

Computing and Information Systems

Diffusion-based Negative Sampling on Graphs for Link Prediction Trung-Kien Nguyen and Yuan Fang

In Proceedings of the 2024 ACM Web Conference, May 13-17, 2024

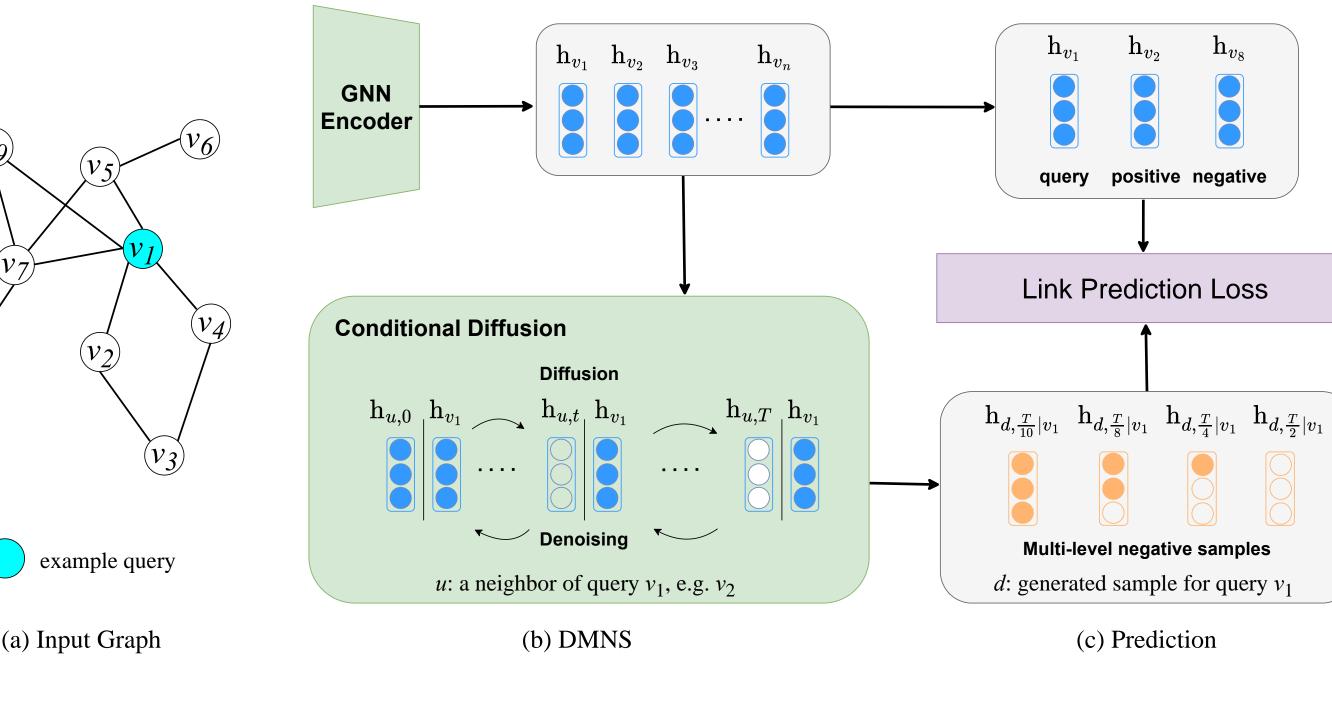
Motivation		E	xperi	ment	S		
Problem Negative sampling in contrastive learning for Link Prediction	Datasets	Datasets	Nodes E	dges Featu	res Property		
 Requires positive and negative samples for a given query node 		Cora Citeseer	3327 4	429 143 732 370	3 homophilous	;	
 Negative sampling: huge search space and many false negatives 		Coauthor-CS Actor		37886800019932	1		
Challenges How to flexibly model and control the quality of negative nodes? → Multi-level negative sampling strategy 	Baselines	• GCN [1] • GAT [2] •	euristic NS PNS [4] DNS [5] MCNS [6]	Generat Graph ARGV KBGA 	GAN [7] SEAL [A [8] ScaLed		

2. How do we find sufficient negative examples of variable hardness? \rightarrow **Diffusion models:** generating multi-level samples at different steps

Proposed model: DMNS

Overall Framework

 (v_8)



Link Prediction Table 2: Evaluation of link prediction against baselines using GCN as the base encoder.

Methods	Cora		Citeseer		Coauthor-CS		Actor	
	MAP	NDCG	MAP	NDCG	MAP	NDCG	MAP	NDCG
GCN	.742 ± .003	.805 ± .003	.735 ± .011	.799 ± .008	.823 ± .004	.867 ± .003	.521 ± .004	.634 ± .003
GVAE	<u>.783</u> ± .003	<u>.835</u> ± .002	$.743 \pm .004$	$.805 \pm .003$	$.843 \pm .011$	$.882 \pm .008$	<u>.587</u> ± .004	<u>.684</u> ± .003
PNS	.730 ± .008	.795 ± .006	.748 ± .006	.809 ± .005	.817 ± .004	.863 ± .003	.517 ± .006	.631 ± .006
DNS	.735 ± .007	.799 ± .005	<u>.777</u> ± .005	<u>.831</u> ± .004	$.845 \pm .003$.883 ± .002	.558 ± .006	.663 ± .005
MCNS	$.756 \pm .004$	$.815 \pm .003$	$.750 \pm .006$	$.810 \pm .004$	$.824\pm.004$	$.868 \pm .004$	$.555 \pm .005$.659 ± .004
GraphGAN	.739 ± .003	.802 ± .002	.740 ± .011	.803 ± .008	.818 ± .007	.863 ± .005	.534 ± .007	.644 ± .005
ARVGA	$.732 \pm .011$.797 ± .009	.689 ± .005	$.763 \pm .004$.811 ± .003	$.858 \pm .002$	$.526 \pm .012$.638 ± .009
KBGAN	$.615 \pm .004$	$.705 \pm .003$	$.568 \pm .006$	$.668 \pm .005$	<u>.852</u> ± .002	<u>.888</u> ± .002	$.472 \pm .003$.596 ± .002
SEAL	.751 ± .007	.812 ± .005	.718 ± .002	.784 ± .002	.850 ± .001	.886 ± .001	.536 ± .001	.641 ± .001
ScaLed	$.676 \pm .004$	$.752 \pm .003$	$.630 \pm .004$	$.712 \pm .003$	$.828 \pm .001$.869 ± .001	$.459 \pm .001$.558 ± .001
DMNS	.793 ± .003	.844 ± .002	.790 ± .004	.841 ± .003	.871 ± .002	.903 ± .001	.600 ± .002	.696 ± .002

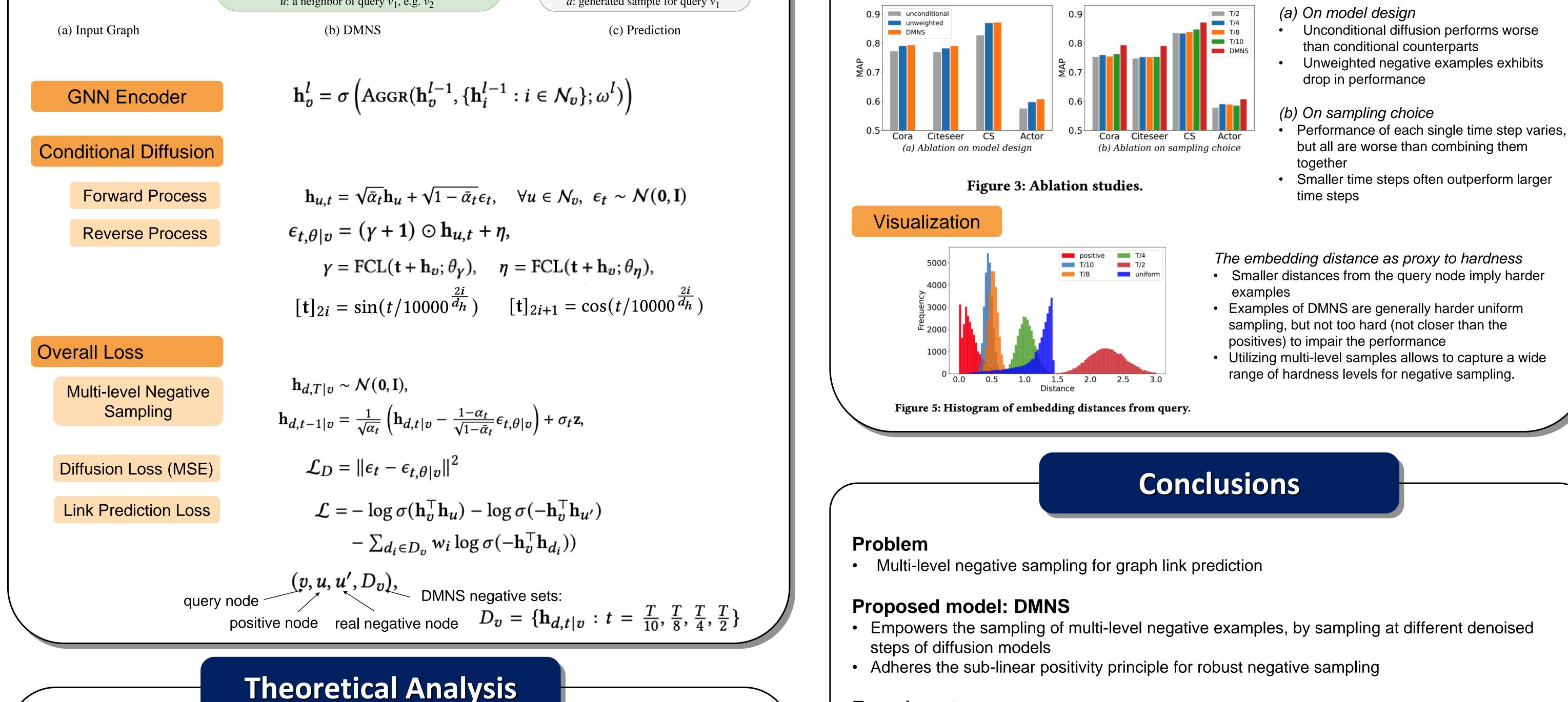
Table 3: Evaluation of link prediction on DMNS with various base encoders.

Methods	Cora		Citeseer		Coauthor-CS		Actor	
	MAP	NDCG	MAP	NDCG	MAP	NDCG	MAP	NDCG
GAT	.766 ± .006	.824 ± .004	.767 ± .007	.763 ± .062	.833 ± .003	.874 ± .002	.479 ± .004	.603 ± .003
DMNS-GAT	.813 ± .004	.859 ± .003	.788 ± .007	.840 ± .006	.851 ± .002	.889 ± .002	.573 ± .007	.675 ± .005
SAGE	.598 ± .014	.668 ± .013	$.622 \pm .012$.713 ± .009	.768 ± .005	$.826 \pm .004$	$.486 \pm .004$	$.604 \pm .003$
DMNS-SAGE	.700 ± .007	.773 ± .005	.669 ± .013	.749 ± .010	.843 ± .004	.883 ± .003	.582 ± .017	.682 ± .013

• DMNS outperforms competing baselines on all datasets and metrics, showing effectiveness of multi-level negative sampling strategy.

• DMNS improves performance of various base GNN encoders, demonstrating its flexibility.

Ablation Study



(a) On model design

- Unconditional diffusion performs worse than conditional counterparts
- Unweighted negative examples exhibits drop in performance

Experiments

The majority of negative examples from DMNS follow the Sub-linear Positivity Principle [6]: which balances the trade-off between the embedding objective and expected risk for robust negative sampling.

THEOREM 1 (SUB-LINEAR POSITIVITY DIFFUSION). Consider a query node v. Let $\mathbf{x}_n \sim \mathcal{N}(\mu_{t,\theta}, \Sigma_{t,\theta})$ and $\mathbf{x}_p \sim \mathcal{N}(\mu_{0,\theta}, \Sigma_{0,\theta})$ represent samples drawn from the negative and positive distributions of node v, respectively. Suppose the parameters of the two distributions are specified by a diffusion model θ conditioned on the query node v at time t > 0 and 0, respectively. Then, the density function of the negative samples f_n is sub-linearly correlated to that of the positive samples f_p :

$$f_n(\mathbf{x}_n|v) \propto f_p(\mathbf{x}_p|v)^{\lambda}$$
, for some $0 < \lambda < 1$,

as long as $\Psi \geq 0$, which is a random variable given by $\Psi = 2\Delta^{\top}\sqrt{\bar{\alpha}_t}(\mathbf{x}_0 - \mathbf{x}_0)$ μ_0) + $\Delta^{\top}\Delta \ge 0$, where $\Delta = \sqrt{\bar{\alpha}_t}\mu_0 + \sqrt{1 - \bar{\alpha}_t}\epsilon_0 - \mu_t$, \mathbf{x}_0 is generated by the model θ at time 0, and $\epsilon_0 \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

See the paper for the proof.

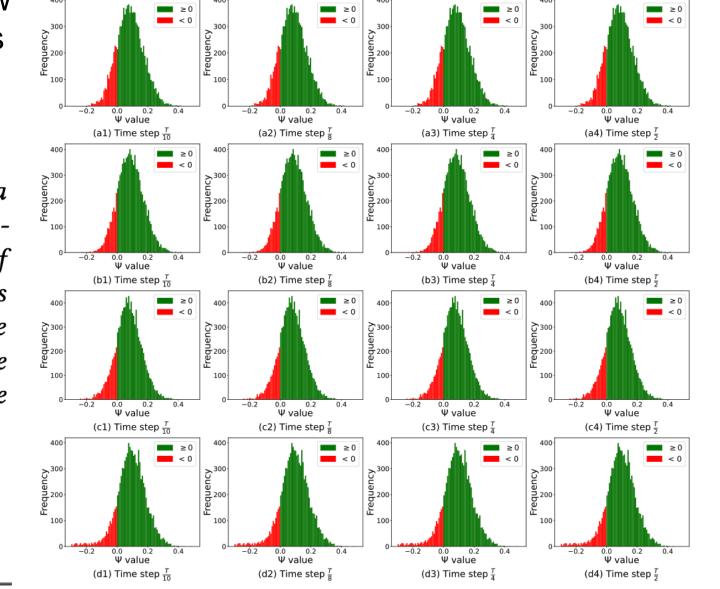


Figure 2: Empirical distributions (histograms) of Ψ on (a1–a4) Cora, (b1-b4) Citeseer, (c1-c4) Coauthor-CS, (d1-d4) Actor, across different time steps.

Extensive experiments demonstrate the effectiveness of DMNS

Key References

[1] Kipf et al. 2017. Semi-supervised classification with graph convolutional networks. ICLR. [2] Veličković et al. 2018. Graph attention networks. ICLR. [3] Hamilton et al. 2017. Inductive representation learning on large graphs. NeurIPS. [4] Mikotov et al. 2013. Distributed representations of words and phrases and their compositionality. NeurIPS. [5] Zhang et el. 2013. Optimizing top-n collaborative filtering via dynamic negative item sampling. SIGIR. [6] Yang et al. 2020. Understanding negative sampling in graph representation learning. KDD. [7] Wang et al. 2018. Graphgan: Graph representation learning with generative adversarial nets. AAAI. [8] Pan et al. 2018. Adversarially regularized graph autoencoder for graph embedding. IJCAI. [9] Cai et al. 2017. Kbgan: Adversarial learning for knowledge graph embeddings. ACL. [10] Zhang et al. 2018. Link prediction based on graph neural networks. NeurIPS. [11] Louis et al. 2022. Sampling Enclosing Subgraphs for Link Prediction. CIKM.

Acknowledgements

This research / project is supported by the Ministry of Education, Singapore, under its Academic Research Fund Tier 2 (Proposal ID: T2EP20122-0041). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the Ministry of Education, Singapore.