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 Graphs are everywhere, calling for graph-based 

ranking algorithm

 Personalized Pagerank (PPV)

 Effective for ranking

 Expensive to compute
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social network DBLP citation network

Motivation: 

Useful for ranking, expensive to compute
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Prohibitive space/time cost

Arbitrary query

Focus: 

Efficiency aspect of PPV computation



 Partitioning by importance

 Prioritizing computation
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Key insight: Scheduled approximation
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 Incremental query processing

 Accuracy aware

T0 T0

partition

Tour set:

)0(
Err

)1(
Err

)2(
Err

enough ?
)0(

PPV enough ?
)1(

PPV enough ?
)(2

PPV

T1 T0
T1

T2
T2

Estimates:

 −=−=
q

i

q

ii pPPVpPPVpPPVErr )(1|)()(| )()()(

Thru iterations

sum of 

current 

estimates

Novelty: Incremental & accuracy-aware



 Challenge 1: How to effectively partition tours?

 Challenge 2: How to efficiently compute each 

PPV increment?
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Challenges: Efficient implementation



 Hub nodes

 Discriminating: high out-degree decaying reachability

 Sharing: popularity segments shared by tours
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Solution: Hub-based realization



 Hub nodes

 Discriminating: high out-degree decaying reachability

 Sharing: popular segments shared by tours
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Solution: Hub-based realization



 More hubs, less important

 Partition tours by hub length (# of hubs)
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Challenge 1:

Discriminating provides partition metric



 Reuse “prefix” among iterations

 Precompute “building blocks”
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Challenge 2:

Sharing enables reusing overlaps



 More iterations render better accuracy

 Faster online/offline computation
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4~11x faster than H

3~14x faster than M

2~7x faster than H

2~5x faster than M

Results: Fast with accuracy control



 Conclusion

 a scheduled approximation strategy to approximate 

PPVs

 an efficient hub-based realization

 up to 7x faster with accuracy control

 Future work

 automatic parameter configuration

 tackling dynamic, evolving graph

 generalizing to other graph algorithms
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Conclusion and future work
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Thank you!


