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Problem Negative sampling in contrastive learning for Link Prediction Datasets Datasets | Nodes Edges Features  Property
: " : : Cora 2708 5429 1433 homophilous
* Requires positive and negative samples for a given query node Citescer | 3327 4732 3703  homophilous
: : : Coauthor-CS | 18333 163788 6805 homophilous
* Negative sampling: huge search space and many false negatives Actor 7600 30019 932 heterophilous
Challenges Baselines Classic GNNs  Heuristic NS  Generative NS Subgraph-based GNNs
_ _ _ « GCN[1] « PNS [4] «  GraphGAN [7] SEAL [10]
1. How to flexibly model and control the quality of negative nodes? + GAT [2] + DNS [5] + ARGVA [g] Scaled [11]
« SAGE [3] « MCNS [6] « KBGAN [9]

- Multi-level negative sampling strategy

Link Prediction  Table 2: Evaluation of link prediction against baselines using GCN as the base encoder.

2. How do we find sufficient negative examples of variable hardness?

- Diffusion models: generating multi-level samples at different steps Methods Cora Citeseer Coauthor-CS Actor
MAP NDCG MAP NDCG MAP NDCG MAP NDCG
GCN 742 +.003  .805+.003 .735+.011 799 +.008 .823+.004 .867 +.003 .521+.004 .634 +.003
GVAE 783 +£.003 .835+.002 .743+.004 .805+.003 .843+.011 .882+.008 .587 +.004 .684 % .003
PNS 730 £.008 795+ .006 .748 +.006 .809 +.005 .817 +.004 .863+.003 .517 £.006 .631+.006
DNS 735+ .007 799 +.005 777 +.005 .831+.004 .845+.003 .883+.002 558 +.006 .663 +.005
P o p ose d Mo d e I : D M N S MCNS 756 £.004 815+.003 750 +.006 810 +.004 .824+.004 868+ .004 .555%.005 659 % .004
GraphGAN 739+ .003 .802+.002 .740+.011 .803 +.008 .818 +.007 .863 +.005 .534 +.007 .644 +.005
ARVGA 732+.011 797 +.009 .689+.005 .763 +.004 .811+.003 .858+.002 .526+.012 .638 £.009
KBGAN 615+.004 705+ .003 .568+.006 668 +.005 .852+.002 .888+.002 .472+.003  .596 +.002
Overall Framework SEAL 751+.007 .812+.005 .718+.002 .784+.002 .850 +.001 .886+.001 .536 +.001 .641+.001
ScaLed 676 +.004 752+ .003 .630+.004 .712+.003 .828+.001 .869+.001 .459 +.001 .558 +.001
DMNS 793 £ .003 .844 +.002 .790 +.004 .841+.003 .871%.002 .903%.001 .600.002 .696 + .002
/hv h,, h, h, R 4 hfv1 h,U2 hUs N *Best is bolded and runner-up underlined.
1 2 3 n
Erfihcl)rc‘iler > > @ E @ Table 3: Evaluation of link prediction on DMNS with various base encoders.
- J \ query positive negative J Method Cora Citeseer Coauthor-CS Actor
EHoas MAP NDCG MAP NDCG MAP NDCG MAP NDCG
l GAT 766 +.006 824 +.004 767 +.007 763 +.062 833 +.003 .874+.002 .479+.004 .603 + .003
_ - DMNS-GAT  .813 +.004 .859+.003 .788+.007 .840+.006 .851+.002 .889+.002 .573+.007 .675 +.005
v Link Prediction Loss SAGE 598 £.014 668 +.013  .622+.012 713 £.009 .768 +.005 .826 +.004 486 +.004 .604 *.003
Conditional Diffusion DMNS-SAGE ~ .700 + .007 .773 +.005 .669+.013 .749+.010 .843 +.004 .883+.003 .582%.017 .682 +.013
Diffusion I  DMNS outperforms competing baselines on all datasets and metrics, showing effectiveness of multi-level
hyo by hug by her by, ", 21 Bgzp Bgrp, hd,gm\ negative sampling strategy.
 DMNS improves performance of various base GNN encoders, demonstrating its flexibility.
Q example query *—" Denoising T— Multi-level negative samples Ab|a'[I0n StUdy
u: a neighbor of query v4, .9. v» d: generated sample for query vq _
- J 0.9/ |mmm uncondicona 0.9 72 (a) On model design
(a) Input Graph (b) DMNS (c) Prediction m— OMNS « Unconditional diffusion performs worse
0.8] than conditional counterparts
% 0  Unweighted negative examples exhibits
; 11 v 11 ] =" drop in performance
GNN Encoder h,=¢c (AGGR(hE, by ieNphow )) 0.6 | |
Il (b) On sampling choice
0-5 Cora Citeseer  CS Actor Cora Citeseer CS Actor » Performance of each Smgle_tlme step varies,
Condltlonal DIfoSIOﬂ (a) Ablation on model design (b) Ablation on sampling choice but all are worse than comblnlng them
together
Figure 3: Ablation studies. . S_maller time steps often outperform larger
Forward Process hy: = Vashy + V1 —are, Yu e Ny, € ~ N(0,I) g time steps
_ Visualization
Reverse Process €1.0|1v = (y+1) Ohys +1,
=== positive == T/4 The embedding distance as proxy to hardness
— . — . 5000 mm T/10 - T2 _ _
Y FCL(t + hy; H}")’ ] FCL{t +hy; ET}')’ 2000 /8 = uniform « Smaller distances from the query node imply harder
. 2i s_i > examples
[t]2; = sin(¢/10000 % ) [t]2i4+1 = cos(t/10000 % ) g 3000 « Examples of DMNS are generally harder uniform
£ 2000 sampling, but not too hard (not closer than the
positives) to impair the performance
Overall Loss +000 « Utilizing multi-level samples allows to capture a wide
0 0 on T R e range of hardness levels for negative sampling.
Multi-level Negative hg 1o ~ N(0,), Distance
Sampl | ng h 1 h 1-a; Figure 5: Histogram of embedding distances from query.
dit—1|v — Va: ( dit|o ™~ met,mz,r) + 012,
: : 2
Diffusion Loss (MSE) Lp=|e— Et,g|ﬂ|| C I .
Link Prediction Loss L =-logo(h,h,) —logo(~h, hy,) 4
T
— Xd;ep, Wilogo(—h, hg)) Problem
, « Multi-level negative sampling for graph link prediction
A’U’ U Dﬂ ~— DMNS negative sets:
query ”Ode__ N D, = {h - o T T T T} Proposed model: DMNS
positive node  real negative node o = Wdtlo - * = 10> 8> 4> 27J « Empowers the sampling of multi-level negative examples, by sampling at different denoised

steps of diffusion models
« Adheres the sub-linear positivity principle for robust negative sampling

Experiments
« Extensive experiments demonstrate the effectiveness of DMNS

-~

The majority of negative examples from DMNS follow
the Sub-linear Positivity Principle [6]: which balances ¢
the trade-off between the embedding objective and
expected risk for robust negative sampling.
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aslongas¥ > 0, which is a random variable given by ¥ = 2A " vJa; (x—

pio) + ATA = 0, where A = @ g + 1 — @reg — pi, Xo is generated
by the model 8 at time 0, and ey ~ N(0,]1). O

Figure 2: Empirical distributions (histograms) of ¥ on (a1-a4)
Cora, (b1-b4) Citeseer, (c1-c4) Coauthor-CS, (d1-d4) Actor,
across different time steps.
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