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Abstract

As vision-language models advance, addressing the
Zero-Shot Learning (ZSL) problem in the open world be-
comes increasingly crucial. Specifically, a robust model
must handle three types of samples during inference: seen
classes with visual and semantic information provided in
training, unseen classes with only the semantic information
in training, and unknown samples with no prior informa-
tion from training. Existing methods either handle seen and
unseen classes together (ZSL) or seen and unknown classes
(known as Open-Set Recognition, OSR). However, none ad-
dresses the simultaneous handling of all three, which we
term Open-Set Zero-Shot Learning (OZSL). To address this
problem, we propose a two-stage approach for OZSL that
recognizes seen, unseen, and unknown samples. The first
stage classifies samples as either seen or not, while the
second stage distinguishes unseen from unknown. Fur-
thermore, we introduce a cross-stage knowledge transfer
mechanism that leverages semantic relationships between
seen and unseen classes to enhance learning in the sec-
ond stage. Extensive experiments demonstrate the efficacy
of the proposed approach compared to naively combining
existing ZSL and OSR methods. The code is available at
https://github.com/smufang/0ZSL.

1. Introduction

Deep learning has shown great promise in various com-
puter vision tasks. However, they require a large amount of
labeled data for training, which can be time consuming or
expensive to acquire. On the other hand, humans can eas-
ily identify a novel unseen object only based on a textual
description of that object, by leveraging their visual experi-
ence of related objects in the past. For example, if one has
seen a motorcycle, they will be able to identify a bicycle
based on a simple textual description: “It looks similar to
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Figure 1. Tllustration' of different classification settings. (a) OSR
methods can flag unknown samples but cannot recognize unseen
class samples, where class descriptions for unseen classes are not
utilized. (b) ZSL methods can identify unseen class samples but
cannot flag unknown samples. (c¢) Our OZSL approach aims to
identify seen and unseen class samples, and at the same time flag
unknown samples.

a motorcycle but is lighter and has no engine.” As shown
in Fig. 1(b), this kind of learning ability is called zero-shot
learning (ZSL) [14,22,45], which aims to identify objects in
both seen and unseen classes. Specifically, at training time,
both visual features and semantic (text or attribute-based)
descriptions are available for seen classes, while only se-
mantic information is given for unseen classes without any
visual input.

As there is no guarantee that the model in a real-world
deployment will only encounter classes that it has been
trained for or given semantic descriptions, despite recent
advances in ZSL methods [10, 52], an important practical
problem still remains: How to flag samples from an un-
known class along with classifying samples from seen and
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unseen classes in an open-world scenario? Specifically, we
do not know anything about unknown classes during train-
ing: Neither visual nor semantic features are given. At in-
ference time, samples from an unknown class can be con-
sidered as out-of-distribution (OOD) samples, as they are
encountered by the trained model unintentionally during
inference in open-world applications such as autonomous
driving [18, 55]. For example, as illustrated in Fig. 1, if
a model is trained on motorcycles using labeled images, it
can be generalized to identify a related class such as bi-
cycle through ZSL with only the class description (assum-
ing images for this class is difficult to obtain). However, in
the open world, it can encounter a stray cat or virtually any
other class, which the model must flag as unknown for con-
servative handling instead of forcing it to be a predefined
seen or unseen class. It is interesting to note that intuitively,
unseen classes refer to those “we know we have not seen”,
which can be predefined by providing class descriptions. In
contrast, unknown classes represent what “we don’t know
that we haven’t seen”, which can encompass anything (i.e.,
open-set). Attempting to define an exhaustive list of all
possible classes would be infeasible and critically flawed.
Hence, it is crucial for the model to learn to flag samples it
does not recognize as unknown in open-set scenarios.

On one hand, existing ZSL methods misclassify un-
known samples as one of the seen/unseen classes during
inference. On the other hand, open-set recognition (OSR)
[9, 38] is designed to recognize unknown samples using
only the in-distribution (ID) data during training. However,
as illustrated in Fig. 1(a), these OSR methods are not capa-
ble of handling unseen classes, and misclassify them as un-
known. Therefore, in this paper, we aim to address a novel
problem of Open-set Zero-Shot Learning (OZSL), which
calls for the capability of both ZSL and OSR. To be more
specific, our goal is to recognize seen, unseen, and unknown
classes under a single framework as shown in Fig. 1(c). The
key difference between existing OSR methods and the pro-
posed OZSL setting is we have visual samples only for the
seen classes among the ID classes, while only having se-
mantic information for the remaining ID but unseen classes.

One natural idea is to detect all three types of seen, un-
seen and unknown classes simultaneously in one go. For
instance, we may use a simple threshold on the ZSL predic-
tions to determine whether the sample is unknown, thereby
reducing the problem to the standard ZSL setting. Alterna-
tively, we can employ a generative model to produce syn-
thetic visual samples for the unseen classes based on their
semantic information, reducing the problem to the standard
OSR setting. However, trying to classify all three types
in one go can be less robust. On one hand, both unseen
and unknown classes lack visual features in training, mak-
ing their separation difficult. On the other hand, seen and
unseen classes often present significant overlap in their se-

mantic space [11,32] (e.g., motorcycle and bicycle) in order
to align the visual and semantic spaces. These two sources
of misclassification can be difficult to be dealt with simulta-
neously. Hence, trying to classify all three types in one go
tends to reduce the overall performance.

To overcome this challenge, we propose a two-stage ap-
proach: In Stage I, we train a model to separate seen classes
from the rest, namely, unseen and unknown, while classify-
ing a seen sample to its respective seen class; in Stage II,
we train a model to separate unseen and unknown classes,
while classifying an unseen sample to its respective unseen
class. In particular, in Stage II, we can employ synthetic
unseen class data as a substitute for the missing visual fea-
tures, to mimic the seen classes in Stage 1. Hence, the two
stages share a similar goal: Both aim to separate samples
with visual features (real visual input in Stage I or synthetic
features in Stage II) and those without. While such a two-
stage approach is intuitive, the two stages are decoupled,
despite their similar goal.

Hence, a second challenge lies in how to enable knowl-
edge transfer from Stage I to Stage II, to leverage the inher-
ent semantic relatedness between seen and unseen samples,
which can help improve the overall performance. That is,
since semantic information of seen and unseen classes are
related, we leverage the seen classes learned in Stage I to
help the representation learning of unseen classes in Stage
II. Furthermore, the transfer of knowledge from Stage I to
Stage II is advantageous as Stage I is trained by using real
visual features from seen classes, while Stage II is trained
by using synthetic visual features, which tends to be less
robust than Stage I. To enable the cross-stage knowledge
transfer, we propose two strategies: (i) Weight initializa-
tion strategy, where we initialize the Stage II model with
the trained weights of the Stage I model; (ii) Distribution
retainment strategy, where we propose a distribution retain-
ment loss to ensure the seen class distribution learned in
Stage I is maintained in Stage II.

We summarize the contributions of this work. (i) To
the best of our knowledge, this is the first work introduc-
ing a novel problem setting called open-set zero-shot learn-
ing (OZSL), a more practical setup for many applications
in the open world. (ii)) We demonstrate that naively com-
bining ZSL with OSR methods does not lead to good per-
formance. Subsequently, we propose a two-stage method
for the OZSL problem, introducing cross-stage knowledge
transfer through the novel strategies of weight initialization
and distribution retainment to improve the OZSL perfor-
mance. (iii) We conduct extensive experiments to demon-
strate the viability of our approach, which outperforms a
series of state-of-the-art ZSL and OSR methods as well as
their combinations.
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Figure 2. Illustration of one-stage and two-stage approaches for
open-set zero-shot learning.

2. Related Work

Our work is mainly related to open-set recognition and
zero-shot learning, which are briefly reviewed here.

Open-Set Recognition (OSR). OSR addresses the problem
of separating known samples, which the model is trained
to recognize, from unknown samples which the model en-
counters unintentionally during inference. OSR is essential
for making a model robust in safety-critical applications.
In literature, many solutions have been proposed to ad-
dress the OSR problem. Hendrycks, Dan, and Kevin Gim-
pel, et al. [23] have proposed a baseline method based on
the predicted maximum softmax probability (MSP). Open-
MAX [6] uses a Weibull distribution to distinguish known
samples from unknowns, while Lee, Kimin, et al. [28] use
the Mahalanobis distance as a measure to distinguish them.
Recently, Wang, Haoqi, et al. [51] have introduced virtual
logit matching which combines information from the fea-
ture space and logits space to better identify known sam-
ples from unknown samples. Beyond these non-generative
models, Lee, Kimin, et al. [29] have proposed a generative
OSR method using generative adversarial networks, which
generates synthetic unknown samples to train the model for
distinguishing the known and unknown samples.

Zero-Shot Learning (ZSL). ZSL addresses the problem
of identifying unseen classes using only seen class sam-
ples and unseen class semantic information, which can be
broadly classified into three categories.
Non-generative Methods: Non-Generative methods [4,
,24,45,58] generally perform ZSL in one of the following
three ways. (i) Visual to semantic mapping [1,19,21,27,47]:
Visual data are projected into lower-dimensional space. As
it shrinks the variance of the data, it might lead to the
hubness problem [16] . (ii) Semantic to visual mapping
[22, 33,46, 61]: It resolves the hubness issue and relies
heavily on the attribute features, which are mapped into
the visual feature space to be used as class prototypes.
(iii) Map visual and semantic features into a common sub-

space [3, 8,20, 30,42]: It benefits from both of the above
approaches and learns a common embedding for ZSL.

Generative Methods: Another common approach to the
ZSL problem involves generating synthetic samples for un-
seen classes using a generative model. Most existing gen-
erative approaches fall into one of the following categories:
variational autoencoders [12,36,43,49], generative adver-
sarial networks [17,31,56], and normalization flow [13,44].
All these methods are conditioned on unseen class attributes
to generate synthetic samples for unseen classes. Then, by
substituting the synthetic samples as the training data for
unseen classes, the ZSL problem can be reduced to a stan-
dard classification problem.

Domain Separation Methods: These methods [5, 11,25,

] first separate seen classes from unseen classes and per-
form separate classifications on the two categories (seen and
unseen). This avoids overlapping decision boundaries be-
tween the seen classes and unseen classes. Note that some
of these works appear to address OSR but merely treat the
unseen classes as an open set, thereby solving a traditional
ZSL problem. In contrast, this work considers seen, un-
seen, and unknown as separate categories while addressing
our proposed OZSL setting.

Other Fields: ZSL has also been explored in other fields
such as zero-shot text classification [34, 39] in natural lan-
guage processing (NLP). Moreover, using pre-trained lan-
guage models for synthetically generating the entire dataset
[59,60] has been gaining interest in the research community.
Similarly, embedding based non-generative approaches for
zero-shot node classification [53, 54] has been explored in
graph machine learning.

3. Problem Definition and Naive Approaches

In this section, we first introduce our novel problem set-
ting, and further develop naive one-stage approaches based
on state-of-the-art ZSL and/or OSR methods.

3.1. Problem definition

In this work, we address a realistic novel problem
called Open-Set Zero-Shot Learning (OZSL) as shown in
Fig. 1(c). We are given a set of training samples from
seen classes D" = {x,y,a|x € X,,y € Y;,a € A},
where x is the visual feature of the sample extracted by
a pre-trained backbone, y is the class of that sample,
and a is the corresponding class attribute vector. Y, =
{y5,v5, ...,y } denotes the set of all m seen classes. Sim-
ilarly, A; = {aj,a$,...,a%,} denotes the corresponding
seen class attributes. In addition to the seen class sam-
ples, the training data also consist of unseen class attributes
A, = {a% a},..,al} corresponding to the n unseen
classes Y, = {y}, v¥, ..., y2}. During testing, a test sample
x"% may come from the seen classes Y, the unseen classes
Y., or neither (i.e., unknown). The objective of the trained



model is to correctly classify the test sample x* into its cor-
responding class y € Y, UY,, if it is in-distribution or reject
the sample if it is unknown.

3.2. Naive One-Stage Approaches

One natural way to address the OZSL problem is to
categorize the samples into the corresponding categories,
namely, seen, unseen, and unknown in one go. A major
challenge of OZSL is the absence of training data for un-
seen classes. However, most OSR detection methods re-
quire in-distribution data. In order to address this problem,
we can use an off-the-shelf generative method such as the
state-of-the-art GSMFlow [13] to generate synthetic sam-
ples for the unseen classes as shown in Fig. 2(a). The gen-
erated synthetic data, along with the seen data, are taken
as the in-distribution data, reducing the OZSL problem to a
standard OSR problem, which can be addressed by popular
OSR methods such as MSP [23], ViM [51] and KNN [48].
In our evaluation, we have also utilized these methods as
naive baselines to benchmark our proposed approach on the
novel OZSL problem.

4. Proposed Method

As one-stage approaches attempt to handle all three
types of samples in one go, the performance can be sub-
optimal. A potential reason is due to the semantic overlap
between seen and unseen classes, as well as the lack of vi-
sual features for both unseen and unknown classes. Hence,
we propose a two-stage approach to handle the two sources
of misclassification, as shown in Fig. 2(b). In Stage I, we
aim to separate seen classes and the rest (including unseen
and unknown); in Stage II, we aim to handle the unseen and
unknown. Meanwhile, to leverage the semantic relatedness
between seen and unseen classes, we propose a cross-stage
knowledge transfer from Stage I to Stage II.

4.1. Overall Framework

Training. The training process of the proposed approach is
outlined in Fig. 3, which is split into two stages.

In Stage I, the model is trained to identify whether an im-
age is from the seen class or not using the training data D".
Additionally, we also train a classifier in the latent space to
identify which seen class the sample belongs to.

In Stage II, the model is trained to identify whether an
image is from the unseen class or not. However, it is worth
noting that there is no training sample for unseen classes.
Hence, to overcome this issue we use synthetic data pro-
duced by a generative method conditioned on unseen class
attributes. Furthermore, we propose cross-stage knowledge
transfer to leverage the knowledge learned from the first
stage in the second stage of model training (see Sect. 4.3).
Similar to the first stage, we also train a classifier to identify

which unseen class a sample belongs to.

Inference. We first identify if the test sample belongs to
a seen class or not using the first stage of our model. If
the sample is from the seen class, the seen class classifier is
used to determine the specific seen class for the sample. If
the sample is identified as not belonging to the seen class,
then we further identify if it belongs to an unseen class or
not using the second stage of our model. If the sample is
from an unseen class, the unseen classifier is used to deter-
mine the specific unseen class for the sample. If the sample
is categorized as not belonging to any seen or unseen class,
then it is rejected as unknown.

4.2. Latent Representation Alignment

Our work builds upon existing research that aligns latent
representations between visual features and the respective
class attribute vectors, in order to effectively utilize the ad-
ditional class attributes. As shown in Fig. 3, both stages
would require latent representation alignment. In the fol-
lowing, we introduce the general methodology for align-
ment, largely inspired by [ 1, 15,57].

Specifically, we employ two variational auto-encoder
(VAE) modules, one for the visual features, and the other
for class attribute vectors. They are trained using the stan-
dard VAE losses, L¥, ;. for the visual VAE and L{},; for the
attribute VAE, respectively which are explained in detail in
Appendix F.

To further enhance the alignment between visual fea-
tures and attributes, we employ the following cross-
reconstruction loss on the latent embeddings:

Ler = [lx = DT (B4 (@) [1+la = DAET () 1. (1)

Here, E¥ and D¥ denote the encoder and decoder of
the visual VAE module. Similarly, E4 and D“ denote the
encoder and decoder of the attribute VAE module.

Moreover, to classify the in-distribution samples to their
respective classes, and to learn a more discriminative latent
space, a classification loss is included, as follows.

Lcls = *Ex [px IOg QZX} - IEa [pa IOg QZa]v (2)

where py and p, are the one-hot ground-truth class vectors

of x and a, respectively; g5, and ¢, are the class distribu-

tions predicted by the classifier for zx and z,, respectively.
Hence, the overall alignment loss is

Laiign = Lipg + Lag + AeLer + AasLas, — 3)
where A\; and )\ s are hyperparameters.

4.3. Cross-stage Knowledge Transfer

In our framework, the two stages largely share a simi-
lar goal: Separating samples with visual features (real or
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Figure 3. Illustration of the training process of our proposed method. Stage I is trained using the training data of seen classes to distinguish
seen class samples from the rest. Stage II is trained using synthetic unseen class samples to distinguish unseen class samples from the
unknowns. To leverage the semantic relatedness between seen and unseen classes, we propose two strategies for cross-stage knowledge

transfer: (i) Weight Initialization and (ii) Distribution Retainment.

synthetic visual input in Stages I and II, respectively) and
those without. Furthermore, seen classes in Stage I share se-
mantic similarity with the unseen classes in Stage II. Hence,
knowledge learned from Stage I can be potentially used to
enhance Stage II which is trained using only the synthetic
samples for unseen classes. In order to transfer the knowl-
edge from Stage I to Stage II, we propose two strategies: (i)
Weight Initialization; (ii) Distribution Retainment.

Weight Initialization. As shown in Fig.3, in order
to facilitate knowledge transfer, the visual and attribute
VAE modules of Stage II are initialized with the trained
weights of their counterparts of Stage I. Specifically, let
O*(EL, DL, EL, D) denote the trained weights of the
Stage I VAE modules, consisting of the weights from both
encoders and decoders for the visual features and attributes.
Similarly, let ©(EL, DH | ELL D1I') denote the weights of
the Stage II VAE modules. Hence, at the beginning of Stage
I, we initialize its weights as follows.

O(Ey, Dy, BY, DY) « ©"(Ep, Dp, B4, D}). (4)

Distribution Retainment. Furthermore, as shown in Fig. 3,
we propose a distribution retainment loss Lpr in Stage II,
to leverage the seen class distribution learned in Stage I to
better learn unseen class distribution in Stage II because of
their shared semantic similarity. First, for the visual VAE,
we apply the following retainment loss.

Lz = [lo" — o™ |13, (5)

where ¢! is the parameter of the posterior distribution given
by the Stage II visual VAE module on a subset of randomly

selected seen samples x from Stage I training data; ¢f " de-
notes the parameters of the posterior distribution given by
the trained Stage I visual VAE module on the same set of
seen samples. Specifically, this allows Stage II to learn new
weights for unseen classes while also maintaining the sim-
ilarity with that of the seen classes. In a similar spirit, we
apply a retainment loss to the attribute VAE module on the
same subset of seen samples x used in the visual counter-
part, as follows.

e e (©)
Likewise, ¢ correspond to the parameter of the posterior
distribution given by the Stage II attribute VAE module, and
¢4 is given by the trained Stage I module. Thus, the over-
all distribution retainment loss can be written as

Lpr = Lig + L.

@)
4.4. Training and Inference Processes

Training. First, the visual and attribute VAE modules of
Stage I are trained using the seen training data, namely, vi-
sual seen features and the corresponding seen class attribute
vectors, based on the alignment loss Lajign in Eq. (3).

Once Stage [ is trained, the visual and attribute VAE
modules of Stage II are initialized as in Eq. (6). Next, we
employ a generator (see Appendix D for its specification),
trained using the seen class visual samples and attributes,
to further generate synthetic samples for the unseen classes
based on the unseen class attributes. Subsequently, the ini-
tialized weights of the VAE modules are further updated by



Dataset AWA1 CUB FLO SUN
# Images 30,475 11,788 8,189 14,340
Attribute length 85 1,024 1,024 102
Seen classes 40 150 82 645
Unseen classes 5 25 10 36

Table 1. Statistics of the datasets.

training on the synthetic samples and their corresponding
class attributes. Note that the training of Stage II is reg-
ularized by our proposed distribution retainment, Lpg, in
Eq. (7), based on the following overall loss function.

L™ = Lajign + Apr LDR, (3

where Apg is the hyperparameter.

Inference. In Stage I, a test sample x* is first predicted with
a binary outcome w': x" is either from the seen classes
or the rest (unseen or unknown), based on a threshold on
the cosine similarity between the latent visual and attribute
representations, as below.

I

) 9

i {seen, arllrelz}gg(cos(lenZa)) >

rest, otherwise

where +! is the threshold for Stage I. Next, if the test sample
x" is categorized as seen, it will be further passed to the
seen classifier in Stage I to predict the specific seen class,
without continuing with Stage II. On the other hand, if x*
is classified as rest, it proceeds to Stage II.

In Stage II, a test sample x® is again predicted with a
binary outcome w: It is either from the unseen classes or
unknown (i.e., out-of-distribution), based on a threshold on
the cosine similarity between the sample latent vector and
unseen class attribute vector, as shown below.

< > 1I
i {unseen7 gré%%(cos(zxt  Za)) = a0

unknown, otherwise

where ! is the threshold of Stage II. If the test sample is
categorized as unseen, it will be passed to the unseen clas-
sifier in Stage II to predict the specific unseen class. Other-
wise, the sample is rejected as unknown.

5. Experiments

In this section, we conduct experiments to evaluate our
proposed method in comparison to baseline approaches,
along with further model analysis.

5.1. Experiment Setup

Datasets. For our experiments, we consider four commonly
used datasets in Table 1, namely, Animals with Attributes 1
(AWA1) [26], Caltech-UCSD Birds-200-2011 (CUB) [2],

Oxford Flowers (FLO) [37] and SUN Attribute (SUN) [40].
In particular, AWAL1 is coarse-grained with a small num-
ber of high-level classes, while CUB, FLO and SUN have
more fine-grained classes. Note that these datasets origi-
nally contain the seen and unseen splits for ZSL and we
tweak their splits for our proposed OZSL setting. Specifi-
cally, for each dataset, we randomly choose half of the orig-
inal unseen classes as unseen, and treat the other half as un-
known (i.e., out-of-distribution) samples. The seen classes
are maintained as provided in the original split. More de-
tailed descriptions of the datasets are provided in the sup-
plementary material (Appendix A).

Evaluation Metrics. OZSL results are reported by com-
puting top-1 accuracy separately for the seen classes (SA),
unseen classes (UA), and the unknown (UnkA). More im-
portantly, to assess the trade-off among the three types and
measure the overall performance, we compute a weighted
harmonic mean (HM), as shown below. Note that we as-
sign a higher weight to the seen category, as robust seen
class performance is generally expected given that actual
seen class data are provided for training.

1
= 1 T
0.5 X g +0.25 X g5 +0.25 X o

HM Y

Settings and Implementation Details. Following prior
work [56], we use ResNet-101, which is pre-trained on the
ImageNet dataset, as the backbone to extract the visual fea-
tures. The encoder and decoder components of the visual
and attribute VAE modules are implemented using a multi-
layer perceptron. We use a linear LogSoftmax classifier in
the latent space of the VAE modules. A detailed description
of the hyperparameter settings and implementation can be
found in the supplementary material (Appendix B).

Baselines. We compare to the following baselines, which
are broadly sourced from three groups. (1) The first group
is designed for ZSL, namely, GSMFlow [13]. (2) The sec-
ond group is designed for OSR, which includes MSP [23],
ViM [51] and KNN [48]. (3) The third group is designed
to address OZSL and includes the proposed naive gener-
ative methods, namely GSMFlow-MSP, GSMFlow-ViM,
GSMFlow-KNN as mentioned in Sect. 3.2. Note that for
fair comparisons, we used the same synthetic samples gen-
erated via the GSMFlow model for unseen classes across
these baselines and our approach. While we can flexibly
use any generator, and generally, better generator will lead
to better classification performance, GSMFlow has shown
strong empirical results.

In addition to the above baselines, we also consider Con-
trastive Language-Image Pre-training (CLIP) [41]. 1t is
worth noting that CLIP was not originally designed for our
setting, as it is pre-trained on a vast amount of instance-
level textual information and is likely to have encountered



[ AWAL [ CUB [ FLO [ SUN

Method ‘ Seen Unseen Unk HM ‘ Seen Unseen Unk HM ‘ Seen Unseen Unk HM ‘ Seen Unseen Unk HM
GSM (ZSL) 79.9+2.5 82.3+5.6 - 63.7x1.1 71.4+3.7 - 88.7+0.6 88.2+5.1 - - 31.5+0.5 37.7+1.1 - -
CLIP (ZSL) / / / / 60.5+0.4 61.5+5.7 - 71.3+0.2 81.1£9.3 - - 53.7+0.2 59.2+2.8 - -
MSP (OSR) 74.1+0.2 - 89.5+5.7 - 59.9+0.3 49.4+3.3 - 78.6+0.6 61.7+10.3 - 34.8+0.1 - 61.4%1.5 -
ViM (OSR) 26.6+2.3 - 40.8+11.0 - 43.3x1.2 44.4+4.8 - 51.9+1.5 23.1+6.6 - 34.7+0.2 - 15.1+1.4 -
KNN (OSR) 44.3£2.8 - 72.3%11.2 - 39.7+0.9 31.1+3.6 - 58.4+1.4 35.1+6.8 - 38.1+0.3 - 24.9+1.7 -
GSM-MSP (OZSL) |60.4+1.5 43.1£10.7 83.3+2.4 57.8+5.5|41.4+1.8 39.1+3.9 70.7+3.8 45.3+1.4(30.244.2 33.449.1 93.6+3.6 36.8+4.9|29.1+0.2 36.9+1.2 15.9+1.1 25.2+0.7
GSM-ViM (OZSL) |19.1x1.4 42.5+4.1 24.2+7.1 23.1£1.6|41.1£1.2 41.3+3.2 43.9+5.1 41.6+1.6(51.1£0.7 67.5+5.3 20.9+1.8 36.4+1.8|26.3+0.5 18.1+0.6 15.1+0.7 20.2+0.6
GSM-KNN (OZSL)|47.3£1.1 47.2+10.3 65.249.4 50.3+4.8|36.4+2.1 45.1£3.1 36.2+4.9 38.1+1.7|55.3£1.3 54.443.1 32.843.6 44.7+2.5(26.7+0.4 28.1+0.9 23.4+0.1 26.1+0.4
CLIP-MSP (OZSL) / / / / 57.120.6 57.7+6.6 30.4+3.6 46.7+2.8|61.8+0.5 73.5+10.1 54.8+7.3 61.9+2.2|53.4+0.2 58.7+2.8 10.1+1.2 26.1+1.8
CLIPN (OZSL) / / / / 61.7+0.8 57.7+7.5 13.7+£2.5 32.243.169.2+0.2 75.1+8.3 20.6+£9.2 42.4+8.6|54.7+0.1 60.9+3.4 10.6+2.8 26.8+4.3
Ours (OZSL) 69.5+1.0 47.9£3.7 51.6£5.4 57.9+3.1|46.1£0.3 41.9£5.4 53.8+2.2 47.5+2.4|80.1+0.6 S51.1+9.1 61.1+7.1 65.5£5.2|29.3+2.1 31.7+1.1 40.8+2.2 32.1+1.3

Table 2. Top-1 accuracy of our proposed OZSL method and the baselines. ‘-* denotes that the method cannot handle a certain category of
samples. ‘/* denotes that CLIP-based methods cannot be applied to the AWA1 dataset, as image input is required by CLIP but AWA1 has

not made the images public. GSMFlow is abbreviated as ‘GSM’.

the unseen class images during the pre-trainng stage. On
the contrary, other baselines and our proposed method are
trained on a single description for each in-distribution class
and have not seen any unseen class images before inference.
Nevertheless, the pre-trained CLIP can still be used for
ZSL. Likewise, CLIP+MSP is an extension that employs a
threshold on the cosine similarity measure, and can be used
for OZSL. Lastly, a variant of CLIP, called CLIPN [50], is
designed to handle unknown samples in the OZSL setting.
A detailed introduction of the baselines and their settings
can be found in the supplementary material (Appendix C).

5.2. Performance Comparison with Baselines

We report the results of various baselines and our ap-
proach in Table 2, and make several observations.

First, the group of ZSL approaches including GSMFlow
and CLIP can detect samples from seen and unseen classes,
but cannot detect unknown samples. This limitation re-
stricts their application in open-world environments. Fur-
thermore, the inability to handle unknown samples can sig-
nificantly increase their false positive rates on the seen and
unseen classes, as some unknown samples would be mis-
classified into these classes.

Similarly, the OSR approaches, namely, MSP, ViM and
KNN can detect samples from the seen classes and can flag
unknown samples. However, they cannot identify samples
from the unseen classes which increases the false positive
rates on seen and unknown categories.

In the third group, we compare to several OZSL base-
lines. First, as discussed in Sect. 1, it is difficult to han-
dle samples from all three categories (seen, unseen, and
unknown) simultaneously. Hence, one-stage approaches
are inferior, especially in the performance of seen classes.
Nevertheless, among the one-stage approaches, GSMFlow-
ViM/KNN tend to face more difficulty than the threshold-
based methods. A potential reason could be that they es-
timate the probability of a sample being unknown based
on the generated synthetic samples, which can contain sig-
nificant noises compared to the actual samples. In con-
trast, threshold-based methods use a confidence threshold
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Figure 4. Results of ablation studies.

to determine unknown samples, performing more consis-
tently across all three categories and emerging as strong
baselines. Meanwhile, CLIPN can generalize well for seen
and unseen classes, but its performance on unknown is quite
low. Finally, our proposed two-stage approach consistently
achieves robust performance across all three categories and
three datasets, resulting in highest overall performance as
measured by the harmonic mean.

5.3. Ablation Studies

We first conduct an ablation study to show the contri-
bution of the proposed knowledge transfer mechanism. In
that regard, we consider three variants, namely, (1) Scratch:
Training Stage II from random initial weights and without
distribution retainment; (2) Weight Initialization: Training
Stage II with the trained weights of Stage I as the initial
weights and without distribution retainment; and (3) Our
proposed full model, i.e., with both weight initialization and
distribution retainment. Fig. 4(a) shows the harmonic mean
of the three variants. It can be seen that Weight Initializa-
tion can sometimes lead to lower performance while our
proposed full model always gives better performance. This
is because, just weight initialization cannot force the model
to maintain seen class similarity while learning new weights
for unseen classes.

Second, we consider the effect of performing OZSL in
two stages. In that regard, we again compare three variants.
(1) GSMFlow-MSP: the one-stage baseline method that
demonstrates competitive performance across all datasets in
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Figure 5. Effect of Apr on the overall model performance.

Table 2; (2) Our Stage I + GSMFlow-MSP: a modified two-
stage baseline where the first stage is our proposed Stage I
to determine whether a sample is seen or other classes (un-
seen or unknown) and the second stage is the GSMFlow-
MSP method which determines whether a sample is unseen
or unknown; (3) Our proposed two-stage approach. Fig.
4(b) compares the performance of the three variants. Re-
sults show that, simply extending our Stage I with a simple
threshold-based second stage would already improve per-
formance over the one-stage baseline. Meanwhile, our pro-
posed two-stage approach achieves the best performance,
demonstrating the benefit of our design with cross-stage
knowledge transfer.

5.4. Parameter Sensitivity Analysis

The proposed distribution retainment loss is weighted by
a hyperparameter, Apg, in order to achieve a balanced trade-
off with other losses. Here we investigate the effect of the
weight on the overall performance. Specifically, we vary
the value of Apg over {0.01, 0.1, 1, 10}, and present the har-
monic mean on the three datasets in Fig. 5. The results show
a similar pattern across the datasets: Generally, lower val-
ues of Apg lead to robust performance. On the other hand,
higher values often result in suboptimal performance, im-
plying that the proposed distribution retainment serves as
an auxiliary constraint to bridge the two stages, but the two
stages are still distinct. Overall, \pr = 0.1 appears to be a
robust setting across different datasets.

5.5. Visualization

We aim to get an intuitive understanding of how the pro-
posed distribution retainment impacts the learned represen-
tations. Specifically, we plot the latent space of Stage II
without or with the distribution retainment loss in Fig. 6, on
the AWA1 and CUB datasets. It is evident that employing
the distribution retainment loss reduces the overlap between
the unseen class samples and the unknown samples as com-
pared to not using the loss. This further verifies that our pro-
posed distribution retainment helps in drawing more crisp
decision boundaries between the unknown samples and the
unseen class samples.

(a) AWALI without Lpr (b) AWAL1 with Lpr

(c) CUB without Lpg (d) CUB with Lpgr

Figure 6. ¢-SNE visualization of the latent space for Stage II of
our proposed model, without or with the distribution retainment
loss Lpr. The blue points represent the unseen samples and the
red points represent the unknown samples.

6. Conclusion

Detection of unintentionally encountered unknown sam-
ples during inference in the real world is an important prob-
lem that needs to be addressed to ensure the trustworthiness
of the model. In this paper, we tackle a novel and practi-
cal problem, i.e., OZSL by proposing a two-stage approach
wherein we first identify the seen class samples from the
rest (unseen and unknown) in Stage I and identify unseen
class samples from unknown samples in Stage II. Further-
more, we propose a cross-stage knowledge transfer mecha-
nism in order to leverage the semantic relatedness between
seen and unseen classes, to improve the overall performance
of the model. We show the efficacy of the proposed method
on three benchmark ZSL datasets, which are modified to
address the OZSL problem.
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