Incremental and Accuracy-aware Personalized Pagerank through Scheduled Approximation

Fanwei Zhu, Yuan Fang, Kevin Chang, Jing Ying

Zhejiang University University of Illinois at Urbana-Champaign

Motivation: Useful for ranking, expensive to compute

• Graphs are everywhere, calling for graph-based ranking algorithm

social network

DBLP citation network

- Personalized Pagerank (PPV)
 - Effective for ranking
 - Expensive to compute

Key insight: Scheduled approximation

• Partitioning by importance

• Prioritizing computation

b	0.098	
c	0.056	PF
d	0.063	PH PP
e	0.021	
f	0.016	

= PPV

Novelty: Incremental & accuracy-aware

• Incremental query processing

Thru iterations

• Accuracy aware

$$Err^{(i)} = \sum_{q} |PPV(p) - PPV^{(i)}(p)| = 1 - \sum_{q} PPV^{(i)}(p)$$

sum of
current
estimates

Challenges: Efficient implementation

• Challenge 1: How to effectively partition tours?

importance of tours w.r.t query?

• Challenge 2: How to efficiently compute each PPV increment?

Solution: Hub-based realization

• Hub nodes

- Discriminating: high out-degree decaying reachability
- Sharing: popularity segments shared by tours

 $H = \{a, c\}$

Solution: Hub-based realization

• Hub nodes

- Discriminating: high out-degree decaying reachability
- Sharing: popular segments shared by tours

Challenge 1: Discriminating provides partition metric

• More hubs, less important

• Partition tours by hub length (# of hubs)

Challenge 2: Sharing enables reusing overlaps

Reuse "prefix" among iterations
Precompute "building blocks"

Results: Fast with accuracy control

• More iterations render better accuracy

(b) LiveJournal (b) LiveJournal (c) LiveJournal (c) LiveJournal (c) LiveJournal (c) n = 0 $\square n = 1$ $\square n = 2$

• Faster online/offline computation

Conclusion and future work

• Conclusion

- a scheduled approximation strategy to approximate PPVs
- an efficient hub-based realization
- up to 7x faster with accuracy control

• Future work

- automatic parameter configuration
- tackling dynamic, evolving graph
- generalizing to other graph algorithms

Thank you!