* HIN: Heterogeneous Information Network [SLZ17] [SLZ17] A survey of heterogeneous information network analysis. C. Shi *et al.* TKDE: 29(1), 2017

20

Improvement of MetaHIN over SOTA in four code-start or noncold-start scenarios

UIC > UC ~ IC > Non-cold-start

Impact of size of support set on MetaHIN and SOTA

Larger support, better performance; MetaHIN is robust: On small support sets, its performance is the least impacted.

Outline

Introduction: Data, problems and methods

Structure-scarce learning on graphs

Label-scarce learning on graphs

Future directions and conclusion

MI-GNN: Meta-inductive, cross-graph GNNs

22

- Semi-supervised learning
 - A classic paradigm for learning with insufficient labelled data
 - Exploits the intrinsic structures between labelled and unlabelled data

people pet θ_1 73 G_1 people (θ_2 G_2

(a) Transductive approach (e.g. label propagation [ZGL03])

Only able to utilize unlabelled nodes in a single graph.

 (b) Conventional inductive approach (e.g. most modern GNNs)
 One-model-fits-all; ignores graph/task differences.

[ZGL03] Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions. X Zhu *et al.* ICML 2003.

MI-GNN: Meta-inductive, cross-graph GNNs

23

Using meta-learning to dynamically adapt the inductive model to take care of both graph-level and task-level differences

MI-GNN: Meta-inductive, cross-graph GNNs

24

Performance w.r.t. similarity to training graphs

<u>Transductive</u>: Minimal change in performance as no training graphs needed.

<u>Inductive</u>: Significant drop in performance when the testing graphs have low similarity.

<u>Meta-Inductive</u>: Robust, with only small decrease in performance when the testing graphs have low similarity.

[AAAI21a]

RALE: Few-shot learning on graphs

25

Problem: Few-shot node classification

Base classes (sufficient labels) SVM Neural networks

Explainable Al Fair ML

Support/query are randomly distributed in traditional meta-learning. How to capture their structural dependencies on a graph?

RALE: Few-shot learning on graphs

□ Two challenges... How to

- Capture long-ranged dependencies between nodes in a task?
- Align dependencies across tasks to converge on a common prior?

Insights: Use hub nodes

- Within task: Define relative locations between support and query nodes
- Globally: Define absolute locations of tasks on a graph

Hub nodes: Structurally important nodes, e.g., high degree or PageRank [PBM99]

[PBM99] The PageRank Citation Ranking: Bringing Order to the Web. L. Page, *et al.* WWW 1999.

(a) Task-level relative location

(b) Graph-level absolute location

Pre-training

Limitation of meta-learning

- Need enough base class labels to construct the meta-training tasks.
- What if we don't have sufficient labels for meta-training?
- Pre-training

Pre-training on graphs

28

- Key: Design self-supervised pre-training tasks on graphs
- Major strategies: Generative and contrastive

[HDW20] GPT-GNN: Generative Pre-Training of Graph Neural Networks. Z. Hu et al. KDD 2020 [QCD20] GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. J. Qiu et al. KDD 2020

Pre-training on heterogeneous graphs

29

Pre-training tasks to capture relation- and subgraph-level semantics

[CIKM21]

[KDD21b]

Pre-training on heterogeneous graphs

30

Pre-training tasks to capture schema-level semantics

Problem with pre-training approaches

<u>31</u>

The gap between pre-training and downstream objectives

And the fine-tuning step..

- Can be expensive for large pre-trained models
- may overfit if there are very few labels from downstream tasks

Bridging the gap: Learning to pre-train

32

- Pre-training is not aware of the fine-tuning step
- Learning to pre-train
 - Simulate the fine-tuning step within pre-training
 - Use meta-learning to adapt to the simulated task

$$\mathbf{ata} \quad \mathcal{D}^{pre} = \{\mathcal{G}_1, \mathcal{G}_2, \dots, \mathcal{G}_N\} \quad Pre\text{-train} \qquad \theta$$

Meta-task

Pre-training d

Construct a meta-task for a graph $\mathcal{T}_{\mathcal{G}} = (\mathcal{S}_{\mathcal{G}}, \mathcal{Q}_{\mathcal{G}})$ Fine-tune w.r.t. the loss on $\mathcal{S}_{\mathcal{G}} \to \theta'$ Update θ w.r.t. the loss on $\mathcal{Q}_{\mathcal{G}}$ with θ' Simulate to step on a task durin

Simulate the fine-tuning step on a downstream task during pre-training

□ But not a fundamental solution... Simulated task \neq actual task

Bridging the gap: Pre-train, prompt

33

- Problem: Gap between pre-training and downstream tasks
- □ **Prompt** [LYF23]: an alternative to "pre-train, fine-tune"
 - Originated in NLP, an instruction to reformulate the original task to unify with pre-trained model (e.g., masked language modeling)

[LYF23] Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. P. Liu, et al. ACM Computing Surveys: 55(9), 2023.

34

- Two challenges
 - How to unify various pre-training and downstream tasks on graph?
 - How to design prompts on graph?
- Insights
 - A unified task template based on subgraph similarity computation
 - Use a learnable prompt to guide graph readout for different tasks

35

Unified task template

Link prediction

Triplet (*v*, *a*, *b*), s.t. *v* is linked to *a*, but not *b*: $sim(\mathbf{s}_v, \mathbf{s}_a) > sim(\mathbf{s}_v, \mathbf{s}_b)$

Node classification

 $\ell_j = \arg\max_{c \in C} \sin(\mathbf{s}_{v_j}, \tilde{\mathbf{s}}_c)$

Graph classification

 $L_j = \arg\max_{c \in C} \sin(\mathbf{s}_{G_j}, \tilde{\mathbf{s}}_c)$

All tasks converted to subgraph similarity computation!

 \mathbf{s}_{x} : (sub)graph embedding of x (x is a node or graph)

 $\tilde{\mathbf{s}}_c$: class *c*'s prototype (a virtual subgraph, by aggregates all subgraph embeddings in the class)

Prompt design

Different downstream tasks require different subgraph readout → Use task-specific learnable prompts

Prompt vector

 $\mathbf{s}_{t,x} = \operatorname{ReadOut}(\{\mathbf{p}_t \odot \mathbf{h}_v : v \in V(S_x)\})$

Prompt matrix

 $\mathbf{s}_{t,x} = \text{ReadOut}(\{\mathbf{P}_t \mathbf{h}_v : v \in V(S_x)\})$

 $\mathbf{s}_{t,x}$: (sub)graph embedding of x for a task t \mathbf{h}_{v} : node v's embedding vector \mathbf{p}_{t} or \mathbf{P}_{t} : learnable prompt vector or matrix for task t

37

Impact of shots on few-shot node classification.

<u>Few-shot:</u> Significantly better

<u>10-shot:</u> Still competitive (as graphs are small – 10 shots are a lot) Impact of shots on few-shot graph classification.

Few-shot: Significantly better

<u>On ENZYMES:</u> worse performance on ≥20 shots (only 600 graphs – 20 shots/class ~ 20% labels)

38

Comparison of parameter efficiency

Significantly fewer parameters/FLOPs than:

- Supervised model (GIN [XHL19]),
- "Pretrain, fine-tune" model (GraphPrompt-ft),
- Existing prompt model (GPPT [SZH22])

Mathada	Flickr		
methods	Params	FLOPs	
GIN	22,183	240,100	
GPPT	4,096	4,582	
GraphPrompt	96	96	
GraphPrompt-ft	21,600	235,200	

Methods	PROT	EINS	ENZY.	MES
	Params	FLOPs	Params	FLOPs
GIN	5,730	12,380	6,280	11,030
GPPT	1,536	1,659	1,536	1,659
GraphPrompt	96	96	96	96
GraphPrompt-ft	6,176	13,440	6,176	10,944

[XHL19] How Powerful are Graph Neural Networks? K. Xu et al. ICLR 2019

[SZH22] GPPT: Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks. M. Sun et al. KDD 2022

Outline

- Introduction: Data, problems and methods
- Structure-scarce learning on graphs
- Label-scarce learning on graphs
- □ Future directions and conclusion

Future directions

- Prompt on complex graphs Heterogeneous graphs? Dynamic graphs?
- Multi-modal graph learning?
 - **Text on graphs?** [SIGIR23]
 - Image on graphs?
 - Leveraging big models in other forms of data

[Image from JYF20]

[JYF20] Temporal Heterogeneous Interaction Graph Embedding For Next-Item Recommendation. Y. Ji, et al. ECML-PKDD 2020.

Take-home messages

□ Low-resource learning on graphs: structure, label

Learning and transferring/using prior is the key

Prompt is a promising paradigm

References of our work

42

[IJCAI17]	Y. Fang, K. Kuan, J. Lin, C. Tan and V. Chandrasekhar. Object Detection Meets Knowledge Graphs.
[CIKM20]	Z. Liu^, W. Zhang^, Y. Fang, X. Zhang and S. C. H. Hoi. <i>Towards Locality-Aware Meta-Learning of Tail Node Embeddings on Networks.</i>
[KDD20]	Y. Lu, Y. Fang and C. Shi. Meta-learning on Heterogeneous Information Networks for Cold-start Recommendation.
[KDD21a]	Z. Liu, K. Nguyen and Y. Fang. Tail-GNN: Tail-Node Graph Neural Networks.
[KDD21b]	X. Jiang, T. Jia, C. Shi, Y. Fang, Z. Lin and H. Wang. Pre-training on Large-Scale Heterogeneous Graph.
[AAAI21a]	Z. Liu, Y. Fang, C. Liu and S. C. H. Hoi. Relative and Absolute Location Embedding for Few-Shot Node Classification on Graph.
[AAAI21b]	Y. Lu, X. Jiang, Y. Fang and C. Shi. Learning to Pre-train Graph Neural Networks.
[SIGIR21]	Z. Wen, Y. Fang and Z. Liu. Meta-Inductive Node Classification across Graphs.
[CIKM21]	X. Jiang, Y. Lu, Y. Fang and C. Shi. Contrastive Pre-training of GNNs on Heterogeneous Graphs.
[WWW23]	Z. Liu^, X. Yu^, Y. Fang and X. Zhang. GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural Networks. (Accepted)
[SIGIR23]	Z. Wen and Y. Fang. Augmenting Low-Resource Text Classification with Graph-Grounded Pre-training and Prompting. (Accepted)

^ Co-first authors with equal contribution.

[Additional references of others' work are given on individual slides.]

Acknowledgement of funding sources

- 43
- One-shot learning: A crucial learning paradigm towards human-like learning.
 National Research Foundation, Singapore under its AI Singapore
 Programme (AISG Award No: AISG-RP-2018-001).
- Learning with less data. Agency for Science, Technology and Research (A*STAR) under its AME Programmatic Funds (Grant No. A20H6b0151).
- Universal pre-training of graph neural networks. Ministry of Education, Singapore, under its Academic Research Fund Tier 2 (Proposal ID: T2EP20122-0041).

Hiring PhD Students

https://www.yfang.site/hiring

Why Join Us?

- We offer full scholarships to PhD students covering tuition fees and monthly stipends, with additional conference travel support.
- Through the research journey with the team, you will have a great opportunity for self-development and generating high-quality publications at top-tier conferences and journals. Our team has published extensively and consistently in top venues such as KDD, SIGIR, AAAI, TKDE and more.
- Overall, SMU is ranked <u>No. 40 globally (No. 16 in Asia)</u> in the broad AI category and No. 84 globally (No. 15 in Asia) in the overall CS discipline according to CSRankings; <u>No. 104 globally in QS 2022 Subject Ranking</u> (Computer Science and Information Systems).

Requirements for PhD Student

- Obtained/expected to obtain Bachelor or master's degree in Computer Science or related fields at a reputable university
- **Excellent academic performance with strong foundation in computing and other STEM subjects**
- Prior research experience or publications in data mining and machine learning a strong plus
- Strong programming/implementation skills required; working knowledge of deep learning stack a plus
- Intellectual curiosity to explore the unknown
- Good communication and teamwork skills

Questions?

Email: yfang@smu.edu.sg

Full publications, codes and data are available at http://www.yfang.site/