

MultiGPrompt for Multi-Task Pre-Training and Prompting on Graphs

Xingtong Yu, Chang Zhou, Yuan Fang, Xinming Zhang

Motivation

Problem

■To cater to diverse downstream tasks, pre-training should broadly extract knowledge from various aspects.

Challenges

- Different pretext tasks often have different objectives, directly combining them lead to task interference.
- Multiple pretext tasks further complicates the alignment of downstream objectives with the pre-trained model.

C1: How can we leverage diverse pre-text tasks for graph models in a synergistic manner?

C2: How can we transfer both task-specific and global pre-trained knowledge?

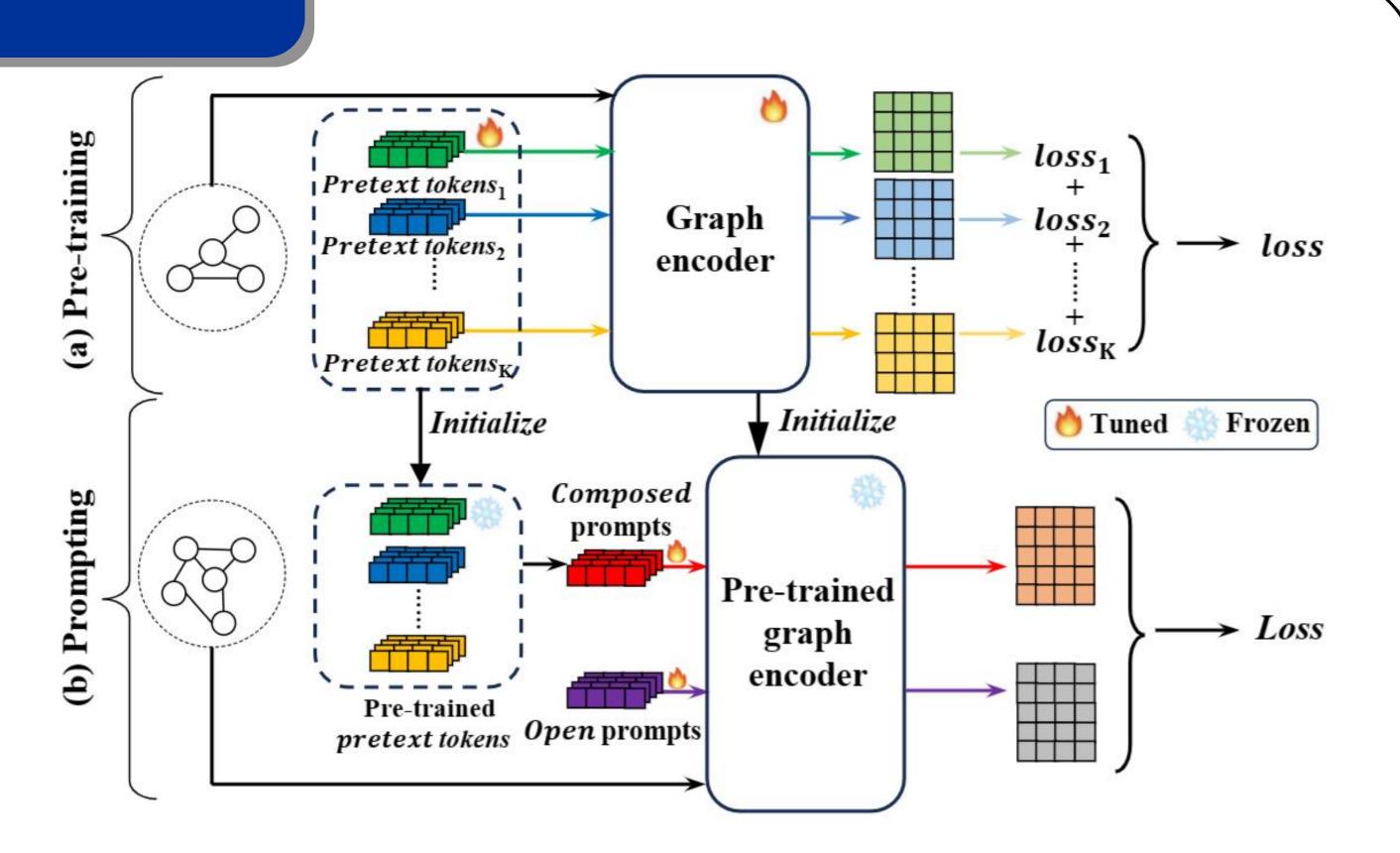


Figure 1: Illustration of Multi-GPROMPT. (a) Multi-task pretraining on graphs. (b) Prompting on downstream tasks.

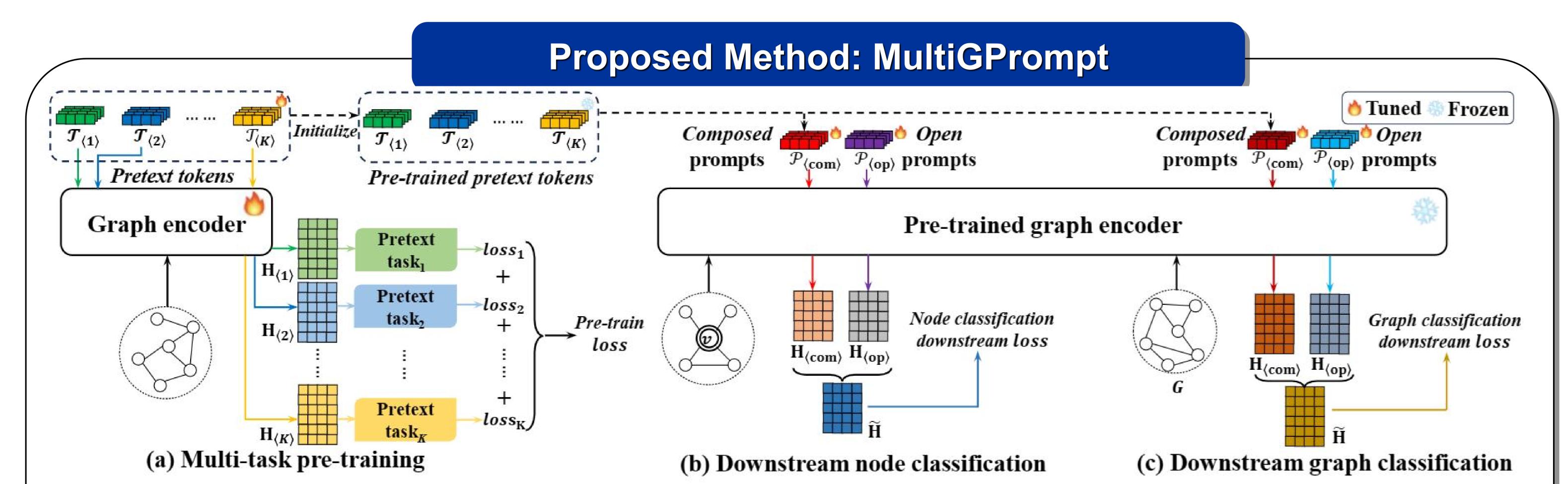


Figure 2: Overall framework of MultiGPrompt, consisting of two main stages: (a) Multi-task pre-training, and (b)/(c) Promptbased learning for downstream few-shot tasks.

Multi-task pre-training

Pretext tokens

 $\mathcal{T}_{\langle k \rangle} = \{ \mathbf{t}_{\langle k \rangle, 0}, \mathbf{t}_{\langle k \rangle, 1}, \dots, \mathbf{t}_{\langle k \rangle, L} \}$

Graph encoder output embedding

 $\mathbf{H_t} = \mathbf{GRAPHENCODER_t}(\mathbf{X}, \mathbf{A}; \boldsymbol{\Theta})$

Add token to each layer of graph encoder $\mathbf{H}^{l+1} = \mathrm{MP}(\mathbf{t}_{\langle k \rangle, l} \odot \mathbf{H}^l, \mathbf{A}; \theta^l)$

Overall embedding **Pre-Training Objective**

 $\mathbf{H}_{\langle k \rangle} = \sum_{l=0}^{\infty} \alpha_l \mathbf{H}_{\mathsf{t}_{\langle k \rangle, l}} \quad \mathcal{L}_{\mathrm{pre}}(\mathcal{H}; \mathcal{T}, \Theta) = \sum_{k=1}^{K} \beta_k \mathcal{L}_{\mathrm{pre}_{\langle k \rangle}}(\mathbf{H}_{\langle k \rangle}; \mathcal{T}_{\langle k \rangle}, \Theta),$

Prompt tuning Composed prompt

 $\mathcal{P}_{\langle \text{com} \rangle} = \{ \mathbf{p}_{\langle \text{com} \rangle, 0}, \mathbf{p}_{\langle \text{com} \rangle, 1}, \dots, \mathbf{p}_{\langle \text{com} \rangle, L} \}$

 $\mathbf{p}_{\langle \text{com} \rangle, l} = \text{Compose}(\mathbf{t}_{\langle 1 \rangle, l}, \mathbf{t}_{\langle 2 \rangle, l}, \dots, \mathbf{t}_{\langle K \rangle, l}; \Gamma)$

Open prompt

 $\mathcal{P}_{\langle \text{op} \rangle} = \{ \mathbf{p}_{\langle \text{op} \rangle, 0}, \mathbf{p}_{\langle \text{op} \rangle, 1}, \dots, \mathbf{p}_{\langle \text{op} \rangle, L} \}$ Aggregate dual prompt

 $\tilde{\mathbf{H}} = \operatorname{Aggr}(\mathbf{H}_{\langle \operatorname{com} \rangle}, \mathbf{H}_{\langle \operatorname{op} \rangle}; \Delta)$

Experiment

Results are reported in percent. The best method is bolded and the runner-up is underlined.

Table 1: Summary of datasets.

	Graphs	Graph classes	Avg. nodes	Avg. edges	Node features	Node classes	Task* (N/G)		
Cora	1	-	2,708	5,429	1,433	7	N		
Citeseer	1	=	3,327	4,732	3,703	6	N		
PROTEINS	1,113	2	39.06	72.82	1	3	N, G		
ENZYMES	600	6	32.63	62.14	18	3	N, G		
BZR	405	2	35.75	38.36	3	-	G		
COX2	467	2	41.22	43.45	3	_	G		
* : 1: - t - t - t - t - t - t - t - t - t -									

indicates the type(s) of downstream task associated with each dataset: "N" for node classification and "G" for graph classification.

Table 2: Accuracy evaluation on few-shot node and graph classification.

Methods	į.	Node cla	ssification		Graph classification					
	Cora	Citeseer	PROTEINS	ENZYMES	BZR	COX2	PROTEINS	ENZYMES		
GCN	28.57 ± 5.07	31.27 ± 4.53	43.31 ± 9.35	48.08 ± 4.71	56.33 ± 10.40	50.95 ± 23.48	50.56 ± 3.01	17.10 ± 3.53		
GAT	28.40 ± 6.25	30.76 ± 5.40	31.79 ± 20.11	35.32 ± 18.72	50.69 ± 23.66	50.58 ± 26.16	50.59 ± 12.43	16.80 ± 2.97		
DGI/InfoGraph	54.11 ± 9.60	45.00 ± 9.19	45.22 ± 11.09	48.05 ± 14.83	52.57 ± 18.14	54.62 ± 15.36	48.21 ± 12.35	21.69 ± 5.98		
GRAPHCL	51.96 ± 9.43	43.12 ± 9.61	46.15 ± 10.94	48.88 ± 15.98	54.11 ± 16.63	54.29 ± 17.31	53.69 ± 11.92	21.57 ± 5.20		
GPPT	15.37 ± 4.51	21.45 ± 3.45	35.15 ± 11.40	35.37 ± 9.37	-	-	_	-		
GRAPHPROMPT	54.25 ± 9.38	45.34 ± 10.53	47.22 ± 11.05	53.54 ± 15.46	54.60 ± 10.53	54.35 ± 14.78	54.73 ± 8.87	25.06 ± 7.56		
MULTIGPROMPT	57.72 ± 9.94	54.74 ± 11.57	48.09 ± 11.49	54.47 ± 15.36	60.07 ± 12.48	56.17 ± 12.84	56.02 ± 8.27	26.63 ± 6.22		

Baselines

- Supervised: GCN, GAT
- Pre-train, Finetune: DGI/InfoGraph, GraphCL
- Prompting: GPPT, GraphPrompt

Observation

 MultiGPrompt consistently outperforms all baselines and variations.

Graph Classification Node Classification GraphCL GraphCL+ LP

Table 3: Ablation study on prompt design for multi-task pre-training.

Mathada	Pretext	Composed	Open	Node classification				Graph classification			
Methods	token	prompt	prompt	Cora	Citeseer	PROTEINS	ENZYMES	BZR	COX2	PROTEINS	ENZYMES
VARIANT 1	×	×	×	56.58	50.69	46.48	48.04	49.63	54.35	55.72	21.07
VARIANT 2	×	×	✓	56.54	53.08	47.79	51.09	47.56	54.89	55.61	24.23
VARIANT 3	✓	×	×	45.00	52.36	45.11	50.55	57.14	54.43	55.67	21.06
VARIANT 4	✓	×	✓	56.59	50.63	47.64	50.52	57.52	55.21	55.12	24.30
VARIANT 5	✓	\checkmark	×	56.83	53.72	47.50	53.11	55.71	53.04	55.15	23.33
MULTIGPROMPT	✓	✓	✓	57.72	54.74	48.09	54.47	60.07	56.17	56.02	26.63
Results are evaluated using classification accuracy, reported in percent. The best variant is bolded.											