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ABSTRACT
While tuple extraction for a given relation has been an active re-
search area, its dual problem of pattern search– to find and rank
patterns in a principled way– has not been studied explicitly. In
this paper, we propose and address the problem of pattern search, in
addition to tuple extraction. As our objectives, we stress reusabil-
ity for pattern search and scalability of tuple extraction, such that
our approach can be applied to very large corpora like the Web.
As the key foundation, we propose a conceptual model PRDual-
Rank to capture the notion of precision and recall for both tuples
and patterns in a principled way, leading to the “rediscovery” of
the Pattern-Relation Duality– the formal quantification of the rein-
forcement between patterns and tuples with the metrics of precision
and recall. We also develop a concrete framework for PRDualRank,
guided by the principles of a perfect sampling process over a com-
plete corpus. Finally, we evaluated our framework over the real
Web. Experiments show that on all three target relations our prin-
cipled approach greatly outperforms the previous state-of-the-art
system in both effectiveness and efficiency. In particular, we im-
proved optimal F -score by up to 64%.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Search process

General Terms
Design, Algorithms, Performance, Experimentation

1. INTRODUCTION
While the Web has evolved into our ultimate information reposi-

tory, with most online contents being HTML text, to unleash “data
inside,” we are facing the immense challenge of information extrac-
tion (IE), to convert unstructured contents to structured informa-
tion. While the barrier is daunting, there also come novel opportu-
nities. The massive contents on the Internet offer both redundancy
and diversity, both of which inspire new techniques. In particular,
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to scale up to the Web, IE has recently moved toward search-based,
which is consistent with the emergence of Web-based Query An-
swering (QA), by sending keyword queries (e.g., “capital city”) to
a general search engine, retrieving top pages, and processing them
to extract desired information (e.g., the relation capital-city-of).

This search-and-extract approach has been recently studied in
several Web-based IE [9, 4] and QA [12, 7, 8] systems, which re-
veal consistent interesting observations:

• Size is good– Redundancy has fundamentally changed the prob-
lem from document-centered to corpus-centered. The size of the
Web ensures that, when the corpus is considered as a whole, the
“voting” effect beyond each individual document will contribute
significantly to surface good results.
• Diversity is good– Simple patterns can outperform sophisticated

NLP-based techniques. The diversity of the Web ensures that
simple patterns, while inexpensive to execute, will match some
documents to extract good results.

The insights amount to the approach of pattern-based relation
extraction, to extract a relation R of tuples t by matching some
textual patterns p. E.g., for the relation capital-city-of, to extract
tuples of the form (#city, #country), we can use pattern p1 = 〈#city is
the capital ... of #country〉 or p2 = 〈#city is ... city of #country〉, both
of which will match the text “Paris is the capital city of France” and
extract the tuple (Paris, France). (Note that we use #E to denote an
entity type, which will be explained in Sect. 3.)

Unfortunately, to date, while pattern is at the heart of pattern-
based IE, it remains an open issue as how to find good patterns– in
a principled and systematic manner. How do we find patterns like
p1 and p2? Which one is better? Why? (Presumably, p1 is more ac-
curate to indicate the desired capital relationship; however, p2 can
likely return more complete answers.) For finding patterns to use,
the existing works fall into two categories: On the one hand, pat-
terns may be manually specified (by inspecting the corpus), which
is the approach from early pioneering work [11] to recent ones [9,
17]. On the other hand, patterns can be learned implicitly in an it-
erative process, as in DIPRE [6] and Snowball [3]. As Sect. 2 will
contrast, in these iterative learning approaches, patterns are lacking
principled quality metrics, and they are often hidden in the iterative
process of relation extraction, as only a by-product.

In this paper, as our first objective, we propose and address the
problem of pattern search– to find and rank reusable patterns in a
principled way. As Fig. 1(a) illustrates, given a small number of
seed examples, such as (Ottawa, Canada) and (Beijing, China), we
wish to search systematically in the space of candidates to return
good patterns in an order ranked by their “quality.” Such explicit
and principled discovery of patterns not only enhances extraction
effectiveness– because patterns are now of high quality– but also
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Figure 1: Our focus– the dual problems

enables new scenarios. First, with reusable patterns, we can execute
and re-execute these patterns on demand to extract new tuples over
an evolving corpus like the Web, without relearning the patterns
as a part of the extraction process. Second, with such patterns,
we can also execute focused retrieval by combining them with ad-
hoc keywords (e.g., use “ancient history 〈#city is the capital ... of
#country〉” to find capital cities that are also historical), as recently
explored in ad-hoc content querying [17].

Further, as our second objective, upon the patterns found we
study the subsequent problem of scalable tuple extraction, to form
a complete framework for relation extraction, as Fig. 1(b) illus-
trates. Our proposed solution relies on the ranked patterns of vari-
ous granularities to match different scopes of the corpus, enabling
the extraction of new tuples in a scalable manner. It is also impor-
tant to return tuples of high “quality” in a principled way, parallel
to the problem of pattern search. Factoring in both requirements,
the ultimate goal of the patterns can be fulfilled– to efficiently and
effectively find more tuples for a given relation.

As it turns out, both problems boil down to developing effective
ranking of patterns and tuples. Our goal is thus to study the princi-
ples for such ranking. While no formal principles exist, the infor-
mal insight of Pattern-Relation Duality (or PR Duality) has long
been observed since DIPRE [6]. It is essentially stated as follows:
PR Duality (Original): Given a good set of patterns, we can build
a good set of tuples. Given a good set of tuples, we can build a
good set of patterns.

While the insight has been widely used in existing works, it falls
short of providing a formal principle. Subsequent works [3, 2] con-
tinue to leverage the insight, but mostly resort to heuristics for mod-
eling the iterative reinforcement. First, what does “good” mean?
We need to formalize a set of metrics– precision and recall– for
capturing the quality of patterns as well as tuples. Second, how ex-
actly do patterns and tuples interrelate? We need to develop a prob-
abilistic inference framework that captures the semantic “propaga-
tion” in between. As the foundation of our approach, we address
these questions and propose the conceptual model PRDualRank,
and thus “rediscover” PR Duality as the underlying principle for
ranking both patterns and tuples.
PR Duality (Rediscovered): Patterns and tuples reinforce each
other under the quality metrics of precision and recall. That is, the
quality of a pattern– both precision and recall– can be determined
by the tuples it extracts. Likewise, the quality of a tuple can be
determined by the patterns it matches.

Upon the conceptual model PRDualRank, we further develop a
concrete framework that applies the principles in PRDualRank to
solve the dual problems of pattern search and tuple extraction over
the Web. Conceptually, PRDualRank assumes complete knowledge
of all possible patterns and tuples, which is infeasible on a large

corpus. Hence we introduce a sampling process for PRDualRank,
which follows two guiding principles based on the perfect corpus
and perfect sampling assertions.

In summary, this paper makes the following contributions:

• We propose the novel problem of pattern search, to system-
atically rank both search and extraction patterns.
• We present the formal inference mechanism of PR Duality,

the key ranking principle of our approach PRDualRank;
• We develop the concrete framework of PRDualRank, guided

by the principles of a perfect sampling process over a com-
plete corpus.
• We performed extensive experiments over the real Web on

three relations and demonstrated the effectiveness. In partic-
ular, we improved optimal F -score by a factor up to 1.64.

2. RELATED WORK
In terms of problem. Extracting tuples of a given relation from
a text corpus has long been studied [6, 3, 9]. However, its dual
problem of searching textual patterns only exists implicitly as an
intermediate step of tuple extraction.

In contrast, this paper treats patterns as first class citizens. We
first stress their reusability. We explicitly search and rank patterns
in a principled way, such that they can be reused for future extrac-
tion (e.g., over the evolving Web at a later point), or to be used by
other systems like DoCQS [17]. Second, we stress their scalability,
which hinges on a principled framework for finding out “search-
able” patterns to narrow the scope of extraction. Most previous
works but QXtract [4] have not discussed the automatic discovery
of searchable patterns. QXtract generates queries (i.e., searchable
patterns) to retrieve relevant documents that may contain tuples in a
preprocessing step, after which existing methods like Snowball [3]
is used on the retrieved documents separately. We instead identify
the principles behind the ranking of patterns, and thus integrate the
ranking of such searchable patterns into the same framework PRD-
ualRank as other kinds of patterns, further enhancing PR Duality.

For quality metrics, none of the previous works explores any
principled framework to derive the quality of the tuples and pat-
terns. In particular, none of the works develop a complete set of
metrics covering both precision and recall in IR. Instead, most em-
phasize “confidence” or “probability assessment,” which captures
precision only in an informal and heuristic way. E.g., in Snowball
[3], confidence estimation is based on the assumption of indepen-
dent patterns, resulting in excessively high confidence for all tuples.
In QA [13], the relation must have a key attribute. E.g., for capital-
city-of, #country is a key attribute as it cannot associate with more
than one #city as its capital. In KnowItAll [9, 10], it is assumed that
tuples of one relation do not satisfy other relations. These assump-
tions are not always valid. Some other works such as [14, 15, 5]
estimate the confidence based on some simple statistics.

For problem setting, we rely on bootstrapping using seed tuples,
similar to [6, 3].

In terms of techniques. We propose a semi-supervised approach
based on iterative inference on tripartite graphs constructed from
tuples, patterns and their contexts. Such graph-based inference
propagation is widely reported in the literature [2, 1, 16]. Specif-
ically, our inference involves rewriting of a node’s precision and
recall in terms of its neighbors on the graph, which maps to ran-
dom walks as inspired by [1]. In [1], a tripartite graph can be con-
structed from queries, templates, and sites. The precision and recall
of queries can be inferred from its neighboring sites through click-
throughs and its neighboring templates through instantiation. We
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Figure 2: Running example

share the insight that our approach is similar in inferring the qual-
ity of tuples and patterns from their neighboring nodes. However,
two major differences exist.

First, in [1] all queries and click-throughs are available from a
query log. All possible templates can also be enumerated from this
log. But in our problem, we are only given a few seeds as input,
without the complete spaces of tuples and patterns. Thus, we must
resort to partial materialization of the graph, which is a form of
sampling. We establish two assertions, perfect corpus and perfect
sampling, as guiding principles for the sampling process.

Second, although we also construct a tripartite graph, it is es-
sentially a bipartite graph in which the contexts only bridge tuples
and patterns to model the abstract notion of binding between them.
However, contexts are still necessary as a fundamental concept,
upon which precision and recall can be defined.

3. PROBLEM: PATTERN SEARCH
Towards scalable and reusable pattern-based relation extraction,

we must address two dual problems, in which the concept of pat-
tern is central. As Fig. 1 shows: with respect to a corpusD of docu-
ments (say, the Web), we are interested in developing a mechanism
that can extract a target relation R from D, by way of searchable
and reusable patterns.

3.1 Data Model
We start with defining our data model. Consider a running ex-

ample in Fig. 2 over a toy corpus D (say, some web pages), for a
target relation R = capital-city-of.

A corpusD, such as the web, is a collection of documents, where
some “snippets” of text may contain relations of interest. Fig. 2
shows some example snippets. Each snippet may appear multiple
times, as its frequency; e.g., s1 occurs 2 times. Since our extraction
is to recognize a span of text (such as “Paris” in s1) as a certain se-
mantic role (e.g., a capital city), we denote the vocabulary, i.e., all
the tokens (which can be words, phrases, and symbols, depending
on applications) in D, by Ω(D).

As our ultimate target, a relation contains a set of tuples (which
we aim to extract) of the form (e1, . . . , en), where ei is an attribute
or entity. Each entity e of a type #E is an instance of its type (note
that a type is prefixed by # for clarity), which draws value from its
domain Ω(#E) to form an instance; i.e., if e is of type #E, then e ∈
Ω(#E). E.g., e = “France” is of type #country, where Ω(#country)
= {“France”, “USA”, “China”, ...}. Note that the recognition of
entities from text– e.g., that “France” in snippet s1 is a #country–

is called entity tagging, and is itself an active research area. As this
paper focuses on relation extraction, we assume that the Extractor
E (Fig. 1) is equipped with an entity tagger; many off-the-shelf
tools are available today. In Fig. 2, we thus recognize three tuples
t1, t2, and t3. While our discussion in this paper assumes a binary
relation R of the form (#E1, #E2), the framework is general with
respect to the arity.

At the core of pattern-based extraction lies the notion of “pat-
terns.” Generally, a pattern is a syntactic structure with tokens
(from Ω(D)) and entities (fromR) that describe a “presentation” of
a desired tuple– i.e., how it may appear in D. Over a large corpus,
to speed up extraction, we will need patterns of different “granular-
ities” to match various scopes like documents, passages, and sen-
tences. Our framework generally supports such variously-scoped
patterns in an integrated mechanism (Sect. 4).

For our discussion, in this paper, we assume two classes of pat-
terns, each with a rather simple form. However, we stress that the
framework is general to handle any number of various classes of
patterns, which can be defined in arbitrarily complex forms. Our
first class of patterns aims at retrieving relevant documents from the
corpus by a search engine: Thus, intuitively, a search pattern is a
set of searchable keyword phrases matching a relevant document d.
Fig. 2 shows some example search patterns, e.g., pb = 〈capital city
| congress〉 will match documents with two phrases “capital city”
and “congress” (in no particular order). Since a search pattern is to
be executed by a search engine, its expressiveness is limited by the
chosen engine. Our second class of patterns will locate actual slots
where desired entities occur to form a tuple. Thus, an extraction
pattern further matches a text snippet s within relevant documents
d. In Fig. 2, p1 = 〈#city is the national capital ... of #country〉 spec-
ifies that the entities and the keywords appear in the order, with
some optional text “...” in between. It will match s1– by aligning
the words and recognizing “Paris” as a #city and “France" a #coun-
try– and extract (Paris, France) as a matching tuple. Formally, we
adopt the following simple forms of patterns:

Definition 1 (Search Pattern): A search pattern is a set of phrases,
written as 〈g1|. . .|gm〉. Each phrase gi is an n-gram of words
(w1 . . . wn), where wi ∈ Ω(D), and |gi| = n ≤ Lmax, for some
choice of phrase length Lmax.

Definition 2 (Extraction Pattern): An extraction pattern for (#E1,
#E2) is a list of two phrases, 〈g1 . . . g2〉 or 〈g2 . . . g1〉, where “. . .”
is an optional wildcard. Each gi is a phrase containing a reference
to #Ei, i.e., gi = l1, . . . , ln1 , #Ei, r1, . . . , rn2 where li, rj ∈ Ω(D)
and |gi| ≤ Lmax, for some choice of phrase length Lmax.

3.2 Problems
Our approach consists of two dual stages, as Fig. 1 illustrates.

As input, like many existing pattern-based extraction efforts [6, 3],
we assume a small number of seed tuples (e.g., {(Ottawa, Canada),
(Beijing, China)}), and our ultimate goal is to find the matching
relation (e.g., tuples for capital-city-of). However, unlike existing
works, we emphasize the role of patterns, and stress the needs for
scalability and reusability. For scalability, as we just explained,
we support two (or more) classes of patterns, where search pat-
terns can quickly retrieve relevant documents, and extraction pat-
terns can accurately identify tuples from text. For reusability, we
systematically search for good patterns as a first-class citizen (and
not a by-product hidden in the extraction process), and rank them
with principled quality metrics. Overall, the framework consists
of two stages, and thus two problems we must develop effective
techniques for.



Pattern Search. Given a small number of seed tuples from relation
R, search the corpus to find and rank patterns for R.

Tuple Extraction. Given discovered patterns for R, execute them
over the corpus to find and rank tuples for R.

4. PATTERN-RELATION DUALITY
Our key challenge lies in ranking– to find good patterns (for pat-

tern search) and good tuples (for tuple extraction). To develop the
principles of ranking, our study attempts to formalize PR Dual-
ity, leading to the PRDualRank framework– which ranks patterns
and tuples by the principles. While our discussion mentions only
extraction patterns, the same framework can be used for search pat-
terns (and, in principle, any patterns that match certain scopes for
extraction), as our experiments also demonstrate.

Pattern/Tuple Space. To begin with, we examine our search space.
That is, to search for patterns, what is the set of candidate patterns
we should consider?

Consider extraction patterns. By Def. 2, a pattern is a combina-
tion of two phrases g1 and g2 (or, in general, n such gi for n-nary
relations), each of which can be at most Lmax in length. Each oc-
currence ei of an entity type #Ei (say, “Paris” as a #city in snippet
s1) can form such a phrase with its surrounding tokens (say “#city
is”, “#city is the”, etc.). With respect to corpus D, we thus consider
the space of extraction patterns as P = { p | p = 〈g1 . . . g2〉, gi is a
phrase containing a reference to #Ei, gi occurs inD, |gi| ≤Lmax}.
For our example, in Fig. 2, the space would include p1, p2, p3, p4,
and many that are not listed, such as 〈#city is ... of #country〉.

Similarly, for ranking tuples, there is also a potentially large
space of candidates. For a relation R of the form (#E1, #E2), such
as (#city, #country), the complete space is the Cartesian product of
the two entity domains Ω(#E1)×Ω(#E2), such as any combinations
of city and country. As our goal is to extract such tuples from cor-
pus D, we should only consider those pairs that actually appear in
D– in fact, since entities that are far apart are unlikely to be seman-
tically associated, we need only consider those #E1 and #E2 that are
close within some proximity windowWmax. Thus, the space of tu-
ple to consider, with respect to corpus D and relation R, is T = {
t | t = (e1, e2), ei ∈Ω(#Ei), e1, e2 occur in D within Wmax words
}. For our example (Fig. 2, assuming Wmax = 10), if the entities
only occur in the listed snippets, then the space is T = {t1, t2, t3}.

Pattern-Tuple Association. Towards an essential objective of this
paper– to formally develop PR Duality– we further capture the as-
sociations of patterns and tuples, upon their dual spaces. The mod-
eling of such associations enables us to systematically relate pat-
terns and tuples, which will effectively form the “bridge” to “in-
duce” the duality between them, as we will see.

Intuitively, each co-occurrence of a tuple t and pattern p in some
snippet in corpus D forms an association that is “intended” (by the
author of the document), and thus it bears some semantic related-
ness. We refer such an association (t, p) as a context consisting of t
and p. For c = (t, p), we say c associates (or binds) t and p; on the
other hand, we also say t and p instantiate c. Note that since each
context (t, p) can occur multiple times in different snippets, it has a
frequency as the total occurrences. E.g., Fig. 3(b) lists the contexts
occurring in the snippets of Fig. 2. t1 co-occurs with p2 and thus
forms a context c1 = (t1, p2), with a frequency = 4 (since snippet
s1 occurs 4 times). As another example, t1 and p4 co-occur at both
s1 and s2, forming c2 = (t1, p4), with a total frequency = 5.

The space of contexts includes any combinations of tuples and
patterns that actually occur in corpus D, i.e., C = { c | c = (t, p), t
∈ T , p ∈ P , t and p co-occur in D}. Since a context c can occur at
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different snippets, when necessary, we will write c@s to indicate
the specific occurrences of c at s; e.g., c2 occurs at s1 and s2, or
c2@s1 and c2@s2. Also note that C is a multiset, since a snippet
can appear multiple times (say, s1 has a frequency = 4; Fig. 2). For
the running example, as Fig. 3(b) lists, we have
C = {c1@s1 : 4, c2@s1 : 4, c2@s2 : 1, . . . , c8@s4 : 2}. (1)

While a context associates a specific pair of (t, p), a pattern p can
instantiate multiple contexts, and so can a tuple t. Let us denote the
set of contexts that p instantiates by Ip, and similarly that of t by
It. E.g., Ip1 = {c4} and It1 = {c1, c2, c3}, according to Fig. 3(b).
Formally it is defined by the following, where ∗ represent “any.”

Ip ≡ {c | c ∈ C, c = (∗, p)}; It ≡ {c | c ∈ C, c = (t, ∗)}
Furthermore, let Itp ≡ It ∩ Ip, i.e., {c | c ∈ C, c = (t, p)}.

Given the spaces P , T and C, we can construct a Context Graph
G = (T,C, P ) as a convenient way to visualize associations. G is
a tripartite graph where T,C, P are the disjoint set of nodes, i.e.,
ti ∈ T, ci ∈ C, pi ∈ P as in Fig. 3(c). C also models the set of
edges, such that a context c = (t, p) connects t and p from the two
sides. E.g., c1 = (t1, p2) connects t1 and p2. In general, a context
c only connects to exactly one tuple and one pattern by definition,
as illustrated in Fig. 3(a). Furthermore, a context node in the graph
has the same in-degree and out-degree, since it is a pair of tuple
and pattern that appear together. Intuitively, a context bridges a
tuple and a pattern, allowing “passing-though” between them.

4.1 Metrics: Precision and Recall
Given the space of possible patterns P , we need formal metrics

to measure their quality in order to find good ones. As our search
and ranking spaces encompass interrelated T , C and P , we aim to
develop metrics that will uniformly apply to all these notions, in
order to unify and integrate their “mutual reinforcement,” which is
the intuition of PR Duality.

To determine the right metrics, we investigate the purpose of
patterns– which is to “interpret” a snippet s, to determine if we
should extract the tuple embedded in s for target relation R. A pat-
tern p, when associated with a tuple t, forms a context c = (t, p),
as a particular interpretation for a specific snippet s– i.e., when c
occurs at s, or c@s, it forms an interpretation of s. Consider s1
“Paris is the capital city of France.” It has two interpretations: One
is by context c1@s1: “Paris is the capital city of France,” and the
other is by c2@s1: “Paris is the ... city of France”. With an oracle
(such as a human expert), we would be able to judge each interpre-
tation, to decide if the embedded tuple is relevant toR. E.g., for the
interpretations of s1 as just observed, our oracle would likely deter-
mine that c1@s1 is relevant to capital-city-of, while c2@s1 is not.
By checking each context occurrence, our oracle can determine the



1) QuestP: Quest Backward for Precision Inference 2) QuestR: Quest Forward for Recall Inference

P1:P(p) =
∑
ti∈τ(p) P(ti) ·

|Itip|
|Ip| R1:R(p) =

∑
ti∈τ(p)

|Itip|
|Iti |

R(ti)

P2:P(t) =

{
P0(t) if t ∈ T0;

P(t) =
∑
pi∈π(t) P(pi) ·

|Itpi |
|It| otherwise.

R2:R(t) =
∑
pi∈π(t)

|Itpi |
|Ipi |

R(pi)

Figure 4: The dual inference framework: QuestP and QuestR

set of all relevant contexts– i.e., the occurrences that form a rele-
vant interpretation. For our example, examining the entire context
space C (Eq. 1), our oracle can determine

CR = {c1@s1 : 4, c4@s3 : 2, c5@s3 : 2}. (2)

Since patterns match contexts– i.e., by combining with tuples to
form contexts– a good pattern should match more relevant contexts,
and less irrelevant ones. In other words, the purpose of a pattern is,
thus, to retrieve those relevant context in CR. We can thus measure
the quality of pattern t by its “retrieval effectiveness” for finding
CR (e.g., Eq. 2) from the entire space C (e.g., Eq. 1).

The objectives of set retrieval (from CR) naturally translates to
the need of both precisionP and recallRmetrics, as in standard IR
evaluation. Consider pattern p1, which retrieves Ip1 = {c4@s3:2}.
With respect to CR, we thus have precision P(p1) = |CR∩Ip1 |

|Ip1 |
=

2
2

= 1.0, and recall R(p1) = |CR∩Ip1 |
|CR|

= 2
4+2+2

= 0.25. As an-
other example, pattern p2 that retrieves Ip2 = {c1@s1 : 4, c5@s3 :
2, c9@s5 : 4}– suppose there are also snippets s5 reading “Mi-
lan is the fashion capital city of Italy” in addition to the running
example– will have P(p2) = 4+2

4+2+4
= 0.6 and R(p2) = 4+2

4+2+2
=

0.75. Apparently, while some patterns like p1 are more accurate
with a higher precision but a lower recall, other patterns like p2 are
broader with a higher recall but a lower precision. Hence the need
for both metrics is clear. To capture such intuitions, we formally
define the quality metrics of pattern p, ∀ p ∈ P :

P(p) = |CR ∩ Ip|/|Ip| (3)
R(p) = |CR ∩ Ip|/|CR| (4)

We can similarly define the quality metrics for tuple t, which also
instantiate a set of context It. By comparing It with CR, we state
the metrics as, ∀t ∈ T :

P(t) = |CR ∩ It|/|It| (5)
R(t) = |CR ∩ It|/|CR| (6)

Finally, these metrics also apply to each context c, ∀c ∈ C. Simply
let Ic = {c}; i.e., we view each c as retrieving itself:

P(c) = |CR ∩ Ic|/|Ic| (7)
R(c) = |CR ∩ Ic|/|CR| (8)

4.2 Inference: Random Walks
While we have the right metrics defined, we must realize them

in a probabilistic sense. For pattern search, as our problem setting
(Fig. 1), we are only given as input a few seed tuples– instead of
the completeCR. In other words, the deterministic definitions of P
andR in Eq. 3–8 require the ground-truth of relevant contexts CR.
Since we lack such a ground-truth, it is only feasible to redefine
precision and recall probabilistically.

Probabilistic Modeling. As the foundation, we must generalize
the deterministic senses of precision and recall to probabilistic def-
initions. Let’s start with patterns, and consider Eq. 3 in a statistical
way. Since the numerator is the count, or frequency, of CR ∩ Ip, it
represents the probability, when we draw a random context c, that
c ∈ CR and c ∈ Ip both hold, i.e., Pr(c ∈ CR, c ∈ Ip). Simi-
larly, the denominator represents Pr c ∈ Ip. Substituting them into

Eq. 3, we obtain the probabilistic precision of p as the conditional
probability of c ∈ CR given c ∈ Ip– i.e., the likelihood that c is rel-
evant, given that it is instantiated by p. We can similarly generalize
Eq. 4 to the probabilistic recall of p:

P(p) = Pr(c ∈ CR|c ∈ Ip) (9)
R(p) = Pr(c ∈ Ip|c ∈ CR) (10)

For tuples t ∈ T , we can generalize quite similarly:

P(t) = Pr(c ∈ CR|c ∈ It) (11)
R(t) = Pr(c ∈ It|c ∈ CR) (12)

For contexts c ∈ C, we can also rewrite Eq. 7 as P(c) = Pr(x ∈
CR|x ∈ Ic). Further, since Ic is simply {c} itself, the condition
x ∈ Ic means x = c, which simplifies the expression to just Pr(c ∈
CR). In words, the precision of cmeasures how likely c is relevant–
which is quite intuitive. We can thus generalize its P andR:

P(c) = Pr(c ∈ CR) (13)
R(c) = Pr(x = c|x ∈ CR) (14)

Probabilistic Inference. The generalized probabilistic senses of
precision and recall, while simple, forms an elegant system of in-
ference, as we will next establish. To highlight, we summarize the
results in Fig. 4, which describes the mutual inference rules P1 and
P2 for precision, as well as R1 and R2 for recall, between tuples
and patterns. The mutual inference can be derived quite simply,
through only mechanical derivation using elementary probability
theorems. We note that our general approach of probability rewrit-
ing is inspired by the QueST framework [1]. While we are ad-
dressing a distinct problem with significant differences, as Sect. 2
discussed, the probabilistic inference parallels that in [1]. We thus
name the updating framework (Fig. 4) the same as in QueST– i.e.,
QuestR for precision, and QuestP for recall.

While our derivations do not explicitly require the Context Graph,
our results can be interpreted as random walks on the graph as we
will see. We start from a tuple (or pattern), and perform random
walks to reach a pattern (or tuple). In the context graph, a context
only serves as a bridge that connects a tuple and a pattern, which
simply allows pass-throughs to reach the other “side” of the graph.

(1) Precision: The probabilistic precisions of patterns p (Eq. 9) can
be inferred from those of tuples t (Eq. 11), and vice versa, by way
of the “bridging” of contexts c (Eq. 13). We derive below.
Establish C as Bridge: To begin with, for context c, we can rewrite
P(c) as P(c.t), where c.t denote the tuple component of c, i.e., if
c = (t, p), then c.t = t. Intuitively, the precision of c is “passed
through” to that of its tuple t.

P(c) ≡1 Pr(c ∈ CR) =2 ∑
ti∈T Pr(c ∈ CR, c ∈ Iti )

=3
∑
ti∈T Pr(c ∈ CR|c ∈ Iti ) Pr(c ∈ Iti )

=4
∑
ti=c.t

Pr(c ∈ CR|c ∈ Iti ) Pr(c ∈ Iti )

=5 P(c.t) (15)

After step 1 starting with Eq. 13, step 2 breaks it into joint prob-
ability with c ∈ Iti for all ti. Step 3 expands it by Bayes’ theorem.
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Figure 5: Interpreting QuestP and QuestR as random walks
Algorithm PRDualRank (G,T0)

Input: G = (T,C, P ), the context graph.
T0 ⊂ T , seed tuples.

Output: P and T ranked by precision/recall.

1) for each t ∈ T0 do P(t)← 1;R(t)← 1
|T0|

; endfor
2) QuestP: update P till convergence by rules P1, P2;
3) QuestR: updateR till convergence by rules R1, R2;
4) return P, T ranked with P andR scores;

Figure 6: Ranking patterns and tuples by PR Duality

Step 4 simplifies the summation to only one term, since we rec-
ognize that Pr(c ∈ Iti), for a particular c, is non-zero only when
ti = c.t, since each context c has exactly one tuple t. In step 5,
since Pr(c ∈ Iti) = 1 when ti = c.t, it is removed, and the
remaining term is P(ti) (by Eq. 11), i.e., P(c.t).
Infer P by T : We rewrite P(p) with P(t), for those t that it as-
sociates with, which we denote by τ(p) ≡ {t | (t, p) ∈ C}. The
derivation leads to rule P1 in Fig. 4.

P(p) ≡1 Pr(c ∈ CR|c ∈ Ip)
=2

∑
ci∈C Pr(c ∈ CR, c = ci|c ∈ Ip)

=3
∑
ci∈Ip Pr(c ∈ CR|c = ci, c ∈ Ip) · Pr(c = ci|c ∈ Ip)

=4
∑
ci∈Ip Pr(c ∈ CR|c = ci) · Pr(c = ci|c ∈ Ip)

=5
∑
ci∈Ip Pr(ci ∈ CR) · Pr(c = ci|c ∈ Ip)

=6
∑
ci∈Ip P(ci) ·

|Ici |
|Ip|

=7
∑
ti∈τ(p) P(ti) ·

|Itip|
|Ip|

(16)

Step 2 expands with joint distributions with every ci, and step 3
uses Bayes’ theorem. Step 4 removes condition c ∈ Ip, of which
c ∈ CR is conditionally independent, given the more specific con-
dition c = ci. Step 5 then simply substitute ci for c in the first
term, resulting in the removal of the condition. Then, in step 6,
we recognize the first term as simply P(ci), while the second term
can be calculated as

|Ici |
|Ip| – i.e., the proportion of ci among the con-

texts that p instantiates. Finally, step 7 “passes through” Eq. 15 as
a “bridge” to T ; it substitutes ti for ci– since these ti instantiate ci,
and ci is also instantiated by p, it means ti ∈ τ(p).

Infer T by P : Conversely, by symmetry with the above process, we
can rewrite P(t) in terms of those p that it associates with, denoted
by π(t), i.e., rule P2 in Fig. 4. Note that the update does not apply
to seed tuples t ∈ T0. Since they are “labeled” examples, they
maintain their given values P0(t) assigned initially.

(2) Recall: In parallel to the derivation for precision, the proba-
bilistic recall of patterns p (Eq. 10) can be inferred from those of
tuples t (Eq. 12), and vice versa, again through the “bridging” of
contexts c (Eq. 14). For brevity, we omit the derivation, which leads
to rules R1 and R2 in Fig. 4.

Interpretation. The resulting inference framework, QuestP for
precision and QuestR for recall, exhibits rather interesting duality–
they are symmetric and opposite to each other. Similar to what
the original QueST framework [1] has observed, the inference can
be interpreted as random walks on the Context Graph. However,

c7

p3

c3

c2

c1

t6

t4

t1

p1

p2

p4

t2

t
…

t3

...

t5

capital-city-of (seed)

t2 = (Ottawa, Canada)

largest-city-of

t3 = (Toronto, Canada)

t4 = (Shanghai, China)

sister-city-of

t5 = (Ottawa, South Korea)

t6 = (Berlin, Japan)

c6

c8

c4

c5

...

...

p…

c…

...
...

Nodes/edges in solid lines are 
materialized (sampled).

c9
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unlike the interpretation in [1], the random walk exists over the
network between T and P– and C is only a “pass-through.”

QuestP is a random walk backward as depicted in Fig. 5(a), i.e.,
starting from p, what is the probability that we reach the hidden
origin R? It is consistent with probabilistic precision of p, which is
the proportion of tuples associated with p that will reach R.

QuestR is a random walk forward as depicted in Fig. 5(b), i.e.,
starting from some tuple hidden in R, what is the probability that
we reach p? It is consistent with probabilistic recall of p, which is
the proportion of tuples in the hidden R that will reach p.

Overall Framework: PRDualRank. We now introduce the over-
all framework called PRDualRank to rank both tuples and patterns
by precision as well as recall. We outline the framework in Fig. 6.
Given the seed tuples and the Context Graph, we first initialize pre-
cision and recall for tuples (line 1). Next, we invoke QuestP to
update the precision of tuples and patterns iteratively until conver-
gence (line 2). QuestR is similarly invoked to update the recall (line
3). The convergence property has been discussed elsewhere (e.g.,
in [1]). Finally, ranked tuples and patterns are outputted (line 4).

Key Principle: PR Duality. As a concluding remark, the con-
ceptual model PRDualRank not only exemplifies the original PR
Duality in [6], but also formally quantifies and thus “rediscovers”
it (as first stated in Sect. 1): both precision and recall of a pattern
can be expressed in terms of its associated tuples, by rule P1 and
R1 in Fig. 4. In duality, the quality of a tuple can be expressed in
terms of its associated patterns, by rule P2 and R2.

5. CONCRETE FRAMEWORK
Suppose the conceptual model can be represented by the tripar-

tite graph in Fig. 7, which is extended from the example graph in
Fig. 3. Tuples t1, . . . , t3, patterns p1, . . . , p4 and context c1, . . . , c8
are from the running example. For now ignore the solid/dashed
lines. Starting only with a few seed tuples (e.g., t2), we lack the
complete space of tuples, patterns, as well as the contexts that
bridge them. Thus it is difficult to use the conceptual model di-
rectly. Instead, we resort to partial materialization. E.g., in Fig. 7
a partial graph is constructed which only includes solid nodes and
edges. In this example only the extraction patterns are shown; a
similar graph can be constructed for the search patterns. Thus the
challenge lies in devising a good sampling process that partially
materializes the conceptual model.

We next describe the guiding principles for the sampling pro-
cess. Subsequently we present the solutions to the dual problems
of pattern search and tuple extraction.



5.1 Guiding Principles
Before establishing any guidelines, it is worth noting that a tu-

ple may have multiple senses. E.g., (Paris, France) satisfies both
capital-city-of and largest-city-of. Consider a tuple t that satisfies
relations R1, . . . , Rn. Assign each context c ∈ It to multisets
It,R1 , . . . , It,Rn , such that c ∈ It,Ri iff c is relevant toRi. In other
words, the contexts in the same multiset reflect the same relation.

First of all, we must capture all “relevant” patterns that instan-
tiate relevant context(s). E.g., in Fig. 7 it is necessary to sample
relevant patterns p1, p2, while it is acceptable to miss the irrelevant
p3. We assert that this can be achieved on a perfect corpus.

Assertion 1 (Perfect Corpus): A perfect corpus is complete and
balanced, such that contexts relevant to R would be identically dis-
tributed for every tuple in R. Specifically, given any tuple t and
t′ that are in R, there exists a one-one correspondence on It,R
and It′,R (we denote It,R ⇔ It′,R), such that c ∈ It,R maps to
c′ ∈ It′,R if c and c′ are both instantiated by the same pattern.

Intuitively, for a relation R, a perfect corpus would contain snip-
pets that express each tuple of R in every possible way. Thus,
all relevant patterns can be sampled by examining the contexts in-
stantiated by any tuple of R. This intuition is formally stated as
Lemma 1. Its proof is trivial and thus omitted.

Lemma 1: Assume a perfect corpus. Given a pattern p, if Ip ∩
CR 6= ∅, then for any tuple t in R, there exists a context (t, p).

After sampling all relevant patterns, it is also important to cap-
ture tuples of different relations. As illustrated in Fig. 7, t2, . . . , t6
satisfy three different relations on Ω(#city) and Ω(#country). Intu-
itively, if all of these relations are sampled, it helps to better distin-
guish target tuples from the rest, similar to the building of a classi-
fier which requires both positive and negative (or at least unlabeled)
examples. Ideally at least one from t3, t4 and one of t5, t6 should
be sampled, given the seed t2. The sampled tuples are our unla-
beled examples. Here, in terms of their relation, t3 is equivalent to
t4, and so is t5 to t6. Formally, two tuples t, t′ are equivalent iff
they satisfy exactly the same relations (denoted t:t′). The tuple
space T can be partitioned into equivalence classes consisting of
equivalent tuples. We denote the equivalence classes T1, . . . , Tm,
i.e., T = ∪mk=1Tk. We assert a perfect sampling process which
in theory ranks patterns by precision and recall the same as full
materialization does (shown in Lemma 2).

Assertion 2 (Perfect sampling): In perfect sampling, the same pro-
portion (say ρ) of tuples are sampled from each equivalence class.
Let TS = ∪mk=1T

S
k ⊆ T denote the sampled subspace of tuples,

where TSk ⊆ Tk and |TSk | = ρ|Tk|. Similarly, let ISp = {(tS , p) ∈
Ip|tS ∈ TS} ⊆ Ip. Note that |ISp | = ρ|Ip|.

Lemma 2: With perfect sampling,P(p) =
∑
ti∈τ(p) P(ti)·

|Itip|
|Ip|

(Eq. 16) =
∑
ti∈τ(p)∩TS P(ti) ·

|Itip|
|ISp |

. R(p) has a similar result.

PROOF: Suppose t:t′, then It ⇔ It′ → P(t) = P(t′). Thus,∑
ti∈τ(p) P(ti) ·

|Itip|
|Ip|

=
∑
k

(∑
ti∈τ(p)∩Tk

P(ti) ·
|Itip|
|Ip|

)
=
∑
k(

ρ
∑
ti∈τ(p)∩Tk

P(ti)·
|Itip|
ρ|Ip|

)
=
∑
k

(∑
ti∈τ(p)∩TS

k
P(ti)·

|Itip|
|ISp |

)
=
∑
ti∈τ(p)∩TS P(ti) ·

|Itip|
|ISp |

. A similar proof forR(p) exists.

Lemma 2 implies that it is important to sample tuples of different
relations in a similar distribution as all tuples, whereas the specific
attributes of the sample tuples does not matter (i.e., for two tuples
t:t′, it makes no difference to sample either of them).
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Figure 8: Snapshots of dual partial materialization

For Assertion 1, the Web is well suited as it is a reasonable ap-
proximation of the perfect corpus. Thus the remaining challenge is
to design a partial materialization approach which fairly approxi-
mates the perfect sampling in Assertion 2, as we shall see next.

5.2 Pattern Search
As discussed, we need to partially construct the inference graphs

starting only with the seeds– we introduce the dual partial mate-
rialization approach. In addition to the seed tuples, this approach
requires a search engine S that interfaces with D. For the Web,
general purpose keyword-based search engines are sufficient.

PR Duality implies that a tuple can be used to discover more pat-
terns and vice versa. We illustrate key steps of this approach using
snapshots in Fig. 8. Starting with the seed t2 = (Ottawa, Canada),
First, we query S with both attributes of t2 (i.e., Ottawa+Canada)
to retrieveKseed documents containing t2 inD. From the retrieved
documents, patterns associated with t2 are found, namely p1, p2, p4
(bolded in Fig. 8(a)). This conforms to Lemma 1, as all relevant
patterns are sampled (p3 is irrelevant).

Next, we query S with each attribute of the seeds (i.e., query with
e1 and e2 separately), and apply the newly found extraction patterns
to sample unlabeled tuples, namely t3 and t5 (bolded in Fig. 8(b)).
Querying with attributes of the seeds allows efficient discovery of
unlabeled tuples, as it is unscalable to scan through the entire Web.
Note that search patterns are not used for this purpose, as they are
not yet ranked, thus it would be inefficient to use all of them than to
use only the attributes of the seeds. Although t3 and t5 both share
an attribute with the seed t2, we stress that the sampling is fair in
the sense that different relations are still captured. In particular, t3
satisfies the relation largest-city-of, so does t4. Thus it makes no
difference in sampling either of them. Similarly, t5, t6 satisfy the
same relation sister-city-of. This is in line with Lemma 2, which
suggests that it only matters to sample different relations, whereas
the specific attributes of the sampled tuples are unimportant.

Finally, after sampling patterns and tuples, the tripartite graph
can be partially constructed by connecting tuples and patterns via
contexts, as shown in Fig. 8(c). The constructed graphs, one for
search patterns and one for extraction patterns, subsequently enable
PRDualRank to rank the patterns found.

The above description is formally outlined by the algorithm shown
in Fig. 9, where line 1–5 correspond to snapshot (a) in Fig. 8, line
6–10 correspond to (b), and line 11–13 correspond to (c).

The outputs are a list of search patterns and a second list of ex-
traction patterns. Each list is ranked with precision as well as recall,
both normalized to [0,1], which enables us to rank the patterns by
F -scores, the harmonic mean of precision and recall. Given As-
sertion 1, such learnt patterns are fairly complete, and thus can be
reused on other corpora, in particular, the constantly evolving Web.

5.3 Tuple Extraction
The ultimate goal of the patterns is to find more tuples ofR from

D. E.g., t1 = (Paris, France) in Fig. 7 is not materialized, and we



Algorithm PatternSearch (T0, S, E)

Input: T0, the set of seed tuples.
S, the search engine for D.
E, the extractor.

Output: ranked search & extraction patterns.

1) Ps ← ∅; Pe ← ∅; U ← ∅;
2) for each t = (e1, e2) ∈ T0 do
3) D′ ← S.Query(e1 + e2,Kseed);
4) Ps ← Ps∪{search patterns found in D′};
5) Pe ← Pe∪{extraction patterns found in D′};

endfor
6) for each t = (e1, e2) ∈ T0 do
7) for each ei do
8) D′ ← S.Query(ei,Kseed);
9) U ← U∪{tuples with attribute ei ∈ E.Extract(D′, Pe)};

endfor
endfor

10)T ← {top frequent Knolabel tuples ∈ U} ∪T0;
11)D′ ← ∅;
12) for each t = (e1, e2) ∈ T do D′ ← D′ ∪ S.Query(e1+e2,Kseed);
13) build graphs Gs = (T,Cs, Ps) and Ge = (T,Ce, Pe) based on D′;
14)Ps ← PRDualRank(Gs, T0); Pe ← PRDualRank(Ge, T0);
15) return Ps, Pe;

Figure 9: Sketch of pattern search

aim to find it out by utilizing the learnt patterns (p1, p2, p4). By the
perfect sampling process described in Assertion 1 and 2, all tuples
of R can be found using the patterns learnt.

The learnt patterns consist of two classes, the search patterns
and the extraction patterns, for different purposes. For now, we
only select top patterns in F -score to achieve a balance between
precision and recall. We will study the effect of using precision or
recall based patterns by experiments in Sect. 6.3.

Each of the top Kwidth search patterns (search width) is used
to retrieve Kdepth documents (search depth) that may contain in-
stance tuples. Based on our experiments, any single word is un-
likely to be focused enough on the Web, thus we additionally re-
quire the selected search patterns to contain at least two words.

Next, top Kext extraction patterns are applied on the retrieved
documents to extract candidate tuples. We also ignore extraction
patterns of precision lower than 0.5, which tend to be too noisy.

Finally, we rank the candidate tuples using topKcand documents
containing each candidate. A candidate t is more likely to satisfyR
if t instantiates more relevant contexts (captured by its recall), and
instantiates a smaller fraction of irrelevant contexts in It (captured
by its precision). Thus, we consider the F -score in ranking can-
didates. The score can be computed from search patterns, extrac-
tion patterns, or combined from both. We will discuss the different
ranking schemes in the experiments.

The above description is sketched by the algorithm in Fig. 10. It
has three major components: document retrieval by search patterns
(line 1–4), tuple extraction by extraction patterns (line 5–6), and
candidate ranking (line 7–9).

6. EXPERIMENTS
We showcase our experimental evaluation of PRDualRank on

the real Web across different relations. Overall, the experiments
demonstrate that PRDualRank significantly outperforms the base-
line in both effectiveness and efficiency.

6.1 Experiment Setting
Corpus. We used the real World Wide Web (D), coupled with
Yahoo API1 as the search engine (S).
1http://developer.yahoo.com/search/boss/

Algorithm TupleExtraction (Ps, Pe, S, E)

Input: Ps, the set of ranked search patterns.
Pe, the set of ranked extraction patterns.
S, the search engine for D.
E, the extractor.

Output: a list of tuples ranked by F -score.

1) Ps ← {top Kwidth patterns by F1 ∈ Ps};
2) Dsearch ← ∅;
3) for each p ∈ Ps do
4) Dsch ← Dsch ∪ S.Query(p,Kdepth);

endfor
5) Pe ← {top Kext patterns by F1 ∈ Pe};
6) Cand← E.Extract(Dsch, Pe);
7) for each t = (e1, e2) ∈ Cand do
8) D′ ← S.Query(e1+e2,Kcand);
9) compute P(t) andR(t) and derive its F -score based on D′;

endfor
10) return Cand;

Figure 10: Sketch of tuple extraction

Table 1: Target relations
Relation Description Relationship

birth Birth year of Nobel prize laureates in physics one-many
capital Capital city of countries one-one

area-code Area code(s) of largest 100 U.S. cities many-many

Target Relations. Table 1 shows the target relations we used,
which are chosen for their different relationship types (i.e., one-
one, one-many and many-many). We report the overall perfor-
mance for all the relations. For finer grained experiments, we only
report the results for the capital relation, as we observe similar
trends on other relations.

Entity Tagging. We used a dictionary-based approach to recognize
entities involved in the target relations. E.g., for the relation capital,
we manually prepared a dictionary of all countries in the world,
as well as a dictionary of cities using sources like Wikipedia. The
same tagging approach is used in PRDualRank and the baseline.

Baseline (QXtract&Snowball, or Q&S). This is the state-of-the-
art scalable tuple extraction system for our problem scenario using
only a few seed tuples, which lack a principled framework of qual-
ity metrics. It is a two-phased system. In the first phase, QXtract
[4] finds search queries based on seeds and an extraction system
like Snowball [3]. The search queries are then used to retrieve doc-
uments as a preprocessing step to allow scalable tuple extraction.
In the second phase, Snowball extracts tuples from the documents
retrieved. For fairness, we used the same number of documents
in learning the queries by QXtract and in ranking the patterns by
PRDualRank as well as the same number of queries in QXtract as
search patterns in PRDualRank to retrieve the same number of doc-
uments from the Web. For other parameters in Q&S, we follow the
settings outlined in [4, 3].

Schemes. We also compare the performance of three different
schemes of PRDualRank. These schemes only differ in ranking
candidate tuples. They are: (i) Dual-Sch, ranking candidates by
using search patterns only; (ii) Dual-Ext, ranking by extraction
patterns only; (iii) Dual-Combine, which simply takes the average
score from both classes of patterns.

Evaluation methodology. Since directly judging the quality of
patterns is highly subjective, we resorted to an indirect way which
judges the patterns based on the extracted tuples. PRDualRank out-
puts a ranked list of n tuples. We compare top N tuples from
the output with the ground-truth tuples of the target relation. The
ground-truth tuples are manually prepared and verified. For each



Table 2: Comparison of optimal F -scores
Relation Dual-Combine Dual-Sch Dual-Ext Q&S

birth 0.799 0.748 0.796 0.485
capital 0.552 0.537 0.571 0.398

area-code 0.859 0.824 0.853 0.651

N = 1, . . . , n, we evaluate the precision and recall of the set of
top N tuples with respect to the ground-truth, and present the re-
sult in a precision against recall plot. The different schemes of
PRDualRank and the baseline are evaluated in the same manner.

Additionally, there are web pages with a list of ground-truth tu-
ples on the Web. E.g., for capital, there is a list of capitals for every
country on about.com2. However, we cannot assume such a list ex-
ists for any arbitrary relation, thus we should not take advantage
of them. For fairness, we treat a web page as a list if it contains
more than 10% of all the ground-truth tuples, which is simply dis-
regarded during the tuple extraction phase of every method.

Parameter settings. We discuss the parameters used in dual par-
tial materialization. The larger Kseed (number of documents re-
trieved for each tuple) and Knolabel (number of unlabeled tuples),
the more effective pattern learning as it is closer to the perfect cor-
pus in Assertion 1. In practice, as long as they are sufficiently large,
the results will be fairly stable and insensitive to their values. Thus
we set Kseed = 500 and Knolabel ten times the number of seeds.
On the other hand Kcand (number of documents retrieved for each
candidate) can be smaller. We set Kcand = 50, which is large
enough to achieve stable ranking of the candidates. Finally, for all
experiments, we only used three seeds as user input. Despite the
small number of seeds, good performance can be achieved.

For parameters Kwidth,Kdepth and Kext, we varied them to
study their effects on tuple extraction. Otherwise, they are set to
default values Kwidth = Kext = 120, and Kdepth = 700.

6.2 Overall Performance
Effectiveness. Following the evaluation methodology outlined in
Sect. 6.1, the effectiveness of PRDualRank and the baseline is pre-
sented as precision against recall plots in Fig. 11.

Observe that all schemes of PRDualRank significantly outper-
form Q&S (brown color or “4”) on all relations. In particular, Dual-
Sch (blue color or “3”) which only uses search patterns to rank the
tuple, is clearly better than Q&S. This implies that our search pat-
terns are good as it not only retrieves the relevant documents, but
also ranks tuples, outperforming the combined effort of Q&S. On
the other hand, Dual-Ext (green color or “2”) is even better, sim-
ply because extraction patterns are more tightly coupled with tuples
than search patterns. This indicates that the extraction patterns have
also performed well in extracting the tuples. Lastly, Dual-Combine
(red color or “1”) makes use of scores from both classes of patterns.
Not surprisingly, this combined approach achieves comparable re-
sults as Dual-Ext (and marginally better than Dual-Ext on birth).
This implies that we can potentially exploit different classes of pat-
terns for optimal ranking, in case that we have no prior information
on which class of patterns is the best choice. However a discussion
on this issue is beyond the scope of this paper, and we plan to study
it as part of our future work.

We also report the optimal F -score achieved by each method in
Table 2, which reconfirms the performance comparison. In partic-
ular, we improved the optimal F -score by a factor up to 1.64.

It is worth noting that the performance of all methods on capital
is worse than the other two relations. The reason is that there can

2http://geography.about.com/od/countryinformation/a/capitals.htm

Table 3: Comparison of execution time (in sec)
Relation Dual- Dual- Q&S Q&S

Combine-I Combine-II (total) -I -II (total)
birth 247 2474 2721 6124 25208 31332

capital 2580 2639 5219 13664 10020 23684
area-code 384 3243 3627 11093 8708 19801
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Figure 12: Using top K patterns by precision or by recall

be many different relations on Ω(#city) and Ω(#country). Even the
seeds themselves are inherently ambiguous, e.g., they also satisfy
the city-of relation.

Efficiency. To study the scalability of our approach, we present
the execution time required for PRDualRank and Q&S. For differ-
ent ranking schemes of PRDualRank, Dual-Combine is the slowest.
The other two schemes are slightly faster, so we only show the time
of Dual-Combine. Both methods are two-phased but in different
senses. For PRDualRank Phase I is pattern search and Phase II is
tuple extraction. For Q&S, Phase I is the preprocessing step of re-
trieving relevant documents, and Phase II is tuple extraction. The
time for each method is presented in Table 3. They do not include
the time needed to download web pages, but include the I/O time in
accessing the downloaded local copies. The experiments show that
PRDualRank is one order of magnitude faster than Q&S on all three
relations. In particular, the pattern search phase of PRDualRank is
fast enough to make offline suggestions to DoCQS [17] for content
queries. On the other hand, Q&S is slow attributed to the repeated
scanning of the documents in each iteration of tuple extraction.

6.3 Precision and Recall
In this experiment, we demonstrate the validity of our metrics–

precision and recall. Previously we used a number of top patterns
(of both classes) by F -score to achieve a balance between the two
metrics. We now compare two other cases on the capital relation:
(i) using top K patterns by precision; (ii) using top K patterns by
recall. No other changes are involved. With respect to the ground-
truth tuples, we compute the precision and recall of the tuples that
are extracted using top K patterns by precision for case (i), or by
recall for case (ii). The results are presented in Fig. 12 for different
values of K. Specifically, Fig. 12(a) compares the precision of
the extracted tuples in both cases, whereas Fig. 12(b) compares the
recall of the extracted tuples in both cases.

It is not surprising that using top patterns by precision results in
better precision of the extracted tuples, as shown in Fig. 12(a). Sim-
ilarly, it is expected that using top patterns by recall captures more
correct tuples, i.e., achieves better recall, as illustrated in Fig. 12(b).
This experiment shows that our proposed precision and recall are
valid metrics for patterns that “work as intended.”

6.4 Effects of Parameters
Lastly, we experiment on the effects of the parameters Kwidth,

Kdepth and Kext for the capital relation, which are shown Fig. 13.
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Figure 11: Comparison of PRDualRank and the baseline
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Figure 13: Effects of parameters

We vary each parameter while assigning the other two their respec-
tive default values (as in Sect. 6.1). Specifically, the number of
correct and incorrect tuples are counted when tuning each parame-
ter. The results clearly demonstrate that the number of correct tu-
ples extracted would converge when the parameters are sufficiently
large. Hence, our approach is not sensitive to these parameters as
long as they are reasonably large (e.g., the default values).

7. CONCLUSION
In this paper, we discussed the dual problems of pattern search

and tuple extraction, while stressing reusable patterns and scalable
tuple extraction. To solve the problems in a principled way, we
formally “rediscovered” PR Duality through the conceptual model
PRDualRank with the metrics of precision and recall for both tuples
and patterns, as well as developed a concrete framework to achieve
a fairly good approximation of the conceptual model. Last but not
the least, we evaluated the framework over the Web, which shows
that such a principled approach greatly outperforms the previous
state-of-the-art system on all three target relations.
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