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Graph Neural Networks (GNNs) have become the de facto standard for representation
learning on topological graphs, which usually derive effective node representations via
message passing from neighborhoods. Although GNNs have achieved great success, pre-
vious models are mostly confined to static and homogeneous graphs. However, there
are multiple dynamic interactions between different-typed nodes in real-world scenar-
ios like academic networks and e-commerce platforms, forming temporal heterogeneous
graphs (THGs). Limited work has been done for representation learning on THGs and
the challenges are in two aspects. First, there are abundant dynamic semantics between
nodes while traditional techniques like meta-paths can only capture static relevance.
Second, different semantics on THGs are often mutually evolved with each other over
time, making it more difficult than dynamic homogeneous graph modeling. To address
this problem, here we propose the Dynamic Meta-path guided temporal heterogeneous
Graph Neural Networks (DyMGNN). To handle the dynamic semantics, we introduce
the concept of dynamic meta-path which is a common base for temporal semantic search
engines, and then adopt the temporal importance sampling to extract neighborhoods
with temporal bias. Focusing on mutual evolution, we design the heterogeneous mutual
evolution attention mechanism, which can model the fine-grained interplay of semantic-
level preferences for each node. Extensive experiments on three real-world datasets for
node classification and temporal link prediction demonstrate that our method consis-
tently outperforms state-of-the-art alternatives.

Keywords: Temporal heterogeneous graph; graph neural network; dynamic meta-path;
temporal importance sampling; heterogeneous mutual evolution attention
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1. Introduction

Graphs, such as social networks, e-commerce platforms, and academic graphs, occur
naturally in various real-world applications. Graph representation learning, whose
goal is to encode high-dimensional non-Euclidean structures into low-dimensional
vector space, has shown great popularity in tackling graph analytic problemst5%34|
Recently, graph neural networks (GNNs) have profoundly boosted the field of graph
representation learning, for their ability to recursively aggregate information from
neighborhoods, naturally capturing topological structures and features 2141502

However, current GNNs usually assume that graphs are static and homogeneous
with same-typed nodes and relations, while in real-world scenarios, nodes are gen-
erally associated with different types and dynamically interact with each other in
various ways. As shown in Figure 1| (a), there are three types of nodes including
authors (A), papers (P), and conferences (C) as well as two kinds of interactions,
namely “write” (AP) and “publish” (PC) on an academic graph. Moreover, all
timestamps of interactions are recorded as well. These compositions form a typi-
cal temporal heterogeneous graph (THG) and contain complex evolution and rich
semantics®®3, For example, author A contains multiple relations to others like
cooperation with A; and co-attendance with Ay4, indicating different semantics. Be-
sides, A; co-operates with Ao and As at different times, implying his / her evolving
research interest.

Obviously, it is promising and necessary to integrate both semantic and dy-
namic modeling into GNNs to deal with the problem of representation learning on
THGs. On the one line, focusing on semantic modeling, the recursive neighborhood
aggregation in GNNs has been expanded into heterogeneous message passing in re-
cent works2H18:42:0458 Nany of existing heterogeneous GNNs often follow a two-step
paradigm: 1) sample neighbors via multiple meta-paths, and 2) hierarchically aggre-
gate and fuse information of the sampled neighbors, so as to preserve the semantics.
For instance, by designing several meta-paths®? like P; and P, in Figure b) to
capture semantics, it is general to respectively gather information from each type
of co-attendees (e.g., A; and A3) and co-authors (e.g., A;, Az and A4) to construct
representation of node As. However, these works mostly deal with static structures
composited with unvarying relations while neglecting the useful temporal informa-
tion that exists in most applications. On the other line, dynamic GNNs2830 have
been proposed to exploit the temporal information on graphs. One of the classical
paradigms is to divide the global graph into several independent snapshots®?34 to
capture the evolution of snapshot-level node representations. However, such a design
of dynamic GNNs is not suitable for modeling heterogeneous graphs with dynamic
interactions because of neglecting the rich semantics. In a world, representation
learning on THGs has to face the two following essential challenges.

First, how to model the dynamic semantics on THGs? Meta-paths used in het-
erogeneous GNNs are in the form of a sequence of multiple static relations. When
dealing with THGs, semantic modeling via static meta-paths has to suffer from the
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Fig. 1: The toy examples of THGs and the comparison of meta-paths and dynamic
meta-paths. (a) is the temporal heterogeneous graph consisting of authors, papers
and conferences as well as their dynamic interactions. (b) and (c) respectively show-
case the static meta-paths and heterogeneous neighborhoods while (d) and (e) are
the corresponding dynamic ones taking temporal bias into consideration.

paradox that current objects can be influenced by future interactions. As shown
in Fig[[{b) and (c), based on the meta-path P, (i.e., APCPA to describe the “co-
attend” of authors), A4 who was actually unknown to As before 2009, is still as-
signed into the neighborhoods the temporal dimension is ignored. Moreover, all
neighbors with different timestamps are treated the same on static meta-paths,
while the latest interacted neighborhoods indeed influence more than historical ones.
In other words, traditional meta-path-guided random sampling is likely to extract
noisy neighbors rather than temporal representative ones, leading to the limita-
tion in neighborhood aggregation. Some other techniques like meta structure® and
meta graph® are also unsuitable for dynamic semantic modeling due to the same
shortcomings.

Second, how to model the mutual evolution of semantics? To derive the evolving
representation of nodes, a general idea/26#4549551 §
several snapshots and then adopt RNNs to capture the evolution of nodes among
different snapshots. However, such designs would introduce two major limitations.
On the one hand, traditional hard division of snapshots cannot preserve the se-
mantics of nodes between adjacent snapshots, while dynamic interactions on THGs
are continuously accumulated. On the other hand, such designs can only model the
dynamics of global structures while different semantics of nodes usually mutually

is to split heterogeneous graphs into

evolve with each other. For instance, historical co-authorship (A-P-A) and research
interest (A-P-C-P-A) of authors could mutually influence their future co-authorship
in different levels, namely the multiple semantic-level evolution. It is challenging to
model the complex evolution for a more effective representation of learning of THGs.

Hinged on the above insights, in this paper, we put forward the Dynamic Meta-
path Guided temporal heterogeneous Graph Neural Networks (DyMGNN), to
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effectively learn node representations on THGs. To handle the challenge of dynamic
semantic modeling, we first propose dynamic meta-paths to extract the correlations
between nodes considering temporal bias. With the assumption that recent neigh-
bors are likely to influence more than historical ones to target nodes, we then pro-
pose the dynamic meta-path guided temporal importance sampling to sample more
representative neighbors for each node. To overcome the challenge of semantic-level
mutual evolution, we encode semantic-level node representations with temporal het-
erogeneous neighborhood aggregation of each dynamic meta-path of each node-wise
soft snapshots (rather than hard global divisions), and further model the evolution
of nodes via the heterogeneous mutual evolution attention which captures the evo-
lution of both temporal and semantic levels. Finally, we test our DyMGNN on two
academic graphs (i.e., DBLP and Aminer) and the Yelp business graph for node
classification and link prediction, and do the key factors analysis to discuss the
effectiveness and efficiency of our designs.
In summary, the contributions of this work are shown as follows.

e To the best of our knowledge, we are the first to model the dynamics of
semantics for temporal heterogeneous graph representation learning. While
existing methods mainly treat heterogeneous and temporal information in-
dependently, DyMGNN fully integrates both the dynamics and semantics
together to ensure effective representation learning on THGs.

e We propose the novel DyMGNN which not only designs the dynamic meta-
paths and temporal importance sampling to model multiple dynamic se-
mantics but also integrates with heterogeneous mutual evolution attention
to model the evolution among different semantics on THGs.

e We perform extensive experiments on three real-world datasets, includ-
ing Aminer, DBLP, and a subset of Yelp business dataset. We compare
DyMGNN against the various baselines, and the experimental results show
that our model consistently outperforms the state of the arts.

2. Related work

In this section, we summarize the related work including heterogeneous graph neu-
ral networks, dynamic graph representation learning, and temporal heterogeneous
graph representation learning.

2.1. Heterogeneous graph neural networks

Graph neural networks (GNNs)#4 aiming to extend the deep neural networks to
deal with graph-structured data, have been widely used for representation learning
on graphst #2830 Kipf et al®! have proposed the Graph Convolutional Networks
(GCN) via a localized first-order approximation of spectral graph convolutions.
Hamilton et al1Y further extend the convolutional model to an inductive setting
via recursive neighborhood aggregation. The powerful technique of recursive neigh-
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borhood aggregation has been commonly used in graph neural networks. Besides,
an attention mechanism has been introduced in GNNs to help more effective mes-
sage passing®. However, current GNNs are often confined to homogeneous graphs,

failing to preserve the abundant semantics when dealing with real-world graphs

1538

where nodes and edges are heterogeneous™°. To keep the semantics as much as

L6E37E39) are proposed to model such complex data.

2044741 3414536454

possible, heterogeneous graphs
Recently, heterogeneous graph neural networks have become popular
for representation learning on heterogeneous graphs. The earlier Esmi®" extracts
various semantics between nodes by using multiple meta-paths®?, and adopts fac-
torization machines to learn node representations. Metapath2vec? and HIN2vec™”
focus on sampling sequences with meta-paths and input them into a heterogeneous
skip-gram model or a neural network to generate node representations. However,
these methods typically utilize local structures in an unsupervised manner where
the available task supervision cannot be utilized. Recently, Wang et al.%% and Hu et
al™¥ propose the heterogeneous attention mechanisms to learn the weight of differ-
ent meta-path based information in a semi-supervised manner. Cen et al.? and Hu
et al™ propose to aggregate information from meta-relations. However, most of the
current methods focus on static heterogeneous graphs, failing to deal with temporal
heterogeneous graphs where neighbors are changing and nodes are evolving over
time.

2.2. Dynamic graph representation learning

There has been significant research in representation learning on dynamic graphs

(or called temporal networks) in the past decadet#29#30k32533235

. Taking the temporal
bias into consideration, CTDNEBLRU samples sequences via temporal random walks
on homogeneous graphs, and then generate node representations with skip-grams.
DANE®22 gplits a graph into several snapshots and learns node embeddings based
on matrix perturbation theory. However, these methods are unsupervised, failing
to leverage task-specific supervision. Recent works prefer to expand classical GNNs
to the temporal settings via snapshots. DynGEM® utilizes deep auto-encoders be-
tween different snapshots to keep the structures. Manessi et al.?? attempt to com-
bine LSTMs and GCNs to model the evolution of nodes and graphs. EvolveGCN=2
further models the evolution of GCN-based parameters among different snapshots.
While most of these works utilize sequential snapshots to describe evolving struc-
tures, the temporal information and dependence of historical correlations are ne-
glected. Inspired by the Transformers®’, Xu et al2Y theoretically design the tem-
poral function which can map continuous timestamps as the temporal vectors, and
then generate evolving representations of nodes based on multi-head attentions. Lu
et al?% design the temporal point process-based M?DNE to model the time decay
effects of past events on current events. However, when dealing with THGs, these
methods cannot accurately extract the dynamic semantics and mutual evolution of
multiple interactions.
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2.3. Temporal heterogeneous graph representation learning

Most recently, aware of the rich temporal information on real-world heterogeneous
graphs, researchers have attempted to introduce typical techniques of dynamic mod-
eling into heterogeneous GNNs. DHNE®Y integrates Metapath2vec® with a temporal
random walk on meta-paths from now to historical objects. HGT4 treats dynamics
as extra information and aggregates both encoded temporal vectors and neighbor-
hood attributes for target node representation. Focusing on sequential information,

some researchers 1277

propose to respectively split temporal interactions into
long-term and short-term information to construct preferences of nodes for recom-
mendation on e-commerce platforms. REGNN 29 constructs several heterogeneous
sessions rather than traditional objects as events to learn the sequential evolution.
Moreover, to capture the fine-grained evolution of structures, a general solution is to
split the whole graph into several snapshots and then model the dynamics between
different snapshots. DyHNE#3 and DyHATR%® respectively utilize Matrix Pertur-
bation Theory and attention mechanism to capture the changes of snapshot-based
similarities. HTGNN“4 models both spatial structures and temporal evolution pat-
terns together. More recently, DHGAS®% attempts to introduce neural architecture
search to search the efficient message passing. However, all these methods can only
model the evolution of structures but fail to model and utilize the high-level dynamic
semantics of graphs. The characteristics of related methods are listed in Table
Thus, we consider this work is valuable and meaningful.

3. Preliminaries

In this section, we introduce related concepts including heterogeneous graph, meta-
path, temporal heterogeneous graph, and the designed dynamic meta-path. The
main notations are summarized in Table 2

Definition 1. Heterogeneous Graph: A heterogeneous graph is Gyete = (V, E)
where V denotes the set of nodes, £ denotes the set of edges. It also contains a node
type mapping function ¢ : V — A to label the type of each node, and an edge type
mapping function 1 : &€ — R to label the type of each edge. A is the set of node
types while R represents the set of edge types. Notice that |R| + |A| > 2.

Definition 2. Meta-path: A meta-path P : A, Ra, Ao Ry Ry Aj+1 repre-
sents the connection from the source node of type A; to the target node of type
A;+1 based on the composite relation R = RjoRgo0---0R;.

As shown in Figure (a), the academic graph contains three types of nodes (i.e.,
A = {A, P, C}) and two types of relations (i.e., R = {AP, PC}). In Figure [I(b),
P1 and P, are designed to respectively capture the “co-author” and “co-publish”
semantics of nodes, and the semantic-level neighbors are extracted in Figure c).
However, traditional heterogeneous graphs mainly describe static structures while
objects on real-world graphs are often dynamically interacted. Besides, the classical
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Table 1: The characteristics of related methods.

Method Inductive Heterogeneous Dynamic Snapshot Soft-snapshot

GCN X X X X
GraphSAGE
CTDNE
DANE
EvolveGCN
DGNN
DynGEM
TGAT
M2DNE
Esmi
Metapath2vec
HIN2Vec
HAN
HGAT
GATNE
HGT
DyHNE
DyHATR
HTGNN
DHGAS
DyMGNN

NN AX X AAX X X X X ANNSNAX X X NS
CALULCUAUX X X X X X SN N NS X
NN SNANAX XX X X X X SNSNAX SN XX
WX X X X X X X X X X X X X X X X X X X

ANANNAANANARARNARANASANSRNAX X X XX X X X

meta-paths are unable to capture the actual connections. To fully preserve the
temporal information, we introduce the concepts of temporal heterogeneous graph
and dynamic meta-path as follows.

Definition 3. Temporal Heterogeneous Graph (THG): A temporal hetero-
geneous graph is G = (V, &, X) where X' denotes the attributes of nodes and Er
denotes the temporal edges. Besides type mapping functions ¢ and 1, the time map-
ping function 7 : & — Ry is to record the timestamp of edges. Notice that the
timestamps of static edges are set as 0, and different-typed nodes contain different

attributes.

‘s . . Rq,
Definition 4. Dynamic meta-path: A dynamic meta-path P : A; 1—T>
Ao R, BT A1 is to describe the dynamic semantic from type-.A; nodes

to type-A;+1 nodes. The time mapping function 7 is to label dynamic relations,
and the dynamic meta-paths with no 7 degenerate into the traditional meta-path.
Furthermore, given a dynamic meta-path instance (vq,ve,vs-:-,v141), the cor-
responding timestamps (¢, to,t5- - ,t;) should satisfy the temporal bias, namely
Vi > 0,1 < min({t |k <n <1 t, > 0}).
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Table 2: Notations

Symbols Descriptions
G=W,Er,X) | the THG graph
o(), () node type and edge type mapping function
s the snapshot
T,ts the current time, the timestamp of snapshot s
Ng the number of snapshots
P the meta-path (or dynamic meta-path)
dy(y the dimension of node attributes
d the dimension of node representations
gi the representation of node v;
R p s the P representation of v; at s
h,‘,.’p;s the P temporal representation of v; at s
W(;‘(?;T the node type-aware projection matrix
W&T)T the edge type-aware projection matrix
Wo, Wi, Wy | the projection matrices of queries, keys and values
Q K,V the embedding of queries, keys and values;
K(-) temporal encoder

For instance, we can further model the academic graph in Figure [I[a) as a
THG, maintaining both the heterogeneity and the dynamics of graph structures.
Compared with static meta-paths P; and Po, the dynamic meta-paths P3 and
P4 designed in Figure d) are able to keep the temporal correlations of authors.
The corresponding instances in Figure e) meet the temporal constraints as well.
Specifically, the neighbors A; and A3 of As based on path P, are labeled with the
timestamp, while deleting A4 who is unknown to As before 2008.

4. The Proposed Model

The overall framework of DyMGNN is shown in Figure [2| Specifically, we first in-
troduce the dynamic meta-path guided temporal importance sampling to sample
temporal neighbors for dynamic semantic modeling. As nodes evolve over time and
are semantic, we then divide THGs into several soft snapshots, which preserve the
historical connections to the given snapshots. Furthermore, DyMGNN effectively
aggregates semantic-level temporal embedding of nodes (e.g., h; p s from path P at
snapshot s) via attention mechanism and temporal encoding. Furthermore, the het-
erogeneous mutual evolution attention is designed to capture heterogeneous evolving
h;. Finally, the constructed node representation g; is input into a specific supervised
task for optimization.

4.1. Dynamic semantic modeling

To capture the dynamic semantics, we first design the dynamic meta-paths in Def-
inition 4| with temporal bias constraints, removing the unknown neighbors from
neighborhoods. Following the assumption that interactions that happened recently
play a more important role in influencing nodes, here we design the dynamic meta-
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Fig. 2: The framework of our proposed temporal heterogeneous graph neural net-
works (DyMGNN). (a) is the dynamic semantic modeling on THGs to extract repre-
sentative neighborhoods of each dynamic meta-path of each snapshot. And then, (b)
constructs the corresponding representations with temporal encoding. Finally, (c)
models the semantic-level mutual evolution to fully utilize the influence of different
semantics to construct evolving node representations for specific tasks.

path guided temporal importance sampling strategies on THGs. Specifically, given a

: Ri, Ra, Ri,
dynamic meta-path P : A4; — T Ay =2 T, R
in reverse and calculate the importance of candidate vy as follows.

T A1, we search the neighbors

0 tr > maing

p(vk|vkt1,P) = { (1)

f(ming —t,)  otherwise
where ¢, denotes the timestamp of edge ey, v, ., ming = min({t,|k < n <
I+ 1,t, > 0} denotes the minimum timestamp and f(-) is the activation func-
tion (e.g., softmax) to evaluate the importance of v with timestamp t;. We further
sample dynamic meta-path guided neighbors according to p(vg|vg+1, P), called tem-
poral importance sampling (TIS). As is demonstrated, the static neighborhoods are
randomly sampled, and TIS degenerates into random sampling if all interactions
are unvarying. The details are summarized in Algorithm

4.2. Temporal heterogeneous message passing

With the heterogeneous structures of THGs continuously changing, dynamic inter-
actions may result in the different representations of nodes at different times. To
learn the representation of nodes at each time, we propose the soft snapshots to
extract personal structures of each target node according to their start interactions
of the given dynamic meta-paths, rather than the global divisions in B04346 Tt ig
difficult to establish a uniform standard to divide THGs since different dynamic
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Algorithm 1: Dynamic meta-path guided TIS strategy.

Input: THG G = (V,&r), dynamic meta-path P, sample size n, target
node vy41, current time ¢;
Output: neighbor set Nbr,, , p;
1 Nb’r‘thp = {}7
2 while |[Nbrp| < n do

3 k=1, ming =t;
4 while £ > 0 do
5 calculate p(vg|vkt1,P) based on (I));
6 sample vy according to p(vg|vk+1, P);
7 ming < min(ty, ming), k < k —1;
8 end
9 add vy into Nbry,_, p;
10 end

meta-path-based neighborhoods imply various temporal patterns. Considering that
all temporal interactions on THGs are recorded and never going to disappear, we
propose to sample from all historical neighbors besides current ones with temporal
bias, to keep the dependence of semantics among snapshots.

Taking the dynamic heterogeneity into consideration, we design the temporal
heterogeneous message passing for each dynamic meta-path at each snapshot. Given
the neighbors (vj1,vj2,- -+ ,vjn) of node v; at a snapshot, we adopt the heteroge-
neous node-level attention mechanism to enhance or weaken neighborhood infor-
mation, as follows.

i = ol @ WIS W) I Wil uy) T b5t 2)

where aaj € Ry is the weight of v; to v;, x; € R%vi is the attribute vector of
v; with dimension dg,,, W(;‘gf € R0 *d s the type-wise parameters to project
attributes into the latent space, WﬁiT,vj) and bﬁ(TmT,Uj) are the latent project matrix
and bias of type ¥ (v;, v;) need to learn. And then, we normalize the attention a; ;s
for meta-path P at snapshot s as

/

a .
— 2¥
Qij,s = Z a .’ (3)
v ENbr(vi,s,P) 7,5’

where Nbr(v;,s,P) is the neighborhood of dynamic meta-path P at snapshot s.
The sub-representation hIi,P, 5 18

;,7,78 = AGG({ai s -ij¢(vj)|j € Nbr(vi,s,P)}), (4)

where AGG(+) is the pooling function and we select sum pooling in this paper.
Notice that, as the attributes of different-typed nodes belong to different spaces,
we adopt Wy, ) to project all attributes in the same latent space, which is labeled
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“proj” in Figure Inspired by %8, we construct the embedding of v; at s*" snapshot
of meta-path P with a temporal encoder as

hips=o0o((hip +K(T —ts))Ws +bs), (5)

where Wg € R¥4 and bg € R are learn-able parameters, and K(-) is the temporal
encoder,

4.3. Heterogeneous mutual evolution attention

As mentioned, given different dynamic meta-paths, there are multiple semantics-
level representations of nodes on THGs (e.g., preferences or interests) which mutu-
ally evolve over time. To model the evolution of preferences, we propose the hetero-
geneous mutual evolution attention to detect the potential dependence of mutual
evolution of nodes at the semantic level. Given the embedding matrix h; of node v;
with dimension Ng X Np X d where Ng is the number of snapshots, we respectively
calculate Q; = h;,Wg, K; = h;Wg and V; = h;Wy. And then, All Q;, K; and V;
are divided into IV}, heads, and the attention att; ,, of node v; of head n is

att; , = softmax( ?nKZn/W), (6)
and then, we concatenate all sub-embeddings h; as follows.
hi = lInto(attin - Vin). (7)
Finally, the node representation is defined as

9i = [hil|Zi]W(0,).6 + by,).a (8)

where Wy(,,),¢ and bg(,,) ¢ are the learnable type-aware project matrix and bias.
Different from self-attention mechanisms®?, the mutual evolution attention takes
into account both the dynamics and semantics besides inherent attributes.

4.4. Optimization objective

In this paper, we focus on the fundamental tasks, including node classification and
link prediction, and the overall cross-entropy loss is defined as

L= —yi-log(iii-) — (1= yi2)log(1 — G .)) + a(©), (9)
where y is the ground truth, ¢ is the prediction, Q(®) denotes the regularization of
total parameters ® to avoid over-fitting and « is the rate. For node classification,
z is the label and g, . is the class predicted by M LP(g;) where M LP(-) denotes
the Multi-Layer Perception (MLP). For link prediction, ¢ and z are two nodes and
we generate the probability MLP(g;||g.) of the connections between two nodes.

Notice that we adopt Adam™” to minimize Equation @[) The unified framework of
DyMGNN is shown in Algorithm
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Algorithm 2: The proposed DyMGNN.

Input: G = (V,Er), meta-paths {P}, number of snapshots Ng, max
iteration K;

Output: node embedding matrix G, parameters ©;
1 generate Ng snapshots for each node v; in V;
2 initialize parameters ©;
3 while k < K and not in convergence do

4 for each node v; in the mini-batch do

5 for each meta-path P, each snapshot s do

6 sample Nbr,, p s based on Algorithm
7 construct b} 5 . by Eq. [2)-{);

8 generate h; p s by Eq. (B));

9 end
10 calculate mutual evolution h; of v; by Eq. @—;
11 generate node embedding g; by Eq. ;
12 end
13 update ® by minimizing L(V, ©);
14 k+—k+1;

15 end

4.5. Complexity analysis

DyMGNN contains two main parts: dynamic semantic and mutual evolution mod-
eling. The complexity of temporal sampling is O(}_, Ng x n x |mp| x [V|) where
Ng is the number of snapshots, n is the sample size and |mp| is the average num-
ber of path P instances. It is worth noting that we can adopt parallel computing
to significantly reduce computational complexity. The complexity of heterogeneous
aggregators is (’)(Zf\[:% V| x da, x d*) and d4, is the attribute dimension, while
the complexity of heterogeneous mutual evolution attention is O(Ng x Np x d?).
The total complexity of DyMGNN is linear with the number of nodes |V|, the num-
ber of snapshots Ng and the number of dynamic meta-paths Np, which makes the
proposed method efficient in large datasets.

5. Experiments

In this section, we evaluate the empirical performance of our DyMGNN on three
public real-world temporal heterogeneous graphs, including two academic graphs
(Aminer and DBLP) and a user-business dataset (Yelp). More Specifically, we study
the effectiveness of our DyMGNN on node classification and link prediction tasks,
and then analyze the key factors in DyMGNN to showcase the characteristics of
our designs.
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Table 3: Statistics of the three public datasets.

Datasets | Node Types #Nodes Meta-paths  Times
Author (A) 22,942
Ami Pe P 18,181 APA 16 year:
miner aper (P) , APVPA years
Venue (V) 22
Author (A) 4,027
DBLP P P 11,128 APA 10
aper (P) , APCPA years
Conf. (C) 20
User (U) 98,165 BRURB
Yelp 15 years
Business (B) 6,615 BTUTB

5.1. Datasets and metrics

In this paper, we test our model on three real-world THGs. The statistical infor-
mation are summarized in Table [3] and we introduce the details as follows.

1) Aminer academic grapkﬂ This is also a public benchmark dataset made
up of three types of nodes, namely, authors (A), papers (P) and venues (V), as well
as two types of temporal interactions, namely “write” (A-P) and “publish” (P-V).
We generate node features based on metapath2vec?.

2) DBLP academic grapkﬂ This is a public bibliographic dataset consisting
of three types of nodes including authors (A), papers (P) and conferences (C), as
well as two types of dynamic edges, namely “write” (A-P) and “publish” (P-C).
Node features are generated by metapath2vec? as well. On DBLP, authors are
assigned to four research domains.

3) Yelp Business grap This is a public user review dataset, recording users’
reviews and tips with timestamps. It consists of two types of nodes, namely, users
(U) and businesses (B), as well as two types of relations, namely, “review” and “tip”
(i.e., BRU and B(T)U relations) between users and businesses. Moreover, users and
businesses contain several attributes like the average rating, the number of fans and
locations. We extract three categories of businesses, including “Fast Food”, “Sushi”
and “American (New) Food” with the corresponding reviews and tips to construct
a THG. In addition, the depressed or closed businesses are removed. On this graph,
we adopt the meta-paths “BRURB” and “B(T)U(T)B” and their corresponding
dynamic meta-paths to capture neighborhoods.

We adopt Micro-F1 and Macro-F1 as the evaluation metrics to quantify the per-
formance for node classification while adopting F1, PR-AUC, and ROC-AUC as the
evaluation metrics to analyze the performances for temporal link prediction. Notice
that all the above metrics are positively related to the performance of methods.

aAvailable at http://resource.aminer.org/lab-datasets/crossdomain/.
b Available at https://dblp.uni-trier.de/db/.
¢Available at https://www.yelp.com/dataset/.
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5.2. Baselines and experimental settings

There are three types of eight representative baselines, including dynamic GNNs (

DGNN=2® EvolvGCN=3 M2DNE#) and TGAT%Y), heterogeneous GNNs
(HAN®2 and HGT'¥), and dynamic heterogeneous graph approaches (DyHNE“3
and DyHATR%®). The details are shown as follows.

e DGNN28is a dynamic GNN which inputs sequential interactions of nodes
into a modified LSTM to model the dynamic evolution.

e EvolvGCN(E.GCN)"4 is a snapshot-based GNN model which captures
evolution of structures by sequentially generating and updating parameters
of different snapshots.

e TGAT%Y is the first temporal GNNs to analyze the encoding of tempo-
ral information. It integrates both multi-head attention mechanisms and
temporal encoders to model evolving of nodes.

e M2DNE?2ig a temporal point process based model which takes both tem-
poral importance and mutual interactions into consideration.

e HAN9Z is a representative heterogeneous GNN model that aggregates in-
formation from different-typed neighborhoods by utilizing both semantic-
level and node-level attention mechanisms.

e HGT" is a novel heterogeneous GNN model which introduces a hetero-
geneous mutual attention which considers both edge types and node types
when aggregating information from neighborhoods.

e DyHNE®? is a dynamic heterogeneous graph embedding model which
splits heterogeneous graphs into several snapshots and captures the dy-
namics between snapshots based on matrix perturbation theory.

e DyHATR%* is a dynamic heterogeneous GNN which designs a temporal
attention mechanism to capture evolution between HAN-based node repre-
sentation among different snapshots.

For Aminer, DBLP, and Yelp datasets, We set the time span of each snap-
shot as 1 year, and the number of dynamic meta-path-based neighbors as 5 for all
three datasets. We respectively set the number of snapshots Ng as 10, 6, and 10.
For all the baselines and DyMGNN, we set the max iteration as 200, the dimen-
sion of nodes d = 128, the learning rate as 0.001, and the weight of regularization
« = 0.001. The size of each mini-batch is set as 128. The remainder parameters of
baselines are set following the original papers. For all homogeneous graph models
(DGNN, EvolvGCN, M2DNE, and TGAT), we remove the types of edges. As the
original DyHATR is to deal with temporal link prediction, we modify it to handle
node classification. For the same reason, we modify HAN to ensure temporal link
prediction as well. We set the number of snapshots according to the units of times-
tamps on Aminer, DBLP, and Yelp. We set the dimension of nodes and the size of
the mini-batch the same as those in classical GCN and GraphSAGE. We set the
max iteration, the weight of regularization, and the learning rate according to the
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Table 4: The performance of methods for node classification. The best performance
is in bold and the second best is underlined. Relative improvements of DyMGNN
w.r.t. the second best are reported as well.

Dataset Metric Training . 9 . Methods . . Improv.
DGNN E.GCN M*DNE TGAT | HAN HGT | DyHNE DyHATR DyMGNN

40% 0.779 0.819 0.826 0.835 | 0.868 0.872 0.884 0.877 0.925 4.6%

Micro-F1 60% 0.795 0.835 0.830 0.841 | 0.880 0.892 0.895 0.899 0.925 2.9%

Aminer 80% 0.812 0.861 0.834 0.850 | 0.901 0.906 | 0.918 0.907 0.947 3.2%
40% 0.794 0.814 0.811 0.829 | 0.855 0.865 0.876 0.872 0.923 5.4%

Macro-F1 60% 0.817 0.821 0.828 0.840 | 0.871 0.889 | 0.897 0.902 0.922 2.2%

80% 0.834 0.845 0.829 0.846 | 0.892 0.918 | 0.913 0.932 0.944 1.3%

40% 0.589 0.659 0.686 0.677 | 0.698 0.693 | 0.690 0.700 0.717 2.4%

Micro-F1 60% 0.623 0.672 0.701 0.680 | 0.712 0.717 0.702 0.728 0.739 1.5%

DBLP 80% 0.644 0.679 0.710 0.691 | 0.724 0.720 | 0.733 0.726 0.745 1.6%
40% 0.581 0.632 0.657 0.649 | 0.666 0.658 | 0.642 0.671 0.689 2.7%

Macro-F1 60% 0.633 0.658 0.670 0.651 | 0.684 0.686 | 0.654 0.689 0.705 2.3%

80% 0.652 0.666 0.688 0.670 | 0.691 0.694 0.692 0.697 0.711 2.0%

40% 0.566 0.592 0.601 0.585 | 0.620 0.628 | 0.616 0.633 0.651 2.8%

Micro-F1 60% 0.572 0.607 0.602 0.590 | 0.631 0.658 | 0.625 0.638 0.672 2.1%

Yel 80% 0.587 0.619 0.610 0.608 | 0.644 0.648 | 0.652 0.641 0.662 1.5%
P 40% 0.540 0.577 0.569 0.545 | 0.600 0.609 | 0.607 0.609 0.621 2.0%
Macro-F1 60% 0.555 0.582 0.570 0.570 | 0.610 0.616 0.615 0.612 0.628 1.9%

80% 0.563 0.590 0.579 0.572 | 0.618 0.632 0.629 0.633 0.643 1.6%

performance of the validation set which is sampled from the original training set.
Notice that we run all the methods ten times and report the average value.

5.3. Node classification

We respectively consider the research domains of authors on Aminer and DBLP
datasets and the categories of businesses as labels. The node classification task on
Aminer and DBLP is to predict the research area of authors, and the goal on Yelp is
to predict the category of businesses. In this task, we train the model with training
instances of different scales (i.e., 40%, 60%, and 80%). We report the results in
terms of Micro-F1 and Macro-F1 in Table [4 and make the following observations.

First, DyMGNN consistently achieves the best performance on all three datasets
with different-scale training instances. The improvement rate to the second best is
from 1.5% to 4.9% in the Micro-F1 metric and from 1.3% to 5.4% in the Macro-F1
metric. The advantages of DyMGNN are in two aspects. Compared with dynamic
homogeneous approaches (i.e., DGNN, E.GCN, TGAT, and M2DNE), the advan-
tage is in naturally utilizing semantics rather than single-typed edges. Compared
with heterogeneous models including static HAN and HGT as well as dynamic Dy-
HNE and DyHATR, DyMGNN can not only capture the dynamics within semantics
but also model the fine-grained mutual evolution between different semantics, re-
sulting in improvements.

Second, dynamic modeling influences and promotes performance significantly.
By comparing with static heterogeneous GNNs (i.e., HAN and HAT), DyHNE, Dy-
HATR, and our DyMGNN effectively handle the evolution of nodes and obtain the
obvious improvement. Moreover, while DyHATR and DyHNE require hard cutting
of snapshots, DyMGNN has the ability to keep all influence of historical semantics.
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Table 5: The performance of methods for temporal link prediction. The best per-
formance is in bold and the second best is underlined. Relative improvements of
DyMGNN w.r.t. the second best are reported as well.

Dataset Metric Methods Improv.
DGNN E.GCN M?DNE TGAT | HAN HGT | DyANE DyHATR DyMGNN
F1 0.744 0.747 0.750 0.772 | 0.764 0.772 | 0.789 0.785 0.799 1.3%
Aminer | PR-AUC 0.769 0.766 0.778 0.800 | 0.795 0.803 | 0.815 0.809 0.820 0.6%
ROC-AUC | 0.838 0.782 0.848 0.880 | 0.877 0.882 | 0.893 0.882 0.900 0.8%
F1 0.610 0.625 0.606 0.616 | 0.634 0.639 0.642 0.655 0.662 1.1%
DBLP PR-AUC 0.629 0.638 0.636 0.648 | 0.656 0.652 0.654 0.663 0.673 1.5%
ROC-AUC | 0.664 0.669 0.679 0.684 | 0.683 0.681 0.685 0.690 0.706 2.3%
F1 0.579 0.618 0.594 0.599 | 0.605 0.610 0.616 0.626 0.643 2.7%
Yelp PR-AUC 0.616 0.629 0.628 0.613 | 0.647 0.652 0.648 0.657 0.676 2.9%
ROC-AUC | 0.635 0.658 0.654 0.647 | 0.669 0.672 0.664 0.670 0.685 1.9%
C0 static metwpath B o attention 3 satic meta-path B o attention 0 static metapath B o attention
B random sampling  MEEE DyMGNN EEE random sampling  MEEE DyMGNN B random sampling  MEEE DyMGNN

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

(a) Aminer (b) DBLP (c) Yelp

Fig. 3: Performance comparison of DyMGNN and its variants on node classification.
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Fig. 4: The effectiveness of fusing dynamic meta-paths on node classification.

Third, the semantic attention mechanism illustrates the advantages. While Dy-
HNE treats all semantics as equally important, the semantic attention-based Dy-
HATR and our DyMGNN usually achieve better performance due to their ability
to evaluate the importance of different semantics.

5.4. Link prediction

On the Aminer and DBLP datasets, we focus on predicting the future“co-
authorship” of authors. We treat the “APA” links in history and in the latest year
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Fig. 5: The effect of the number of snapshots.

as training samples and test instances respectively. Besides, on the Yelp dataset, we
predict the connection of “BRURB” in the latest quarter between businesses and
use other “BRURB?” links in past quarters for training. We adopt F1, PR-AUC,
and ROC-AUC metrics to quantify the performance in Table [f]

As can be seen in Table [5] we can find that DyMGNN performs consistently
better than all baselines, and the improvement rate to the second one is from 0.8%
to 2.3% in the ROC-AUC metric. Moreover, the dynamic heterogeneous alterna-
tives DyHNE and DyHATR both perform better than other baselines on the three
datasets, which verifies the superiority of modeling temporal and heterogeneous in-
formation again. In addition, DyHNE outperforms DyHATR on the Aminer dataset
while performing worse on the DBLP and Yelp datasets. However, DyMGNN keeps
the advantages on all three datasets, indicating the stability of our model.

5.5. Comparison of model variants

To evaluate the effectiveness of our design choices, we analyze two categories of
DyMGNN variants as follows. 1) dynamic semantic modeling: “static meta-path”
and “random sampling” where the former samples neighbors overlook temporal bias
while the latter randomly samples neighbors on dynamic meta-paths. 2) heteroge-
neous mutual evolution modeling: “no attention” that models the evolution via
GRU rather than heterogeneous mutual evolution attention.

Figure 3| illustrates two main conclusions. (1) DyMGNN performs the best,
and the random sampling model achieves better results than the static meta-path-
based model, which not only verifies the advantages of dynamic meta-path-guided
temporal importance sampling but also indicates the effectiveness of dynamic meta-
paths. (2) Compared with the GRU-based no-attention model, DyMGNN models
the mutual evolution with temporal encoding rather than the single evolution of
sequences, leading to better performance.

5.6. Analysis of key factors in DyMGNN

There are three key factors in DyMGNN that may significantly affect the model
performance: the types of dynamic meta-paths for semantic modeling, the num-
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Fig. 6: The effect of the sample size in DyMGNN on Aminer dataset.

ber of soft snapshots for modeling evolution, and the sample size of neighbors for
neighborhood aggregation.

In Figure we demonstrate the contribution from different types of dynamic
meta-paths by gradually adding meta-paths for DyMGNN on three datasets. Taking
Figure a) as an example, there are two kinds of dynamic meta-paths on Aminer,
namely, “APA” and “APVPA”, and we test the performance of DyMGNN for each
dynamic meta-path and they both. Obviously, the performance by utilizing both
“APA” and “APVPA” is the best, implying the effectiveness of integrating various
dynamic meta-paths. Furthermore, we can find that the performance of DyMGNN
with the “APVPA”, “APCPA” and “BRURB” paths in three datasets respectively
is the second best. This phenomenon is reasonable since these meta-paths contain
more information, or even own all neighbors on the other paths as the subsets.

Next, in Figure we focus on detecting the influence of the number of snap-
shots. Here we vary the snapshots from 1 to 16 for all datasets. Generally, the
performance of DyMGNN continuously but slowly improves, since more in-depth
patterns can be exploited in more snapshots.

Furthermore, we also showcase the efficiency of DyMGNN by adjusting the sam-
ple size of neighbors in Figure [6] We can find that, with the sample size increasing,
the performance gradually improves to be stable, meanwhile, the time cost linearly
increases. It indicates that the sampling strategies in DyMGNN are able to effec-
tively and stably sample useful neighbors. Besides, we need to set the proper sample
size to balance effectiveness and efficiency.

6. Conclusion

In this paper, we address the problem of representation learning on temporal het-
erogeneous graphs by making full use of both heterogeneous and temporal structure
information. We design a novel graph neural network model called DyMGNN. In
this model, to overcome the challenges in dynamic semantic and semantic-level mu-
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tual evolution modeling, we respectively introduce dynamic meta-path and temporal
importance sampling to capture dynamic heterogeneous neighborhoods and design
the heterogeneous mutual evolution mechanism based on temporal heterogeneous
message passing to fully detect the latent influence among multiple semantic-level
snapshots. Experimental results on three real-world public datasets demonstrate
that DyMGNN consistently outperforms state-of-the-art baselines for both node
classification and temporal link prediction.

Temporal heterogeneous graph representation learning still remains an open
problem in interaction networks. It is worth considering the changes in interactive
attributes such as ratings and reviews and modeling the evolution of emotions by
integrating with recommender systems. More future work can be done along this
line.
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