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Problem
• Multi-level negative sampling for graph link prediction

Proposed model: DMNS
• Empowers the sampling of multi-level negative examples, by sampling at different denoised 

steps of diffusion models

• Adheres the sub-linear positivity principle for robust negative sampling 

Experiments
• Extensive experiments demonstrate the effectiveness of DMNS 
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Problem Negative sampling in contrastive learning for Link Prediction

Challenges

1. How to flexibly model and control the quality of negative nodes?
→ Multi-level negative sampling strategy

2. How do we find sufficient negative examples of variable hardness?
→ Diffusion models: generating multi-level samples at different steps

• Requires positive and negative samples for a given query node

• Negative sampling: huge search space and many false negatives

• DMNS outperforms competing baselines on all datasets and metrics, showing effectiveness of multi-level 

negative sampling strategy.

• DMNS improves performance of various base GNN encoders, demonstrating its flexibility.

(a) On model design
• Unconditional diffusion performs worse 

than conditional counterparts

• Unweighted negative examples exhibits 

drop in performance

(b) On sampling choice
• Performance of each single time step varies, 

but all are worse than combining them 

together

• Smaller time steps often outperform larger 

time steps 

The embedding distance as proxy to hardness
• Smaller distances from the query node imply harder 

examples 

• Examples of DMNS are generally harder uniform 

sampling, but not too hard (not closer than the 

positives) to impair the performance 

• Utilizing multi-level samples allows to capture a wide 

range of hardness levels for negative sampling. 
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Theoretical Analysis

Baselines

The majority of negative examples from DMNS follow 

the Sub-linear Positivity Principle [6]: which balances 

the trade-off between the embedding objective and 

expected risk for robust negative sampling.

See the paper for the proof.
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