Link Prediction on Latent Heterogeneous Graphs

Trung-Kien Nguyen*, Zemin Liu*, Yuan Fang

School of Computing and Information Systems

* Co-first authors with equal contribution. In Proceedings of the 2023 ACM Web Conference, April 30 - May 4, 2023

- Problem & related work
- Proposed model: LHGNN
- Experiments
- Conclusions

Motivation

- Link prediction: fundamental task on graph with many applications
- Heterogeneous Graphs (or Heterogeneous Information Networks/HIN) consist of multiple types of nodes/edges, providing rich and diverse semantics for link prediction.
- In real-world scenarios, type information of HINs can be noisy, missing or completely inaccessible.
 - → Latent Heterogeneous Graphs (LHG)

⁽a) HIN vs. LHG

Related Work

- Graph Neural Networks
 - Homogeneous graphs: GCN [1], GAT [2], etc.
 - Heterogeneous graphs: HAT [3], HGT [4], etc.
- Knowledge Graph Embedding
 - TransE [5], TransR [6], etc.
- Predicting Missing Types
 - RPGNN [7], Linear.Adagrad [8], etc.

[1] Kipf, T. N., et al. 2017. Semi-supervised classification with graph convolutional networks. ICLR.

- [2] Veličković, P., et al. 2018. Graph attention networks. ICLR.
- [3] Wang, et al. 2019. Heterogeneous graph attention network. WWW.
- [4] Hu et al. 2020. Heterogeneous graph transformer. WWW.
- [5] Bordes et al. 2013. Translating embeddings for modeling multi-relational data. NeurIPS.
- [6] Lin et al. 2015. Learning entity and relation embeddings for knowledge graph completion. AAAI.
- [7] Zhang et al. 2021. Relation prediction via graph neural network in heterogeneous information networks with missing type information. CIKM.
- [8] Neelakantan et al. 2015. Inferring missing entity type instances for knowledge base completion: New dataset and methods. NAACL.

Problem formulation

Latent Heterogenenous Graph (LHG): (V, E, A, R, ψ, ϕ)

- *V*, *E*: set of nodes, edges
- *A*, *R*: set of node types, and edge types, respectively
- $\boldsymbol{\psi}: V \to A, \ \boldsymbol{\phi}: E \to R$: type mapping functions
- A, R, ψ, ϕ : inaccessible/unknown, yet still exist

Link Prediction on LHG: Given a query node, we rank other nodes by their probability of forming a link with the query.

- Problem & related work
- Proposed model: LHGNN
- Experiments
- Conclusions

Challenges

- 1. How to capture the **latent semantics** on and between nodes without any type information?
- 2. As contextual nodes of a target node often carry latent heterogeneous semantics, how to **differentiate** them for finergrained context aggregation?

(b) Link prediction on LHG with LHGNN

LHGNN: Orverall Framework

Semantic Embedding

• Node-level Semantic Embedding Extracts abstract semantic information from primary node embedding

 $\mathbf{s}_{v}^{l} = \text{LeakyReLU}(\mathbf{W}_{s}^{l}\mathbf{h}_{v}^{l-1} + \mathbf{b}_{s}^{l})$

 Path-level Semantic Embedding Captures latent heterogeneous semantics from different context nodes for target node

$$\mathbf{s}_{p_{\langle v, u \rangle}}^{l} = f_{p}(\{\mathbf{s}_{v_{i}}^{l} | v_{i} \text{ in the path } p_{\langle v, u \rangle}\})$$

Latent Heterogeneous Context Aggregation

Context Personalization

Modulates latent heterogeneous semantics from different context nodes

$$\begin{split} \tilde{\mathbf{h}}_{u|p_{\langle v,u\rangle}}^{l} &= (\gamma_{p_{\langle v,u\rangle}}^{l} + \mathbf{1}) \odot \mathbf{h}_{u}^{l-1} + \beta_{p_{\langle v,u\rangle}}^{l} \\ \gamma_{p_{\langle u,v\rangle}}^{l} &= \mathrm{LeakyReLU}(\mathbf{W}_{\gamma}^{l} \mathbf{s}_{p_{\langle u,v\rangle}}^{l} + \mathbf{b}_{\gamma}^{l}) \\ \beta_{p_{\langle u,v\rangle}}^{l} &= \mathrm{LeakyReLU}(\mathbf{W}_{\beta}^{l} \mathbf{s}_{p_{\langle u,v\rangle}}^{l} + \mathbf{b}_{\beta}^{l}) \end{split}$$

- Problem & related work
- Proposed model: LHGNN
- Experiments
- Conclusions

Experimental setup

Datasets

Attributes	FB15k-237	WN18RR	DBLP	OGB-MAG
# Nodes	14,541	40,943	18,405	100,002
# Edges	310,116	93,003	67,946	1,862,256
# Features	-	-	334	128
# Relations	237	11	4	4
Avg(degree)	29.09	3.50	3.55	17.88
# Training	272,115	86,835	54,356	1,489,804
# Validation	17,535	3,034	6,794	186,225
# Testing	20,466	3,134	6796	186,227

Baselines

- GNN: GCN [1], GAT [2], SAGE [3]
- Translation: TransE [4], TransR [5]
- HGNN: HAN [6], HGT [7], HGN [8]

Metrics

• MAP, NDCG

[1] Kipf, T. N., et al. 2017. Semi-supervised classification with graph convolutional networks. ICLR.

[2] Veličković, P., et al. 2018. Graph attention networks. ICLR.

[3] Hamilton W L., et al. 2017. Inductive representation learning on large graphs. NeurIPS.

[4] Bordes et al. 2013. Translating embeddings for modeling multi-relational data. NeurIPS.

[5] Lin et al. 2015. Learning entity and relation embeddings for knowledge graph completion. AAAI.

[6] Wang, et al. 2019. Heterogeneous graph attention network. WWW.

[7] Hu et al. 2020. Heterogeneous graph transformer. WWW.

[8] Lv et al. 2021. Are we really making much progress? revisiting, benchmarking and refining heterogeneous graph neural networks. KDD. 14

Link Prediction

Table 2: Evaluation of link prediction on LHGs. Best is bolded and runner-up underlined; OOM means out-of-memory error.

Methods	FB15k-237		WN18RR		DBLP		OGB-MAG	
	MAP	NDCG	MAP	NDCG	MAP	NDCG	MAP	NDCG
GCN	0.790 ± 0.001	0.842 ± 0.001	0.729 ± 0.002	0.794 ± 0.001	0.879 ± 0.001	0.910 ± 0.001	0.848 ± 0.001	0.886 ± 0.001
GAT	0.786 ± 0.002	0.839 ± 0.001	0.761 ± 0.001	0.818 ± 0.001	<u>0.913</u> ± 0.001	0.936 ± 0.001	0.830 ± 0.004	0.872 ± 0.003
GraphSAGE	$\underline{0.800} \pm 0.001$	$\underline{0.850} \pm 0.001$	0.728 ± 0.003	0.793 ± 0.002	0.891 ± 0.001	0.918 ± 0.001	<u>0.849</u> ± 0.001	$\underline{0.887} \pm 0.001$
TransE	0.675 ± 0.001	0.752 ± 0.001	0.511 ± 0.002	0.624 ± 0.001	0.488 ± 0.001	0.605 ± 0.001	0.552 ± 0.001	0.656 ± 0.001
TransR	0.734 ± 0.004	0.798 ± 0.003	0.510 ± 0.002	0.623 ± 0.001	0.565 ± 0.007	0.668 ± 0.005	0.546 ± 0.001	0.652 ± 0.001
HAN	0.725 ± 0.002	0.793 ± 0.002	0.749 ± 0.003	0.810 ± 0.003	0.763 ± 0.005	0.801 ± 0.004	OOM	OOM
HGT	0.782 ± 0.001	0.837 ± 0.001	0.724 ± 0.003	0.791 ± 0.002	0.897 ± 0.001	0.923 ± 0.001	0.835 ± 0.003	0.876 ± 0.002
HGN	0.742 ± 0.002	0.806 ± 0.001	<u>0.802</u> ± 0.002	$\underline{0.849} \pm 0.002$	0.907 ± 0.003	0.930 ± 0.002	0.818 ± 0.001	0.863 ± 0.001
LHGNN	0.858 ± 0.001	0.893 ± 0.001	0.838 ± 0.003	0.877 ± 0.002	0.932 ± 0.003	0.949 ± 0.002	0.879 ± 0.001	0.909 ± 0.001

Node Type Classification

Table 5: Evaluation of node type classification on LHGs.

Mathala	DE	BLP	OGB-MAG		
Methods	MacroF	Accuracy	MacroF	Accuracy	
GCN	0.376 ± 0.009	0.785 ± 0.002	0.599 ± 0.011	0.890 ± 0.003	
GAT	0.310 ± 0.003	0.782 ± 0.001	0.624 ± 0.035	0.894 ± 0.007	
GraphSAGE	<u>0.477</u> ± 0.021	$\underline{0.842} \pm 0.012$	0.550 ± 0.014	0.902 ± 0.004	
HGT	0.464 ± 0.009	0.837 ± 0.005	0.823 ± 0.018	0.973 ± 0.003	
HGN	0.292 ± 0.001	0.778 ± 0.001	0.531 ± 0.003	0.847 ± 0.003	
LHGNN	0.662 ± 0.001	0.995 ± 0.001	0.884 ± 0.002	<u>0.953</u> ± 0.001	

- Problem & related work
- Proposed model: LHGNN
- Experiments
- Conclusions

Conclusions

• Problem

- Link prediction on Latent Heterogeneous Graph

• Proposed model: LHGNN

- Address the absence of type information
- Propose the novel idea of **semantic embedding** at both node and path levels to capture latent semantics
- Personalize the aggregation of latent heterogeneous contexts for target nodes in a fine-grained manner

• Experiments

Link Prediction on Latent Heterogeneous Graphs Trung-Kien Nguyen*, Zemin Liu*, Yuan Fang

In Proceedings of the 2023 ACM Web Conference, April 30 - May 4, 2023