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ABSTRACT
Dynamic graph modeling is crucial for understanding complex

structures in web graphs, spanning applications in social networks,

recommender systems, and more. Most existing methods primarily

emphasize structural dependencies and their temporal changes.

However, these approaches often overlook detailed temporal as-

pects or struggle with long-term dependencies. Furthermore, many

solutions overly complicate the process by emphasizing intricate

module designs to capture dynamic evolutions. In this work, we

harness the strength of the Transformer’s self-attention mechanism,

known for adeptly handling long-range dependencies in sequence

modeling. Our approach offers a simple Transformer model, called

SimpleDyG, tailored for dynamic graph modeling without complex

modifications. We re-conceptualize dynamic graphs as a sequence

modeling challenge and introduce a novel temporal alignment tech-

nique. This technique not only captures the inherent temporal

evolution patterns within dynamic graphs but also streamlines the

modeling process of their evolution. To evaluate the efficacy of

SimpleDyG, we conduct extensive experiments on four real-world

datasets from various domains. The results demonstrate the com-

petitive performance of SimpleDyG in comparison to a series of

state-of-the-art approaches despite its simple design.
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1 INTRODUCTION
Graph-structured data are prevalent on the World Wide Web [52],

such as social networks [9, 33], recommender systems [45, 47], cita-

tion graphs [15, 53, 54], dialogue systems [24, 46], and so on. Thus,

graph-based mining and learning have become fundamental tools

in many Web applications, ranging from analyzing communication

patterns within social friendships, to predicting users’ behavior

on digital platforms and investigating citation trends in the aca-

demic community. Traditionally, many works focus on static graphs

characterized by fixed nodes and edges. However, many real-world

graphs on the Web are intrinsically dynamic, which continuously

evolve over time [37]. That is, the nodes and their edges in such

graphs are undergoing constant addition or reorganization based

on some underlying patterns of evolution. For example, in a social

network like UCI [31], where nodes represent users and edges rep-

resent messages exchanged between users, new edges constantly

emerge as users frequently exchange messages with their friends.

To study this important class of graphs and their applications on

theWeb, we focus on dynamic graph modeling in this paper, aiming

to capture the evolving patterns in a dynamic graph.

Existing works for dynamic graph modeling mainly fall into two

categories: discrete-time approaches [32, 37] and continuous-time

approaches [6, 40, 44, 49], as shown in Figures 1(a) and 1(b), re-

spectively. The former regards dynamic graphs as a sequence of

snapshots over a discrete set of time steps. This kind of approach

usually leverages structural modules such as graph neural networks

(GNN) [48] to capture the topological information of graphs, and

temporal modules such as recurrent neural networks (RNN) [38] to

learn the sequential evolution of the snapshots [37]. Meanwhile, the

latter focuses onmodeling continuous temporal patterns via specific

temporal modules such as temporal random walk [30] or tempo-

ral kernel [7], illustrated by Figure 1(b). Despite the significant

progress made in dynamic graph modeling, there still exist some

key limitations. First, the modeling of temporal dynamics on graphs

is still coarse-grained or short-termed. On one hand, discrete-time

approaches discard the fine-grained temporal information within

the snapshot, which inevitably results in partial loss of temporal pat-

terns. On the other hand, while continuous-time approaches retain

full temporal details by mapping each interaction to a continuous

temporal space, capturing long-term dependency within historical

graph data still remains a difficult problem [36, 51]. Second, the

majority of the existing works rely extensively on the message-

passing GNNs to encode the structural patterns in dynamic graphs.

Although powerful in graph modeling, the message-passing mech-

anism shows inherent limitations such as over-smoothing [5] and

over-squashing [1] that become more pronounced as model depth

increases, preventing deeper and more expressive architectures.

https://doi.org/10.1145/3589334.3645622
https://doi.org/10.1145/3589334.3645622
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(c) Self-attention in Transformer

Figure 1: Dynamic graph modeling can be summarized as follows: (a) Discrete-time methods treat the dynamic graph as a series
of snapshots, ignoring the timing details within each. (b) Continuous-time methods factor in the timing of interactions, using
them along with a graph learning process to update node representations 𝑋 𝑡

𝑖
at each time 𝑡 . (c) Transformer-based models

handle node sequences continuously, utilizing self-attention to recognize long-term dependencies.

In pursuit of addressing these limitations, we have been intrigued

by the successful application of Transformer [41] and its variants in

natural language processing (NLP) [3, 16, 22] and computer vision

(CV) [8, 25]. The success is underpinned by two distinct advantages

inherent to the Transformer architecture: as shown in Figure 1(c),

it can naturally support a continuous sequence of data without the

need for discrete snapshots, and its self-attention mechanism can

capture long-term dependency [41], which are important factors for

dynamic graph modeling. Transformer also presents a potentially

better alternative to capturing topological information, as it is less

affected by the over-smoothing and over-squashing issues associ-

ated with message-passing GNNs. Hence, in this work, we explore

the feasibility of the Transformer architecture for dynamic graph

modeling. In fact, we have observed a growing body of research

trying to modify the Transformer for static graphs [17, 34, 50].

Nonetheless, these studies primarily focus on integrating graph

structural knowledge into the vanilla Transformer model, which

generally still leverage message-passing GNNs as auxiliary mod-

ules to refine positional encoding and attention matrices based

on graph-derived information [28]. More recently, Ying et al. [50]

have demonstrated that the pure Transformer architecture holds

promise for graphs. However, all these previous Transformer-based

approaches only focus on static graphs, leaving unanswered ques-

tions about the feasibility for dynamic graphs, as follows.

The first challenge lies in the need to preserve the historical

evolution throughout the entire timeline. However, due to the cal-

culation of pairwise attention scores, existing Transformer-based

graph models can only deal with a small receptive field, and would

face serious scalability issues on even a moderately large graph.

Notably, their primary application is limited to small-size graphs

such as molecular graphs [34]. However, many dynamic graphs on

the Web such as social networks or citation graphs are generally

much larger for the vanilla Transformer to handle. To this end, we

adopt a novel strategy wherein we treat the history of each node as

a temporal ego-graph, serving as the receptive field of the ego-node.

The temporal ego-graph is much smaller than the entire graph, yet

it retains the full interaction history of the ego-node in the dynamic

graph. Thus, we are able to preserve the temporal dynamics of ev-

ery user across the entire timeline, while simultaneously ensuring

scalability. Subsequently, this temporal ego-graph can be tokenized

into a sequential input tailored for the Transformer. Remarkably,

through this simple tokenization process, no modification to the

original Transformer architecture is required.

The second challenge lies in the need to align temporal infor-

mation across input sequences. Specifically, on dynamic graphs

different input sequences converge within a common time domain—

whether through absolute points in time (e.g., 10am on 12 October

2023) or relative time intervals (e.g., a one-hour window), with

uniformity across all sequences generated from different nodes’

history. In contrast, sequences for natural language or static graphs

lack such a universal time domain, and can be regarded as largely

independent of each other. Thus, vanilla sequences without tem-

poral alignment lack a way to differentiate variable time intervals

and frequency information. For example, a bursty stream of inter-

actions, happening over a short one-hour interval, has a distinct

evolution pattern from a steady stream containing the same number

of interactions, but happening over a period of one day.

Therefore, it becomes imperative to introduce a mechanism that

infuses temporal alignment among distinct input sequences gener-

ated from the ego-graphs. To address this challenge, we carefully

design special temporal tokens to align different input sequences

in the time domain. The temporal tokens serve as indicators of

distinct time steps that are globally recognized across all nodes,

thereby unifying different input sequences. While achieving the

global alignment, local sequences from each node still retain the

chronological order of the interactions in-between the temporal

tokens, unlike traditional discrete-time approaches where temporal

information within each snapshot is lost.

Based on the above insights, we propose a Simple Transformer

architecture for Dynamic Graph modeling, named SimpleDyG.
The word “simple” is a reference to the use of the original Trans-

former architecture without any modification, where the capability

of dynamic graph modeling is simply and solely derived from con-

structing and modifying the input sequences. In summary, the

contribution of our work is threefold. (1) We explore the poten-

tial of the Transformer architecture for modeling dynamic graphs.

We propose a simple yet surprisingly effective Transformer-based

approach for dynamic graphs, called SimpleDyG, without com-

plex modifications. (2) We introduce a novel strategy to map a

dynamic graph into a set of sequences to improve the scalability,

by considering the history of each node as a temporal ego-graph.

Furthermore, we design special temporal tokens to achieve global

temporal alignment across nodes, yet preserving the chronological

order of interactions at a local level. (3) We conduct extensive exper-

iments and analyses across four real-world Web graphs, spanning

diverse domains on the Web. The empirical results demonstrate not

only the feasibility, but also the superiority of SimpleDyG.
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2 RELATEDWORK

Dynamic Graph Learning.Current dynamic graph learningmeth-

ods can be categorized into discrete-time and continuous-time ap-

proaches. In discrete-time methods, dynamic graphs are treated as

a series of static graph snapshots taken at regular time intervals.

To model both structural and temporal aspects, these approaches

integrate the GNNs with sequence models, such as RNNs or self-

attention mechanisms [10, 32, 37, 39]. For instance, DySAT [37]

leverages a graph attention network and self-attention as fundamen-

tal components for both structural and temporal modules, whereas

EvolveGCN [32] employs an RNN to evolve the parameters of

graph convolutional networks. Nevertheless, they often fall short

of capturing the granular temporal information. In contrast, the

continuous-time approaches consider every interaction event at

each specific timestamp. Some approaches model dynamic graph

evolution as temporal random walks or causal anonymous walks

[30, 43]. Another line of research focuses on time encoding tech-

niques, which integrate with graph structure modeling, such as

the temporal graph attention used in TGAT [49] and TGN [36],

or MLP-Mixer layers applied in GraphMixer [6]. Additionally, re-

searchers also leverage temporal point processes to capture the

graph formation process [14, 40, 44]. Despite the promise demon-

strated by continuous-time approaches, it is important to note that

they come with limitations in capturing long-term dependencies

within historical data.

The differences between our work and the previous dynamic

graph learning methods lie in two points. First, our method effec-

tively mitigates the long-term dependency challenge, leveraging the

inherent advantages of the Transformer architecture. Second, our

method preserves the chronological history of each input sequence.

In particular, the temporal alignment mechanism synchronizes dif-

ferent input sequences, empowering our model to capture both

global and local information within the dynamic graphs.

Transformers for Graphs. Transformer architectures for graphs

have emerged as a compelling alternative to conventional GNNs,

aiming to mitigate issues like over-smoothing and over-squashing.

Prior research has focused on integrating graph information into

the vanilla Transformer through diverse strategies. Some methods

integrate GNNs as auxiliary components to bolster structural com-

prehension within the Transformer architecture [18, 35]. Others

focus on enriching positional embeddings by spatial information de-

rived from the graph. For instance, Graphormer [50] integrates the

centrality, spatial and edge encoding into Transformers, whereas

Cai and Lam [4] adopt distance embedding for tree-structured ab-

stract meaning representation graph, and Kreuzer et al. [19] utilize

the full Laplacian spectrum to learn the positional encoding. There

are also studies on refining the attention mechanism in Transform-

ers for graph modeling. For instance, Min et al. [29] employ a graph

masking attention mechanism to seamlessly inject graph-related

priors into the Transformer architecture. More recently, Kim et al.

[17] have shed light on the effectiveness of pure Transformers in

graph learning without complex designs. Their approach treats all

nodes and edges as independent tokens, serving as inputs for the

Transformer. Besides, Mao et al. [26] propose a Transformer-based

model for heterogeneous graphs, integrating local structures and

heterogeneous relations into the attention mechanism.

It is worth noting that most of the previous works based on

Transformers mainly deal with static graphs. Recently, Yu et al.

[51] have introduced a Transformer-based model designed for dy-

namic graph learning, which is contemporary with our work. The

difference lies in that they rely on complex designs for capturing

co-occurrence neighbors of different nodes and encoding temporal

intervals. In contrast, we explore a simple Transformer for dynamic

graphs without the need for complex modifications.

3 PRELIMINARIES
We first define the problem of dynamic graph modeling. Then, we

briefly introduce the background of the Transformer architecture.

3.1 Dynamic Graph Modeling
We define a dynamic graph as G = (V, E,T ,X) with a set of

nodes V , edges E, a time domain T and an input feature matrix

X. It can be characterized by a sequence of time-stamped edges

G = {(𝑣𝑖 , 𝑣 𝑗 , 𝜏)𝑛 : 𝑛 = 1, 2, . . . , |E |}. Here, each tuple (𝑣𝑖 , 𝑣 𝑗 , 𝜏)
denotes a distinct interaction between nodes 𝑣𝑖 and 𝑣 𝑗 at time

𝜏 ∈ T , with |E | representing the total number of interactions in the

dynamic graph. Given the dynamic graph G, we learn a model with

parameter 𝜃 to capture the temporal evolution of the graph. The

temporal representations encoded by the learned model 𝜃 can be

used for different tasks such as node classification, link prediction

and graph classification.

3.2 Transformer Architecture
The standard Transformer architecture comprises two main compo-

nents: the multi-head self-attention layers (MHA) and the position-

wise feed-forward network (FFN). In the following part, we will

briefly introduce these blocks.

We represent an input sequence as H = ⟨h1, . . . ,h𝑁 ⟩ ∈ R𝑁×𝑑
,

where h𝑖 is the hidden representation for token 𝑖 , and 𝑑 is the

dimension of the representations. The MHA module projects H to

a triplet (Q,K,V), as follows.

Q = HW𝑄 ,K = HW𝐾 ,V = HW𝑉 , (1)

where W𝑄 ∈ R𝑑×𝑑𝐾 , W𝐾 ∈ R𝑑×𝑑𝐾 , W𝑉 ∈ R𝑑×𝑑𝑉 are learnable

weights, with 𝑑𝐾 = 𝑑𝑉 = 𝑑/𝐻 . Overall, 𝐻 such projections are

performed, resulting in (Qℎ,Kℎ,Vℎ) for 1 ≤ ℎ ≤ 𝐻 . The self-

attention operation is then applied to each triplet:

headℎ = Softmax

(
QℎK𝑇ℎ√
𝑑𝐾

)
Vℎ, (2)

MHA(H) = Concat(head1, . . . , head𝐻 )W𝑂 , (3)

whereW𝑂 ∈ R𝑑×𝑑 is a learnable weight matrix.

The output of the MHA module is then passed through a feed-

forward network layer followed by residual connection [12] and

layer normalization (LN) [2]. Finally, the output of the lth layer H𝑙

is computed as follows:

Ĥ𝑙 = LN(H𝑙−1 +MHA(H𝑙−1)), (4)

H𝑙 = LN(Ĥ𝑙 + FFN(Ĥ𝑙 )). (5)
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Figure 2: Overall framework of SimpleDyG. Best viewed in color. The numerical values adjacent to the links in (a) and (b), as
well as beneath the nodes in (c), represent the time elapsed from the beginning, indicating the moments at which the links
emerge (ranging from 0 to 1). The color intensity of nodes in the historical sequence represents the time span, where darker
colors signify a longer duration, while lighter colors indicate a shorter duration.

4 PROPOSED APPROACH
The overall framework of SimpleDyG is illustrated in Figure 2. Our

framework is applied to a dynamic graph G (Figure 2(a)), where

multiple temporal links emerge at various time points. In order to

capture the dynamic evolution, we begin by extracting a temporal
ego-graph for each ego-node, which contains the entire historical

interactions as shown in Figure 2(b). These temporal graphs are

subsequently transformed into sequences while preserving their

chronological order. To incorporate temporal alignment among

different ego-graphs, we segment the timeline into various time

spans with the same temporal interval as in Figure 2(c). Then, we

add temporal tokens into the ego-sequence to identify different

time spans. Finally, these sequences are fed into a Transformer

architecture to facilitate various downstream tasks.

4.1 Temporal Ego-graph
The strategy of mapping a dynamic graph into a sequence of tokens

is crucial for utilizing the Transformer architecture for dynamic

graph modeling. In this work, we regard nodes in the dynamic

graphs as input tokens, which is a common approach in Trans-

former models for graphs. Besides, to preserve the historical in-

teractions of all the nodes while ensuring scalability, we extract

a temporal ego-graph for each node in the dynamic graph. Each

ego-graph serves as the receptive field of its ego-node, which is

mapped into a sequence to capture the structural and temporal

evolution of the ego-node.

Specifically, we denote 𝑣𝑖 ∈ V as an ego-node in the dynamic

graph G. We extract the historically interacted nodes for 𝑣𝑖 and

construct an temporal ego-graph centered at 𝑣𝑖 . Formally, we denote

the temporal ego-graph for the ego-node 𝑣𝑖 as a chronologically

ordered sequence𝑤𝑖 = ⟨𝑣1
𝑖
, 𝑣2
𝑖
. . . 𝑣

|𝑤𝑖 |
𝑖

⟩, where |𝑤𝑖 | is the length of

the sequence. Note that ∀1 ≤ 𝑘 < 𝑘′ ≤ |𝑤𝑖 |, 𝑣𝑘𝑖 and 𝑣𝑘
′
𝑖

represent

some historical interactions (𝑣𝑖 , 𝑣𝑘𝑖 , 𝜏) and (𝑣𝑖 , 𝑣𝑘
′
𝑖
, 𝜏 ′), respectively,

such that 𝜏 ≤ 𝜏 ′.
To better model the patterns within the sequences, we follow

similar practices as in natural language processing and include

some special tokens designed for our task. During training, the

input sequence 𝑥𝑖 and the ground-truth output sequence 𝑦𝑖 are

constructed as follows
1
.

𝑥𝑖 = ⟨|hist|⟩, 𝑣𝑖 , 𝑣1𝑖 , . . . 𝑣
|𝑤𝑖 |
𝑖

, ⟨|endofhist|⟩,

𝑦𝑖 = ⟨|pred|⟩, 𝑣 |𝑤𝑖 |+1
𝑖

, . . . , 𝑣
|𝑤𝑖 |+𝑧
𝑖

⟨|endofpred|⟩,
(6)

where the “⟨|hist|⟩” and “⟨|endofhist|⟩” are special tokens indicating
the start and end of the input historical sequence, and “⟨|pred|⟩”
and “⟨|endofpred|⟩” are reserved for signalling the prediction of the

next nodes following the input sequence. Specifically, the model

will halt its predictions once the end special token is generated, en-

abling automatic decisions on the number of predictions at a future

time point. Potentially, by devising appropriate special tokens, our

framework can also support other operations such as link deletion,

as illustrated in Appendix A.

4.2 Temporal Alignment
In the original Transformer, the input sequence is treated as a se-

quence of tokens, and the model captures the relationships between

these tokens based on their relative positions in the sequence. For

dynamic graph modeling, the positions in the sequence represent

the temporal order. However, it inherently lacks the capability to ac-

count for a universal time domain across sequences, to synchronize

the time interval and frequency information.

1
Special tokens in the beginning and at the end such as “⟨|endoftext|⟩” are omitted for

easy illustration.
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We introduce a straightforward yet effective strategy to incor-

porate temporal alignment into the input sequences of the Trans-

former. First, we segment the time domain T into coarse-grained

time steps, where the intervals between two consecutive time steps

are equal, such as one week or one month, determined by dataset

characteristics. It is important to note that our approach differs

from discrete-time approaches: Within each time step, we consider

the precise temporal order of each event. In contrast, discrete-time

approaches treat each time step as a static snapshot. Next, we incor-

porate special temporal tokens into the sequences, which explicitly

denote different time steps that are globally recognized across all

sequences. Suppose we split the time domain T into 𝑇 time steps,

where the input sequence includes the first 𝑇 − 1 time steps and

the output sequence covers the last time step. Then, the sequences

of the ego-node 𝑖 can be denoted as follows:

𝑥 ′𝑖 = ⟨|hist|⟩, 𝑣𝑖 , ⟨|time1|⟩, 𝑆1𝑖 , . . . ⟨|timeT-1|⟩, 𝑆𝑇−1𝑖 , ⟨|endofhist|⟩, (7)

𝑦′𝑖 = ⟨|pred|⟩, ⟨|timeT |⟩, 𝑆𝑇𝑖 ⟨|endofpred|⟩, (8)

𝑆𝑡𝑖 = ⟨𝑣𝑡,1
𝑖
, 𝑣
𝑡,2
𝑖

. . . 𝑣
𝑡, |𝑆𝑡

𝑖
|

𝑖
⟩. (9)

Here 𝑆𝑡
𝑖
represents the historical sequence of node 𝑣𝑖 at time step 𝑡

with length |𝑆𝑡
𝑖
|. In particular, “⟨|time1|⟩”, . . . , “⟨|timeT |⟩” are tempo-

ral tokens that serve as indicators of temporal alignment, enabling

the model to recognize and capture temporal patterns in different

sequences. The temporal tokens enhances the Transformer’s ability

to understand the dynamics across the entire graph.

4.3 Training objective
A training instance is formed by concatenating the input 𝑥 and

output 𝑦 as [𝑥 ;𝑦]. We denote it as 𝑅 = ⟨𝑟1, 𝑟2, · · · , 𝑟 |𝑅 | ⟩ with |𝑅 |
tokens. For a given training instance in this format, we follow the

typical masking strategy: During the prediction of the 𝑖-th token,

only the input sequence up to position 𝑖−1, denoted by 𝑅<𝑖 , is taken
into account, while the subsequent tokens are subject to masking.

The joint probability of the next token is calculated as follows:

𝑝 (𝑅) =
|𝑅 |∏
𝑖=1

𝑝 (𝑟𝑖 |𝑅<𝑖 ), (10)

where 𝑝 (𝑟𝑖 |𝑅<𝑖 ) is the probability distribution of the token to be

predicted at step 𝑖 conditioned on the tokens 𝑅<𝑖 . It is computed as

𝑝 (𝑟𝑖 |𝑅<𝑖 ) = LN(R𝑙<𝑖 )Wvocab
, (11)

where LN means layer normalization, R𝐿
<𝑖

denotes the hidden rep-

resentation of the historically generated tokens before step 𝑖 , which

is obtained from the last layer of the Transformer, and W
vocab

is

a learnable matrix aiming to compute the probability distribution

across the vocabulary of nodes in the graph.

Given a set of training instances R, the loss function for train-

ing the model with parameters 𝜃 is defined as the negative log-

likelihood over R, as follows:

L = −
∑︁
𝑅∈R

|𝑅 |∑︁
𝑖=1

log 𝑝𝜃 (𝑟𝑖 |𝑅<𝑖 ) . (12)

We outline the training procedure of SimpleDyG in Algorithm 1.

For each prediction step 𝑖 of one training instance, the hidden rep-

resentations of the generated sequence R<𝑖 are used for predicting

Algorithm 1: Training Procedure of SimpleDyG

Input: Dynamic graph G = (V, E,T ,X),
training instances R

Output:Model with parameters 𝜃

initialize 𝜃

while not converged do
sample a batch of instances B from R
for each instance 𝑅 = ⟨𝑟1, 𝑟2, · · · , 𝑟 |𝑅 | ⟩ ∈ B do

while step 𝑖 < |𝑅 | do
/* prediction steps for one instance */

calculate the representation R<𝑖 for 𝑅<𝑖
calculate the joint probability by Eqs. 10 and 11

calculate the loss by Eq. 12

update 𝜃 via backpropagation

return 𝜃

Table 1: Dataset statistics

Dataset UCI ML-10M Hepth MMConv

Domain Social Rating Citation Conversation

# Nodes 1,781 15,841 4,737 7,415

# Edges 16,743 48,561 14,831 91,986

the next token. The joint probability of the next token is computed

using Equations 10 and 11. Our model is trained using the Adam

optimizer with a loss function based on the negative log-likelihood

in Equation 12.

5 EXPERIMENTS
In this section, we conduct extensive experiments on four public

datasets across different domains, with comparison to the state-of-

the-art baselines and detailed analysis of the model performance.

5.1 Experimental Setup

Datasets. To evaluate the performance of our proposed method,

we conducted experiments on four datasets from various domains,

including the communication network UCI [31], the rating network

ML-10M [11], the citation network Hepth [21], and the multi-turn

conversation dataset MMConv [23]. The detailed statistics of all

datasets after preprocessing are presented in Table 1.

UCI [31]: It represents a social network in which edges represent
messages exchanged among users. For temporal alignment, we

employ 13 time steps following previous work [37].

ML-10M [11]: We utilize the ML-10M dataset from MovieLens

comprising user-tag interactions, where the edges connect users

to the tags they have assigned to specific movies. For temporal

alignment, we employ 13 time steps following previous work [37].

Hepth [21]: It is a citation network for high-energy physics

theory. For temporal alignment, we extract 24 months of data from

this dataset and split them into 12 time steps based on the wall-clock

timestamps. Note that this dataset contains new emerging nodes as

time goes on. We use the word2vec model [27] to extract the input

feature for each paper based on the abstract.



WWW ’24, May 13–17, 2024, Singapore, Singapore Yuxia Wu, Yuan Fang, and Lizi Liao

MMConv [23]: It contains a multi-turn task-oriented dialogue

system that assists users in discovering places of interest across

five domains. Leveraging this rich annotation, we represent the

dialogue as a dynamic graph, a widely adopted strategy in task-

oriented dialogue systems. For temporal alignment, we employ 16

time steps, each corresponding to a distinct turn in the conversation.

Baselines. We compare SimpleDyG with baselines in two cate-

gories: (1) discrete-time approaches: DySAT [37] and EvolveGCN

[32]; (2) continuous-time approaches: DyRep [40], JODIE [20], TGAT

[49], TGN [36], TREND [44] and GraphMixer [6].

• DySAT [37] leverages joint structural and temporal self-attention

to learn the node representations at each time step.

• EvolveGCN [32] employs RNNs to evolve graph convolutional

network parameters.

• DyRep [40] utilizes a two-time scale deep temporal point process

model to capture temporal graph topology and node activities.

• JODIE [20] focuses on modeling the binary interaction among

users and items by two coupled RNNs. A projection operator is

designed to predict the future node representations at any time.

• TGAT [49] employs temporal graph attention layers and time

encoding techniques to aggregate temporal-topological features.

• TGN [36] combines the memory modules and message passing

to maintain the dynamic representations. This model also adopts

time encoding and temporal graph attention layers.

• TREND [44] exploits Hawkes process-based GNNs for dynamic

graphmodeling. It integrates event and node dynamics to capture

the individual and collective characteristics of events.

• GraphMixer [6] relies onMLP layers and neighbormean-pooling

to learn the edge and node encoders. An offline time encoding

function is adopted to capture the temporal information.

Implementation Details. We evaluate the performance of Sim-

pleDyG on the link prediction task. Given the ego-nodes, the ob-

jective of the link prediction task is to predict the possible linked

nodes at time step 𝑇 . For all the datasets, we follow the previous

setting [6] by treating the dynamic graphs as undirected graphs.

We split each dataset into training/validation/testing based on the

predefined time steps. We choose the data at the last time step 𝑇

as the testing set, while the data at time step 𝑇 − 1 serves as the

validation set, with the remaining data for training. We tune the

hyperparameters for all methods on the validation set. All experi-

ments are repeated ten times, and we report the averaged results

with standard deviation. We provide further implementation details

and hyperparameter settings in Appendices B and C.

Evaluation Metrics. In our evaluation, we carefully select metrics

catered to our specific task. The goal of the link prediction task is to

predict a set of nodes linked to each ego-node at a given time step.

Notably, our SimpleDyG model predicts a node sequence, with each

prediction influenced by the prior ones until the generation of an

end token. In contrast, the baseline models make simultaneous pre-

dictions of entire ranking sequences for each ego-node. To evaluate

the ranking performance and the similarity between predicted and

ground-truth node sets, we employ two key metrics: NDCG@5 and
Jaccard similarity. NDCG@5 is a well-established metric commonly

used in information retrieval and ranking tasks [42], aligning with

our objective of ranking nodes and predicting the top nodes linked

to an ego-node. On the other hand, Jaccard similarity is valuable for

quantifying the degree of overlap between two sets [13], measuring

the similarity between predicted nodes and the ground-truth nodes

associated with the ego-node. Specifically, for the baseline models,

we choose the top k nodes (𝑘 = 1, 5, 10, 20) as the predicted set,

as they are not generative models and cannot determine the end

of the prediction. We then select the maximum Jaccard similarity

value across different k’s as the final Jaccard similarity score. This

evaluation strategy ensures a thorough and fair assessment of the

baselines in comparison to SimpleDyG.

5.2 Performance Comparison to Baselines
We report the results of all methods under NDCG@5 and Jaccard
across four diverse datasets in Table 2. Generally speaking, our

method outperforms all the baselines on all datasets, and we make

the following key observations.

First, we find that continuous-time approaches generally per-

form better than discrete ones across a wide range of scenarios,

indicating the important role of time-related information in dy-

namic graph analysis. Notably, continuous-time baselines such as

GraphMixer exhibit superior performance. This superiority can

be mainly attributed to the simple MLP-Mixer architecture, which

makes it easier to capture long-term historical sequences with lower

complexity. In contrast, other models like DyRep, TGAT, and TGN,

which rely on complex designs such as GNNs and GATs, display

subpar performance. This phenomenon stems from the inherent

limitations of GNNs and GATs in capturing distant relationships or

broader historical contexts within predefined time windows.

Second, in inductive scenarios like the Hepth dataset, where the

ego-nodes in the testing data are newly emerged nodes, continuous-

time models that employ a GNN-based backbone exhibit supe-

rior performance compared to GraphMixer. To be able to han-

dle new nodes, the initial node features are constructed using

word2vec, which might be relatively coarse. Since GraphMixer pre-

dominantly relies on an MLP-based architecture, it may encounter

challenges given the coarse-grained initial features. Conversely,

GNN-based methods integrate structural information with these

features, thereby empowering them to excel in the inductive sce-

nario. Nevertheless, in our Transformer-based model, there is the

added advantage of modeling long-range dependencies, resulting

in consistently better performance of SimpleDyG.

5.3 Effect of Extra Tokens
We design extra tokens to make the vanilla Transformer architec-

ture more suitable for dynamic graph modeling. To assess their

effectiveness, we conduct an in-depth analysis of these token de-

signs, including special tokens that signal the input and output, and

the temporal tokens that align different sequences.

Impact of special tokens. The special tokens include the start

and end of the historical sequence (“⟨|hist|⟩” and “⟨|endofhist|⟩”), as
well as the predicted sequence (“⟨|pred|⟩”and “⟨|endofpred|⟩”). To
comprehensively evaluate their effect across diverse scenarios, we

examine two variants of SimpleDyG: (1) same special, where we use
the same special tokens for input and output. (2) no special, where
we entirely remove all special tokens from each instance. We show

the results in Table 3 and make the following observations.
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Table 2: Performance of dynamic link prediction by SimpleDyG and the baselines on four datasets. (In each column, the best
result is bolded and the runner-up is underlined.)

UCI ML-10M Hepth MMConv

𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑

DySAT [37] 0.010±0.003 0.010±0.001 0.058±0.073 0.050±0.068 0.007±0.002 0.005±0.001 0.102±0.085 0.095±0.080
EvolveGCN [32] 0.064±0.045 0.032±0.026 0.097±0.071 0.092±0.067 0.009±0.004 0.007±0.002 0.051±0.021 0.032±0.017

DyRep [40] 0.011±0.018 0.010±0.005 0.064±0.036 0.038±0.001 0.031±0.024 0.010±0.006 0.140±0.057 0.067±0.025
JODIE [20] 0.022±0.023 0.012±0.009 0.059±0.016 0.020±0.004 0.031±0.021 0.011±0.008 0.041±0.016 0.032±0.022

TGAT [49] 0.061±0.007 0.020±0.002 0.066±0.035 0.021±0.007 0.034±0.023 0.011±0.006 0.089±0.033 0.058±0.021
TGN [36] 0.041±0.017 0.011±0.003 0.071±0.029 0.023±0.001 0.030±0.012 0.008±0.001 0.096 ±0.068 0.066±0.038

TREND [44] 0.067±0.010 0.039±0.020 0.079±0.028 0.024±0.003 0.031±0.003 0.010±0.002 0.116±0.020 0.060±0.018

GraphMixer [6] 0.104±0.013 0.042±0.005 0.081±0.033 0.043±0.022 0.011±0.008 0.010±0.003 0.172±0.029 0.085±0.016
SimpleDyG 0.104±0.010 0.092±0.014 0.138±0.009 0.131±0.008 0.035±0.014 0.013±0.006 0.184±0.012 0.169±0.010

Table 3: Impact of special tokens in SimpleDyG across four datasets.

UCI ML-10M Hepth MMConv

𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑

SimpleDyG 0.104±0.010 0.092±0.014 0.138±0.009 0.131±0.008 0.035±0.014 0.013±0.006 0.184±0.012 0.169±0.010
same special 0.113±0.007 0.095±0.010 0.085±0.046 0.079±0.043 0.027±0.014 0.009±0.005 0.179±0.013 0.170±0.010
no special 0.041±0.025 0.020±0.011 0.006±0.009 0.006±0.009 0.096±0.016 0.025±0.006 0.01±0.008 0.008±0.007

Table 4: Impact of different temporal alignment designs on the four datasets.

UCI ML-10M Hepth MMConv

𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑

SimpleDyG 0.104±0.010 0.092±0.014 0.138±0.009 0.131±0.008 0.035±0.014 0.013±0.006 0.184±0.012 0.169±0.010
same time 0.090±0.013 0.083±0.012 0.147±0.001 0.139±0.001 0.046±0.009 0.017±0.004 0.240±0.031 0.212±0.025
no time 0.111±0.015 0.091±0.014 0.117±0.062 0.111±0.059 0.045±0.007 0.018±0.003 0.260±0.019 0.237±0.016

In general, special tokens enhance the link prediction perfor-

mance across different datasets. Furthermore, the differences be-

tween the same special and original SimpleDyG tend to be small.

However, an interesting finding emerges in the case of the Hepth

dataset, where the no special variant yields the best performance. It

can be explained by the specific characteristic of the citation graph.

In the testing data of Hepth, the ego-nodes are newly emerged

nodes, representing the newly published papers. Consequently, the

input samples lack any historical information, leaving the distinc-

tion between the history and the predicted irrelevant.

Impact of temporal tokens. To evaluate the impact of temporal
tokens, we compare the performance of SimpleDyG with two ab-

lated variants: (1) same time, where we do not distinguish specific

time steps and employ the same temporal tokens for each time step,

and (2) no time, in which we entirely remove all temporal tokens

from all sequences.

The results are presented in Table 4. It is surprising and interest-

ing to observe performance improvement with less or no temporal

alignment, particularly on the MMConv and Hepth datasets. We

hypothesize that the citation relationship and the conversation

among different ego-nodes do not strictly follow a universal tem-

poral framework. Using the same temporal tokens (same time) or
none at all (no time) allows the model to adapt more naturally to

the temporal order. The temporal alignment plays a more impor-

tant role for the UCI and ML-10M datasets. However, they show

different trends with the same time version. A potential reason is

that, in UCI, the communication patterns between different users

are sensitive to the segmentation into different time steps. Hence,

same time performs the worst, as it divides a sequence into time

steps yet without time differentiation to align across the sequences,

where the additional same tokens may confuse the model. On the

other hand, no time still retains the full temporal order, and thus

perform better than same time.

5.4 Performance of Multi-step Prediction
We evaluate the ability of SimpleDyG for multi-step prediction with

the time steps ranging from 𝑡 to 𝑡 + △𝑡 , utilizing a model that has

been trained on data up to time 𝑡 . In our experiment, we set △𝑡 = 3.

For SimpleDyG, we perform step-by-step prediction, conditioned

on the results of previous steps. We compare to two competitive

baselines, TGAT and GraphMixer. As both methods incorporate
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Figure 3: Performance trends of multi-step prediction.
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Figure 4: Impact of hyperparameters.

time information via time encoding, we employ the model trained at

time 𝑡 to directly predict the links at time 𝑡 +△𝑡 . Their performance

trends are plotted in Figure 3.

We observe a natural decay in performance over time for all

methods, as anticipated. However, SimpleDyG consistently outper-

forms the baselines as time progresses. This trend underscores the

effectiveness of our Transformer architecture in modeling long-

term dependencies in a dynamic graph.

5.5 Hyper-parameter Analysis
Weundertake an examination of the critical hyperparameter choices,

taking into account the variations observed across different datasets.

Specifically, we systematically explore the impact of several key

hyperparameters, namely, the number of layers, the number of

heads, and the hidden dimension size. These hyperparameters play

a pivotal role in shaping the model’s capacity and its ability to cap-

ture intricate patterns within dynamic graphs. We vary the value of

each hyperparameters while keeping all other parameters constant.

From Figure 4, we draw some key observations as follows.

• Number of layers: The variance of performance under different

numbers of layers is relatively small. This suggests that the choice

of the number of layers in SimpleDyG has a more consistent im-

pact across different datasets and scenarios. Generally speaking,

two layers are typically sufficient for most cases. For inductive

scenarios such as the Hepth dataset, it is advisable to use more

layers to effectively capture the evolving graph structure.

• Number of heads: For the number of attention heads, we find

that using either 2 or 4 heads is generally suitable for a wide range

of scenarios. These settings provide a good balance between

performance and computational efficiency.

• Hidden dimension size: The choice of hidden dimension size

depends on the complexity of the dataset. For datasets like movie

ratings (e.g., ML-10M), a hidden dimension size of 128 is often

adequate. However, for datasets involving more intricate interac-

tions, such as communication networks or conversation datasets,

it becomes necessary to use larger hidden dimension sizes like

256 or 512. Notably, the UCI dataset requires a hidden dimension

of 768, which can be explained by the complexity and richness

of the interactions among users within the dataset.

6 CONCLUSION
In this work, we explored the problem of dynamic graph modeling,

recognizing its significance across a wide range of applications.

Drawing from the strengths of the Transformer’s self-attention

mechanism, we tailored a solution that supersedes the often con-

voluted designs in many existing methods. Our novel approach,

named SimpleDyG, reformulates dynamic graphs from a sequence

modeling perspective. It is superior to not only the discrete-time

approaches by considering the full temporal order, but also the

continuous-time approaches by capturing long-term dependencies

using a Transformer. SimpleDyG is exceptionally simple as it does

not modify the Transformer architecture; instead, it maps a dynamic

graph into a set of sequences via temporal ego-graphs, and modifies

the input sequences to achieve temporal alignment. Nevertheless,

SimpleDyG achieves surprisingly strong performance in diverse

dynamic graphs. As future work, we will investigate the nuances

of the temporal alignment technique for further optimizations.
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APPENDICES
A LINK DELETION OPERATION
Our framework can support the link deletion operation within the

evolution of dynamic graphs. For example in the ML-10M dataset

with links representing users’ ratings for the movies, assuming

that users can delete the historical ratings. Suppose the historically

rated movies of one user is “[𝑎, 𝑏, 𝑐]”, he/she may delete the rating

of b, then we can add a special token “[del]” to identify the deletion

operation: “[𝑎, [𝑑𝑒𝑙], 𝑏, 𝑐]”. It is worth noting that most works for

dynamic graph modeling are associated with link addition with

benchmark datasets mainly involving this type of operation.

B ADDITIONAL IMPLEMENT DETAILS
Note that the implementation details of baseline approaches in

their publicly released code are quite different. For instance, most

of them regard the link prediction task as binary classification,

where the objective is to determine the presence or absence of links

between the positive pairs of nodes and randomly selected negative

pairs. They either employ a binary cross-entropy loss to facilitate

classifier learning or utilize logistic regression to train an additional

classifier. To tailor these baselines to our specific task for a fair

comparison, we adapt them into a ranking task and substitute the

classifier loss with a pair-wise Bayesian personalized ranking (BPR)

loss for all baselines.

C HYPERPARAMETERS SETTINGS OF
BASELINES

Considering that we refine the loss of the baselines as BPR loss, we

tune the important parameters of all baselines for all the datasets.

For all baselines, we tune the parameter of hidden dimension with

{16, 32, 64, 128, 256, 512} for each dataset. For a fair comparison

with our model, we don’t set a historical window for discrete-time

approaches and use all the historical data.

Some important parameters for each baseline are listed as follows:

For DySAT [37], We set the self-attention layers and head to be 2

and 8, respectively. For EvolveGCN [32], the number of GCN layers

is 1. For DyRep [40], the message aggregation layer is 2, and the

number of neighbor nodes is 20. For TGAT [49] and TGN [36], the

number of graph attention heads is 2 and the attention layers are 1

and 2, respectively. For GraphMixer [6], the number of MLP layers

for UCI is 1 and 2 for other datasets. For a fair comparison, we set

the historical length of each node to 1024, which is the same as our

model.

D STATISTICAL TEMPORAL PATTERN
ANALYSIS IN EACH DATASET

We incorporate statistical analyses to understand the temporal

patterns within each dataset. Specifically, we counted the number

of interactions per day for the UCI, ML-10M, and Hepth datasets.

For the conversation dataset (MMConv), we counted the number

of interactions per turn. We split the dataset into several bins with

each bin covering a range of time (10 days, 90 days, 60 days and

two turns for UCI, ML-10M, Hepth and MMConv, respectively), and

then calculate the average daily interaction counts in each bin. We

show the results in Figure A.1.
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(a) UCI (b) ML-10M (c) Hepth (d) MMConv

Figure A.1: The temporal pattern of each dataset.

Table 5: Time Efficiency of Different Methods

Method DySAT EvolveGCN DyRep JODIE TGAT TGN TREND GraphMixer SimpleDyG

Time (s) 12.24 11.89 6.4 6.25 18.54 8.05 7.45 6.89 6.21

We observe sudden changes in interactions in the UCI and ML-

10M datasets. While the Hepth and MMConv datasets generally

show gradual change across the entire timeline. This indicates that

in the UCI and ML-10M datasets, the interactions among different

time slots show different patterns. Thus it is more important to

conduct temporal alignment using temporal tokens which is con-

sistent with our analysis for Table 4. For the Hepth and MMConv

datasets, a simpler design for temporal alignment (e.g., same token

or no token) is enough to achieve good performance.

E TIME COMPLEXITY ANALYSIS
The time complexity of our SimpleDyG model is the same as the

vanilla Transformer, which is𝑂 (𝑛2) where 𝑛 is the sequence length.

We conduct time efficiency experiments about the training time per

epoch of different methods on UCI dataset using a machine with

a NVIDIA L40 GPU with 64 CPU cores. The results show that our

method trains faster than or comparable to all baselines. The meth-

ods integrating temporal modeling (e.g., RNN, self-attention) with

structural modeling (e.g., GNN, GAT) suffer from the complexity of

these modules.
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