
Link Prediction on Latent Heterogeneous Graphs
Trung-Kien Nguyen

∗

Singapore Management University

Singapore

tknguyen@smu.edu.sg

Zemin Liu
∗†

National University of Singapore

Singapore

zeminliu@nus.edu.sg

Yuan Fang

Singapore Management University

Singapore

yfang@smu.edu.sg

ABSTRACT

On graph data, the multitude of node or edge types gives rise to

heterogeneous information networks (HINs). To preserve the het-

erogeneous semantics on HINs, the rich node/edge types become

a cornerstone of HIN representation learning. However, in real-

world scenarios, type information is often noisy, missing or inac-

cessible. Assuming no type information is given, we define a so-

called latent heterogeneous graph (LHG), which carries latent het-

erogeneous semantics as the node/edge types cannot be observed.

In this paper, we study the challenging and unexplored problem of

link prediction on an LHG. As existing approaches depend heavily

on type-based information, they are suboptimal or even inapplica-

ble on LHGs. To address the absence of type information, we pro-

pose a model named LHGNN, based on the novel idea of seman-

tic embedding at node and path levels, to capture latent seman-

tics on and between nodes. We further design a personalization

function to modulate the heterogeneous contexts conditioned on

their latent semantics w.r.t. the target node, to enable finer-grained

aggregation. Finally, we conduct extensive experiments on four

benchmark datasets, and demonstrate the superior performance

of LHGNN.

CCS CONCEPTS

• Computing methodologies→ Learning latent representa-

tions; • Information systems→ Data mining.

KEYWORDS

Latent heterogeneous graph, link prediction, graph neural networks

ACM Reference Format:

Trung-Kien Nguyen
∗
, Zemin Liu

∗†
, and Yuan Fang. 2023. Link Prediction

on Latent Heterogeneous Graphs. In Proceedings of the ACM Web Confer-
ence 2023 (WWW ’23), May 1–5, 2023, Austin, TX, USA. ACM, New York,

NY, USA, 11 pages. https://doi.org/10.1145/3543507.3583284

∗
Co-first authors with equal contribution.

†
Corresponding author. Work partly done at Singapore Management University.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

the author(s) must be honored. Abstracting with credit is permitted. To copy other-

wise, or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

WWW ’23, May 1–5, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00

https://doi.org/10.1145/3543507.3583284

1 INTRODUCTION

Objects often interact with each other to form graphs, such as the

Web and social networks. The prevalence of graph data has cat-

alyzed graph analysis in various disciplines. In particular, link pre-

diction [43] is a fundamental graph analysis task, enabling wide-

spread applications such as friend suggestion in social networks,

recommendation in e-commerce graphs, and citation prediction in

academic networks. In these real-world applications, the graphs

are typically heterogeneous as opposed to homogeneous, also known
asHeterogeneous InformationNetworks (HINs) [39], inwhichmul-

tiple types of nodes and edges exist. For instance, the academic

HIN shown in the top half of Fig. 1(a) interconnects nodes of three

types, namely, Author (A), Paper (P) and Conference (C), through

different types of edges such as “writes/written by” between au-

thor and paper nodes and “publishes/published in” between con-

ference and paper nodes, etc. Themultitude of node and edge types

in HINs implies rich and diverse semantics on and between nodes,

which opens up great opportunities for link prediction.

A crucial step for link prediction is to derive features from an in-

put graph. Recent literature focuses on graph representation learn-

ing [4, 37], which aims to map the nodes on the graph into a low-

dimensional space that preserves the graph structures. Various ap-

proaches exist, ranging from the earlier shallow embedding mod-

els [10, 27, 32] to more recent message-passing graph neural net-

works (GNNs) [11, 18, 34, 38]. Representation learning on HINs

generally follows the same paradigm, but aims to preserve the het-

erogeneous semantics in addition to the graph structures in the

low-dimensional space. To express heterogeneous semantics, ex-

isting work resorts to type-based information, including simple

node/edge types (e.g., an author node carries different semantics

from a paper node), and type structures like metapath [30] (e.g., the
metapath A-P-A implies two authors are collaborators, whereas A-

P-C-P-A implies two authors in the same field; see Sect. 3 for the

metapath definition). Among the state-of-the-art heterogeneous

GNNs, while hinging on the common operation of message pass-

ing, some exploit node/edge types [12, 16, 22, 41] and others em-

ploy type structures [9, 28, 35].

Our problem. The multitude of node or edge types gives rise to

rich heterogeneous semantics on HINs, and forms the key thesis

of HIN representation learning [39]. However, in many real-world

scenarios, type information is often noisy, missing or inaccessi-

ble. One reason is type information does not exist explicitly and

has to be deduced. For instance, when extracting entities and their

relations from texts to construct a knowledge graph, NLP tech-

niques are widely used to classify the extractions into different

types, which can be noisy. Another reason is privacy and security,

such that the nodes in a network may partially or fully hide their

identities and types. Lastly, even on an apparently homogeneous

https://doi.org/10.1145/3543507.3583284
https://doi.org/10.1145/3543507.3583284

WWW ’23, May 1–5, 2023, Austin, TX, USA Trung-Kien Nguyen, Zemin Liu, and Yuan Fang

SMU Classification: Restricted

Author Paper Conference

𝑣!

𝑣"

𝑣#

𝑣$

𝑣%

𝑣&

𝑣'

𝑣(

𝑣) Node 𝑣!

HIN

LHG

(a) HIN vs. LHG

𝑣"𝑣"

𝑣%

𝑣$𝑣%
𝑣'

𝑣! 𝑣&

𝑣(𝑣'

𝑣%
𝑣" 𝑣#

𝑣(?

𝑣"𝑣% 𝑣!

𝐬% 𝐬" 𝐬!

𝐡%

Link
prediction

𝐡)

𝐬)

Node embedding
of 𝑣!

Node-level semantics
of 𝑣!

Context of
node 𝑣"

Context of
node 𝑣#

Modulation with
path-level semantics

(b) Link prediction on LHG with LHGNN

Personalization with
path-level semantics

Latent heteroge.
context aggregationWithout type Zoom

in

𝑣"

𝑣!
𝑣#

𝑣$

𝑣%

𝑣&

𝑣(

𝑣'

Figure 1: Illustration of our problem and approach. (a) Com-

parison of HIN and LHG. (b) Key insights of our approach.

graph, such as a social network which only consists of users and

their mutual friendships, could have fine-grained latent types, such

as different types of users (e.g., students and professionals) and dif-
ferent types of friendships (e.g., friends, family and colleagues), but

we cannot observe such latent types.

Formally, we call those HINs without explicit type information

as Latent Heterogeneous Graphs (LHGs), as shown in the bottom

half of Fig. 1(a). The key difference on an LHG is that, while differ-

ent types still exist, the type information is completely inaccessible

and cannot be observed by data consumers. It implies that LHGs

still carry rich heterogeneous semantics that are crucial to effec-

tive representation learning, but the heterogeneity becomes latent

and presents a muchmore challenging scenario given that types or

type structures can no longer be used. In this paper, we investigate

this unexplored problem of link prediction on LHGs, which calls for
modeling the latent semantics on LHGs as links are formed out of

relational semantics between nodes.

Challenges and insights. We propose a novel model for link

prediction on LHGs, named Latent Heterogeneous Graph Neural

Network (LHGNN). Our general idea is to develop a latent hetero-

geneous message-passing mechanism on an LHG, in order to ex-

ploit the latent semantics between nodes for link prediction. More

specifically, we must address two major challenges.

First, how to capture the latent semantics on and between nodes
without any type information? In the absence of explicit type in-

formation, we resort to semantic embedding at both node and path

levels to depict the latent semantics. At the node level, we com-

plement the traditional representation of each node (e.g., h4 in

Fig. 1(b), which we call the primary embedding) with an additional

semantic embedding (e.g., s4). While the primary embedding can

be regarded as a blend of content and structure information, the

semantic embedding aims to distill the more subtle semantic infor-

mation (i.e., latent node type and relation types a node tends to as-

sociate with), which could have been directly expressed if explicit

types were available. Subsequently, at the path level, we can learn

a semantic path embedding based on the node-level semantic em-

beddings in a path on an LHG, e.g., s4, s1 and s0 in the path 𝑣4–𝑣1–

𝑣0 in Fig. 1(b). The path-level semantic embeddings aim to capture

the latent high-order relational semantics between nodes, such as

the collaborator relation between authors 𝑣4 and 𝑣0 in Fig. 1(a), to

mimic the role played by metapaths such as A-P-A.

Second, as context nodes of a target node often carry latent het-

erogeneous semantics, how to differentiate them for finer-grained
context aggregation? We propose a learnable personalization func-

tion to modulate the original message from each context node. The

personalization hinges on the semantic path embedding between

each context node and the target node as the key differentiator of

heterogeneous semantics carried by different context nodes. For il-

lustration, refer to the top half of Fig. 1(b), where the green nodes

(e.g., 𝑣1, 𝑣4 and 𝑣6) are the context nodes of the doubly-circled tar-

get node (e.g., 𝑣0). These context nodes carry latent heterogeneous

semantics (e.g., 𝑣1 is a paper written by 𝑣0, 𝑣4 is a collaborator of 𝑣0,

and 𝑣6 is a related paper 𝑣0 might be interested in), and thus can be

personalized by the semantic path embedding between each con-

text and the target node before aggregating them.

Contributions. In summary, our contributions are three-fold. (1)

We investigate a novel problem of link prediction on latent het-

erogeneous graphs, which differs from traditional HINs due to the

absence of type information. (2)We propose a novelmodel LHGNN

based on the key idea of semantic embedding to bridge the gap for

representation learning on LHGs. LHGNN is capable of inferring

both node- and path-level semantics, in order to personalize the

latent heterogeneous contexts for finer-grained message passing

within a GNN architecture. (3) Extensive experiments on four real-

world datasets demonstrate the superior performance of LHGNN

in comparison to the state-of-the-art baselines.

2 RELATEDWORK

Graph neural networks. GNNs have recently become the main-

stream for graph representation learning. Modern GNNs typically

follow a message-passing scheme, which derives low-dimensional

embedding of a target node by aggregating messages from con-

text nodes. Different schemes of context aggregation have been

proposed, ranging from simple mean pooling [11, 18] to neural at-

tention [34] and other neural networks [38].

For representation learning on HINs, a plethora of heteroge-

neous GNNs have been proposed. They depend on type-based in-

formation to capture the heterogeneity, just as earlier HIN em-

bedding approaches [5, 8, 14]. On one hand, many of them lever-

age simple node/edge types. HetGNN [41] groups random walks

by node types, and then applies bi-LSTM to aggregate node- and

type-level messages. HGT [16] employs node- and edge-type de-

pendent parameters to compute the heterogeneous attention over

each edge. Simple-HGN [22] extends the edge attention with a

learnable edge type embedding, whereas HetSANN [12] employs

a type-aware attention layer. On the other hand, high-order type

structures such as meta-path [30] or meta-graph [6] have also been

used. HAN [35] uses meta-paths to build homogeneous neighbor

graphs to facilitate node- and semantic-level attentions in message

aggregation, whereas MAGNN [9] proposes several meta-path in-

stance encoders to account for intermediate nodes in a meta-path

instance.Meta-GNN [28] differentiates context nodes based onmeta-

graphs. Another work Space4HGNN [45] proposes a unified de-

sign space to build heterogeneous GNNs in a modularized manner,

Link Prediction on Latent Heterogeneous Graphs WWW ’23, May 1–5, 2023, Austin, TX, USA

which can potentially utilize various type-based information. De-

spite their effectiveness on HINs, they cannot be applied to LHGs

due to the need of explicit type information.

Knowledge graph embedding. A knowledge graph consists of a

large number of relations between head and tail entities. Transla-

tion models [3, 19, 36] are popular approaches that treat each re-

lation as a translation in some vector space. For example, TransE

[3] models a relation as a translation between head and tail enti-

ties in the same embedding space, while TransR [19] further maps

entities into multiple relation spaces to enhance semantic expres-

siveness. Separately, RotatE [31] models each relation as a rotation

from head to tail entities in complex space, and is able to capture

different relation patterns such as symmetry and inversion. These

models require the edge type (i.e., relation) as input, which is not

available on an LHG. Compared to heterogeneous GNNs, they do

not utilize entity features or model multi-hop interactions between

entities, which can lead to inferior performance on HINs.

Predicting missing types. A few studies [13, 25] aim to predict

missing entity types on knowledge graphs. However, a recentwork

[42] shows that these approaches tend to propagate type prediction

errors on the graph, which harms the performance of other tasks

like link prediction. Therefore, RPGNN [42] proposes a relation

encoder, which is adaptive for each node pair to handle themissing

types. However, all of them still require partial type information

from a subset of nodes and edges for supervised training, which

makes them infeasible in the LHG setting.

3 PRELIMINARIES

We first review or define the core concepts in this work.

Heterogeneous Information Networks (HIN). An HIN [29] is

defined as a graph 𝐺 = (𝑉 , 𝐸,𝑇 , 𝑅,𝜓, 𝜙), where 𝑉 denotes the set

of nodes and 𝑇 denotes the set of node types, 𝐸 denotes the set of

edges and 𝑅 denotes the set of edge types. Moreover, 𝜓 : 𝑉 → 𝑇

and 𝜙 : 𝐸 → 𝑅 are functions that map each node and edge to their

types in 𝑇 and 𝑅, respectively. 𝐺 is an HIN if |𝑇 | + |𝑅 | > 2.

Latent Heterogeneous Graph (LHG). An LHG is an HIN 𝐺 =

(𝑉 , 𝐸,𝑇 , 𝑅,𝜓, 𝜙) such that the types 𝑇, 𝑅 and mapping functions

𝜓, 𝜙 are not accessible. That is, we only observe a homogeneous
graph 𝐺 ′ = (𝑉 , 𝐸) without knowing 𝑇, 𝑅,𝜓, 𝜙 .
Metapath and latent metapath. On an HIN, a metapath 𝑃 is a

sequence of node and edge types [30]: 𝑃 = 𝑇1

𝑅1−−→ 𝑇2

𝑅2−−→ ...
𝑅𝑙−−→

𝑇𝑙+1, such that𝑇𝑖 ∈ 𝑇 and𝑅𝑖 ∈ 𝑅. As an edge type𝑅𝑖 ∈ 𝑅 represents

a relation, a metapath represents a composition of relations 𝑅1 ◦
𝑅2 ◦ . . . ◦ 𝑅𝑙 . Hence, metapaths can capture complex, high-order

semantics between nodes. A path 𝑝 = (𝑣1, 𝑣2, . . . , 𝑣𝑙+1) on the HIN

is an instance of metapath 𝑃 if𝜓 (𝑣𝑖) = 𝑇𝑖 and 𝜙 (⟨𝑣𝑖 , 𝑣𝑖+1⟩) = 𝑅𝑖 . As
shown in the top half of Fig. 1(a), an example metapath is Author-

Paper-Author (A-P-A), implying the collaborator relation between

authors. Instances of this metapath include 𝑣0-𝑣1-𝑣4 and 𝑣0-𝑣3-𝑣4,

signifying that 𝑣0 and 𝑣4 are collaborators.

On an LHG the metapaths become latent too, as the types𝑇𝑖 and

𝑅𝑖 are not observable. Generally, any path 𝑝 = (𝑣1, 𝑣2, . . . , 𝑣𝑙+1) on
an LHG is an instance of some latent metapath, which carries la-

tent semantics representing an unknown composition of relations

between the starting node 𝑣1 and end node 𝑣𝑙+1.

Link prediction on LHG. Given a query node, we rank other

nodes by their probability of forming a link with the query. The

difference lies in the input graph, where we are given an LHG.

4 PROPOSED METHOD: LHGNN

In this section, we introduce the proposed method LHGNN for link

prediction on latent heterogeneous graphs.

4.1 Overall Framework

We start with the overall framework of LHGNN, as presented in

Fig. 2. An LHG is given as input as illustrated in Fig. 2(a), which

is fed into an LHGNN layer in Fig. 2(b). Multiple layers can be

stacked, and the last layer would output the node representations,

to be further fed into a link encoder for the task of link prediction

as shown in Fig. 2(c). More specifically, the LHGNN layer is our

core component, which consists of two sub-modules: a semantic
embedding sub-module to learn node-level and path-level latent se-

mantics, and a latent heterogeneous context aggregation sub-module

to aggregate messages for the target node. We describe each sub-

module and the link prediction task in the following.

4.2 Semantic Embedding

Semantic embedding aims to model both node- and path-level la-

tent semantics, as illustrated in Fig. 2(b1).

Node-level semantic embedding. For each node 𝑣 , alongside its

primary embedding h𝑣 , we propose an additional semantic em-

bedding s𝑣 . Similar to node embeddings on homogeneous graphs,

the primary embeddings intend to capture the overall content and

structure information of nodes. However, on an LHG, the content

of a node contains not only concrete topics and preferences, but

also subtle semantic information inherent to nodes of each latent

type (e.g., node type, and potential single or multi-hop relations a

node tends to be part of). Hence, we propose a semantic encoder

to locate and distill the subtle semantic information from the pri-

mary embeddings to generate semantic embeddings, which will be

later employed for link prediction. Note that this is different from

disentangled representation learning [1], which can be regarded as

disentangling a mixture of latent topics.

Specifically, in the 𝑙-th layer, given primary embeddings from

the previous layer
1
(h𝑙−1

𝑣1

, h𝑙−1

𝑣2

, . . .), a semantic encoder generates

the corresponding semantic embeddings (s𝑙𝑣1

, s𝑙𝑣2

, . . .). For each node

𝑣 , the semantic encoder 𝑓𝑠 extracts the semantic embedding s𝑙𝑣
from its primary embedding h𝑙−1

𝑣 : s𝑙𝑣 = 𝑓𝑠 (h𝑙−1

𝑣 ;𝜃𝑙𝑠) ∈ R𝑑
𝑙
𝑠 . While

the function 𝑓𝑠 (·;𝜃𝑙𝑠) can take many forms, we simply materialize

it as a fully connected layer:

s𝑙𝑣 = LeakyReLU(W𝑙
𝑠h

𝑙−1

𝑣 + b𝑙𝑠), (1)

where W𝑙
𝑠 ∈ R𝑑

𝑙
𝑠×𝑑𝑙−1

ℎ and b𝑙𝑠 ∈ R𝑑
𝑙
𝑠 are the parameters of the en-

coder, i.e., 𝜃𝑙𝑠 = {W𝑙
𝑠 , b𝑙𝑠 }. Since the semantic embedding only dis-

till the subtle semantic information from the primary embedding,

it needs much fewer dimensions, i.e., 𝑑𝑙𝑠 ≪ 𝑑𝑙
ℎ
.

Path-level semantic embedding. A target node is often con-

nected with many context nodes through paths. On an LHG, these

1
When 𝑙 = 0, the primary embedding h0

𝑣𝑖
is set to the input node features of 𝑣𝑖 .

WWW ’23, May 1–5, 2023, Austin, TX, USA Trung-Kien Nguyen, Zemin Liu, and Yuan Fang

(b2) Latent Heterogeneous Context Aggregation

Context
Personalization

(b) LHGNN Layer

Link
 Encoder

Task loss

(c) Prediction

Context
Aggregation

(b1) Semantic Embedding

v1

v2

v3

v8

v4

v6v5

v7

Semantic
Encoder

Path
Encoder

(a) Input LHG

v1p1

p2

p4

v4

v1 v2 v8

v1 v6 v5 v7

v1Example target node

p3 v1 v2 v3 v8

Figure 2: Overall framework of LHGNN.

paths may carry different latent semantics by virtue of the het-

erogeneous multi-hop relations between nodes. In an HIN, to cap-

ture the heterogeneous semantics from different context nodes,

metapaths have been a popular tool. For example, in the top half

of Fig. 1(a), the HIN consists of three types of nodes. There ex-

ist different metapaths that capture different semantics between

authors: A-P-A for authors who have directly collaborated, or A-

P-C-P-A for authors who are likely in the same field, etc.However,
on an LHG, we do not have access to the node types, and thus are

unable to define or use any metapath. Thus, we employ a path en-

coder to fuse the node-level semantic embeddings associated with

a path into a path-level embedding. The path-level semantic em-

beddings attempt to mimic the role of metapaths on an HIN, to

capture the latent heterogeneous semantics between nodes.

Concretely, we first perform random walks to sample a set of

paths. Starting from each target node, we sample 𝑁 random walks

of length 𝐿max, e.g., {𝑝1, . . . , 𝑝4} for 𝑣1 as shown in Fig. 2(b). Then,

for each sampled walk, we truncate it into a shorter path with

length 𝐿 ≤ 𝐿max. These paths of varying lengths can capture la-

tent semantics of different ranges, and serve as the instances of

different latent metagraphs.

Next, for each path 𝑝𝑖 , a path encoder encodes it to generate

a semantic path embedding s𝑙𝑝𝑖 . Let 𝑃𝑣 denote the set of sampled

paths starting from a target node 𝑣 . If there exists a path 𝑝𝑖 ∈ 𝑃𝑣
such that 𝑝𝑖 ends at node 𝑢, we call 𝑢 a context node of 𝑣 or simply

context of 𝑣 . For instance, given the set of paths 𝑃𝑣1
= {𝑝1, . . . , 𝑝4}

for the target node 𝑣1 in Fig. 2(b1), the contexts are 𝑣4, 𝑣8, 𝑣7, which

carry different semantics for 𝑣1. In the 𝑙-th layer, we employ a path

encoder 𝑓𝑝 to embed each path 𝑝𝑖 into a semantic path embedding

s𝑙𝑝𝑖 ∈ R
𝑑𝑙𝑠 based on the node-level semantic embeddings of each

node 𝑣 𝑗 in the path.

s𝑙𝑝𝑖 = 𝑓𝑝 ({s
𝑙
𝑣𝑗
| 𝑣 𝑗 in the path 𝑝𝑖 }), (2)

where 𝑓𝑝 can take many forms, ranging from simple pooling to re-

current neural networks [24] and transformers [33]. As the design

of path encoder is not the focus of this paper, we simply implement

it as a mean pooling, which computes the mean of the node-level

semantic embeddings as the path-level embedding.

Remark. It is possible or even likely to have multiple paths be-

tween the target and context nodes. Intrinsically, these paths are

instances of one or more latent metapaths, which bear a two-fold

advantage. First, as each latent metapath depicts a particular se-

mantic relationship between two nodes, having plural latent meta-

paths could capture different semantics between the two nodes.

This is more general than many heterogeneous GNNs [9, 35] on

a HIN, which rely on a few handcrafted metapaths. Second, it is

much more efficient to sample and process paths than subgraphs

[17]. Although a metagraph can express more complex semantics

than a metapath [44], the combination of multiple metapaths is a

good approximation especially given the efficiency trade-off.

4.3 Latent Heterogeneous Context Aggregation

To derive the primary embedding of the target node, the next step

is to perform latent heterogeneous context aggregation for the tar-

get node. The aggregation generally follows a message-passing

GNN architecture, where messages from context nodes are passed

to the target node. For example, consider the target node 𝑣1 shown

in Fig. 2(b2). The contexts of 𝑣1 include {𝑣4, 𝑣8, 𝑣7} based on the

paths 𝑝1, . . . , 𝑝4, and their messages (i.e., embeddings) would be

aggregated to generate the primary embedding of 𝑣1.

However, on an LHG, the contexts of a target node carry la-

tent heterogeneous semantics. Thus, these heterogeneous contexts

shall be differentiated before aggregating them, in order to pre-

serve the latent semantics in fine granules. Note that on an HIN,

the given node/edge types or type structures can be employed as

explicit differentiators for the contexts. In contrast, the lack of type

Link Prediction on Latent Heterogeneous Graphs WWW ’23, May 1–5, 2023, Austin, TX, USA

information on an LHG prevents the adoption of the explicit dif-

ferentors, and we resort to path semantic embeddings as the basis

to differentiate the messages from heterogeneous contexts. That is,

in each layer, we personalize the message from each context node

conditioned on the semantic path embeddings between the target

and context node. The personalized context messages are finally

aggregated to generate the primary embedding of the target node,

i.e., the output of the current layer.

Context personalization. Consider a target node 𝑣 , a context

node 𝑢, and their connecting path 𝑝 . In particular, 𝑢 can be dif-

ferentiated from other contexts of 𝑣 given their connecting path 𝑝 ,

which is associated with a unique semantic path embedding. Note

that there may be more than one paths connecting 𝑣 and 𝑢. In that

case, we treat𝑢 as multiple contexts, one instance for each path, as

each path carries different latent semantics and the corresponding

context instance needs to be differentiated.

Specifically, in the 𝑙-th layer, we personalize the message from

𝑢 to 𝑣 with a learnable transformation function 𝜏 , which modu-

lates 𝑢’s original message h𝑙−1

𝑢 (i.e., its primary embedding from

the previous layer) into a personalized message
˜h𝑙
𝑢 |𝑝 conditioned

on the path 𝑝 between 𝑢 and 𝑣 . That is,

˜h𝑙
𝑢 |𝑝 = 𝜏 (h𝑙−1

𝑢 , s𝑙𝑝 ;𝜃𝑙𝜏), (3)

where the transformation function 𝜏 (·;𝜃𝑙𝜏) is learnable with pa-

rameters 𝜃𝑙𝜏 . We implement 𝜏 using a layer of feature-wise linear

modulation (FiLM) [20, 26], which enables the personalization of

a message (e.g., h𝑙−1

𝑢) conditioned on arbitrary input (e.g., s𝑙𝑝). The
FiLM layer learns to perform scaling and shifting operations to

modulate the original message:

˜h𝑙
𝑢 |𝑝 = (𝛾𝑙𝑝 + 1) ⊙ h𝑙−1

𝑢 + 𝛽𝑙𝑝 , (4)

where 𝛾𝑙𝑝 ∈ R𝑑
𝑙−1

ℎ is a scaling vector and 𝛽𝑙𝑝 ∈ R𝑑
𝑙−1

ℎ is a shift-

ing vector, both of which are learnable and specific to the path 𝑝 .

Note that 1 is a vector of ones to center the scaling around one,

and ⊙ denotes the element-wise multiplication. To make 𝛾𝑙𝑝 and

𝛽𝑙𝑝 learnable, we materialize them using a fully connected layer,

which takes in the semantic path embedding s𝑙𝑝 as input to become

conditioned on the path 𝑝 , as follows.

𝛾𝑙𝑝 = LeakyReLU(W𝑙
𝛾 s

𝑙
𝑝 + b𝑙𝛾), (5)

𝛽𝑙𝑝 = LeakyReLU(W𝑙
𝛽
s𝑙𝑝 + b𝑙𝛽), (6)

where W𝑙
∗ ∈ R𝑑

𝑙−1

ℎ
×𝑑𝑙𝑠

and b𝑙∗ ∈ R𝑑
𝑙−1

ℎ are learnable parameters,

and LeakyReLU(·) is the activation function. Note that the param-

eters of the transformation function 𝜏 in layer 𝑙 boil down to pa-

rameters of the fully connected layers, i.e., 𝜃𝑙𝜏 = {W𝑙
𝛾 ,W𝑙

𝛽
, b𝑙𝛾 , b𝑙𝛽 }.

Context aggregation. Next, we aggregate the personalized mes-

sages from latent heterogeneous contexts into c𝑙𝑣 ∈ R𝑑
𝑙−1

ℎ , the ag-

gregated context embedding for the target node 𝑣 :

c𝑙𝑣 = Mean({𝑒−𝜆𝐿 (𝑝) ˜h𝑙
𝑢 |𝑝 | 𝑝 ∈ 𝑃𝑣}), (7)

where 𝐿(𝑝) gives the length of the path 𝑝 so that 𝑒−𝜆𝐿 (𝑝) acts as
a weighting scheme to bias toward shorter paths, and 𝜆 > 0 is a

hyperparameter controlling the decay rate. We use mean-pooling

as the aggregation function, although other choices such as sum-

or max-pooling could also be used.

Note that the self-information of the target node is also aggre-

gated, by defining a self-loop on the target node as a special path.

More specifically, given a target node 𝑣 and its self-loop 𝑝 , we de-

fine 𝐿(𝑝) = 0 and
˜h𝑙
𝑣 |𝑝 = h𝑙𝑣 , which means the original message of

the target node will be included into c𝑙𝑣 with a weight of 1.

Finally, based on the aggregated context embedding, we obtain

the primary embedding of node 𝑣 in the 𝑙-th layer:

h𝑙𝑣 = LeakyReLU(W𝑙
ℎ
c𝑙𝑣 + b𝑙ℎ), (8)

whereW𝑙
ℎ
∈ R𝑑

𝑙
ℎ
×𝑑𝑙−1

ℎ and b𝑙
ℎ
∈ R𝑑

𝑙
ℎ are learnable parameters.

4.4 Link Prediction

In the following, we discuss the treatment of the link prediction

task on an LHG, as illustrated in Fig. 2(c). In particular, we will

present a link encoder and the loss function.

Link encoder. For link prediction between two nodes, we de-

sign a link encoder to capture the potential latent relationships

between the two candidates. Given two candidate nodes 𝑎 and 𝑏

and their respective semantic embeddings s𝑎, s𝑏 obtained from the

last LHGNN layer, the link encoder is materialized in the form of

a recurrent unit to generate a pairwise semantic embedding:

s𝑎,𝑏 = tanh (Ws𝑏 + Us𝑎 + b), (9)

where s𝑎,𝑏 ∈ R𝑑ℎ can be interpreted as an embedding of the latent

relationships between the two nodes 𝑎 and 𝑏, W,U ∈ R𝑑𝑠×𝑑ℎ , b ∈
R𝑑ℎ are learnable parameters. Here 𝑑ℎ and 𝑑𝑠 are the number of

dimensions of the primary and semantic embeddings from the last

layer, respectively. Note that s𝑎,𝑏 has the same dimension as the

node representations, which can be used as a translation to relate

nodes 𝑎 and 𝑏 in the loss function in the next part.

Loss function. We adopt a triplet loss for link prediction. For an

edge (𝑎, 𝑏) ∈ 𝐸, we construct a triplet (𝑎, 𝑏, 𝑐), where 𝑐 is a negative
node randomly sampled from the graph. Inspired by translation

models in knowledge graph [3, 19], 𝑏 can be obtained by a transla-

tion on 𝑎 and the translation approximates the latent relationships

between 𝑎 and 𝑏, i.e., h𝑏 ≈ h𝑎 + s𝑎,𝑏 . Note that h𝑣 denotes the

primary node embedding from the final LHGNN layer. In contrast,

since 𝑐 is a random node unrelated to 𝑎, h𝑐 cannot be approximated

by the translation. Thus, given a set of training triplets 𝑇 , we for-

mulate the following triplet margin loss for the task:

L
task

=
1

|𝑇 |
∑︁

(𝑎,𝑏,𝑐) ∈𝑇
max

(
𝑑 (𝑎, 𝑏) − 𝑑 (𝑎, 𝑐) + 𝛼, 0

)
, (10)

where 𝑑 (𝑥,𝑦) = ∥h𝑥 + s𝑥,𝑦 − h𝑦 ∥2 is the Euclidean norm of the

translational errors, and 𝛼 > 0 is the margin hyperparameter.

Besides the task loss, we also add constraints to scaling and

shifting in the FiLM layer. During training, the scaling and shifting

may become arbitrarily large to overfit the data. To prevent this is-

sue, we restrict the search space by the following loss term on the

scaling and shifting vectors.

LFiLM =

ℓ∑︁
𝑙=1

∑︁
𝑝∈𝑃
(∥𝛾𝑙𝑝 ∥2 + ∥𝛽𝑙𝑝 ∥2), (11)

WWW ’23, May 1–5, 2023, Austin, TX, USA Trung-Kien Nguyen, Zemin Liu, and Yuan Fang

Table 1: Summary of Datasets.

Attributes FB15k-237 WN18RR DBLP OGB-MAG

Nodes 14,541 40,943 18,405 100,002

Edges 310,116 93,003 67,946 1,862,256

Features - - 334 128

Node types - - 3 4

Edge types 237 11 4 4

Avg(degree) 29.09 3.50 3.55 17.88

Training 272,115 86,835 54,356 1,489,804

Validation 17,535 3,034 6,794 186,225

Testing 20,466 3,134 6796 186,227

where ℓ is the total number of layers and 𝑃 is the set of all sampled

paths. The overall loss is then

L = L
task
+ 𝜇LFiLM, (12)

where 𝜇 > 0 is a hyperparameter to balance the loss terms.

We further present the training algorithm for LHGNN in Ap-

pendix A, and give a complexity analysis therein.

5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the

effectiveness of LHGNNon four benchmark datasets.

5.1 Experimental Setup

Datasets. We employ four graph datasets summarized in Table 1.

Note that, while all these graphs include node or edge types, we

hide such type information to transform them into LHGs.

• FB15k-237 [31] is a refined subset of Freebase [2], a knowledge

graph about general facts. It is curated with the most frequently

used relations, in which each node is an entity, and each edge

represents a relation.

• WN18RR [31] is a refined subset of WordNet [23], a knowledge

graph demonstrating lexical relations of vocabulary.

• DBLP [40] is an academic bibliographic network, which includes

three types of nodes, i.e., paper (P), author (A) and conference

(C), as well as four types of edges, i.e., P-A, A-P, P-C, C-P. The
node features are 334-dimensional vectors which represent the

bag-of-word vectors for the keywords.

• OGB-MAG [15] is a large-scale academic graph. It contains four

types of nodes, i.e., paper (P), author (A), institution (I) and field

(F), as well as four types of edges, i.e., A-I, A-P, P-P, P-F. Fea-
tures of each paper is a 128-dimensional vector generated by

word2vec, while the node feature of the other types is gener-

ated by metapath2vec [5] with the same dimension following

previous work [7]. In our experiments, we randomly sample a

subgraph with around 100K entities from the original graph us-

ing breadth first search.

Baselines. For a comprehensive comparison, we employ baselines

from three major categories.

• Classic GNNs: GCN [18], GAT [34] and GraphSAGE [11], which

are classic GNN models for homogeneous graphs.

• Heterogeneous GNNs: HAN [35], HGT [16] and Simple-HGN (HGN

for short) [22], which are state-of-the-art heterogeneous graph

neural networks (HGNNs) taking in an HIN as input.

• Translation models: TransE [3] and TransR [19], which are well-

known methods for knowledge graph embedding.

Note that the heterogeneous GNNs and translation models re-

quire node/edge types as input, to apply them to an LHG, we adopt

two strategies: either treating all nodes or edges as one type, or

generating pseudo types, which we will elaborate later. See Appen-

dix B for more detailed descriptions of the baselines.

Model settings. See Appendix D for the hyperparameters and

other settings of the baselines and our method.

5.2 Evaluation of Link Prediction

In this part, we evaluate the performance of LHGNN on the main

task of link prediction on LHGs.

Settings. For knowledge graph datasets (FB15k-237 andWN18RR),

we use the same training/validation/testing proportion in previous

work [31], as given in Table 1. For the other datasets, we adopt a

80%/10%/10% random splitting of the links. Note that the training

graphs are reconstructed from only the training links.

We adopt ranking-based evaluation metrics for link prediction,

namely, NDCG and MAP [21]. In the validation and testing set,

given a ground-truth link (𝑎, 𝑏), we randomly sample another 9

nodes which are not linked to 𝑎 as negative nodes, and form a can-

didate list together with node 𝑏. For evaluation, we rank the 10

nodes based on their scores w.r.t. node𝑎. For our LHGNN, the score

for a candidate link (𝑥,𝑦) is computed as −∥h𝑥 + s𝑥,𝑦 − h𝑦 ∥2. For
classic and heterogeneous GNN models, we implement the same

triplet margin loss for them, as given by Eq. (10). The only differ-

ence is that 𝑑 (𝑥,𝑦) is defined by ∥h𝑥 − h𝑦 ∥2 in the absence of se-

mantic embeddings. Similarly, their link scoring function is defined

as −∥h𝑥 −h𝑦 ∥2 for a candidate link (𝑥,𝑦). Translation models also

use the same loss and scoring function as ours, except for replacing

our link encoding s𝑥,𝑦 with their type-based relation embedding.

Scenarios of comparison. Since the type information is inacces-

sible on LHGs, for heterogeneous GNNs and the translation meth-

ods, we consider the following scenarios.

The first scenario is to treat all nodes/edges as only one type in

the absence of type information.

In the second scenario, we generate pseudo types. For nodes, we
resort to the 𝐾-means algorithm to cluster nodes into 𝐾 clusters

based on their features, and treat the cluster ID of each node as

its type. Since the number of clusters or types 𝐾 is unknown, we

experiment with different values. For each heterogeneous GNN or

translation model, we use “X-𝐾” to denote a variant of model X

with 𝐾 pseudo node types, where X is the model name. For in-

stance, HAN-3 means HAN with three pseudo node types. Note

that there is no node feature in FB15k-237 and WN18RR. To per-

form clustering, we use node embeddings by running X-1 first. On

the other hand, edge types are derived using the Cartesian product

of the node types, resulting in 𝐾 × 𝐾 pseudo edge types. Finally,

for HAN which requires metapath, we further construct pseudo

metapaths based on the pseudo node types. For each pseudo node

type, we employ all metapaths with length two starting and ending

Link Prediction on Latent Heterogeneous Graphs WWW ’23, May 1–5, 2023, Austin, TX, USA

Table 2: Evaluation of link prediction on LHGs. Best is bolded and runner-up underlined; OOMmeans out-of-memory error.

Methods

FB15k-237 WN18RR DBLP OGB-MAG

MAP NDCG MAP NDCG MAP NDCG MAP NDCG

GCN 0.790 ± 0.001 0.842 ± 0.001 0.729 ± 0.002 0.794 ± 0.001 0.879 ± 0.001 0.910 ± 0.001 0.848 ± 0.001 0.886 ± 0.001

GAT 0.786 ± 0.002 0.839 ± 0.001 0.761 ± 0.001 0.818 ± 0.001 0.913 ± 0.001 0.936 ± 0.001 0.830 ± 0.004 0.872 ± 0.003

GraphSAGE 0.800 ± 0.001 0.850 ± 0.001 0.728 ± 0.003 0.793 ± 0.002 0.891 ± 0.001 0.918 ± 0.001 0.849 ± 0.001 0.887 ± 0.001

TransE 0.675 ± 0.001 0.752 ± 0.001 0.511 ± 0.002 0.624 ± 0.001 0.488 ± 0.001 0.605 ± 0.001 0.552 ± 0.001 0.656 ± 0.001

TransR 0.734 ± 0.004 0.798 ± 0.003 0.510 ± 0.002 0.623 ± 0.001 0.565 ± 0.007 0.668 ± 0.005 0.546 ± 0.001 0.652 ± 0.001

HAN 0.725 ± 0.002 0.793 ± 0.002 0.749 ± 0.003 0.810 ± 0.003 0.763 ± 0.005 0.801 ± 0.004 OOM OOM

HGT 0.782 ± 0.001 0.837 ± 0.001 0.724 ± 0.003 0.791 ± 0.002 0.897 ± 0.001 0.923 ± 0.001 0.835 ± 0.003 0.876 ± 0.002

HGN 0.742 ± 0.002 0.806 ± 0.001 0.802 ± 0.002 0.849 ± 0.002 0.907 ± 0.003 0.930 ± 0.002 0.818 ± 0.001 0.863 ± 0.001

LHGNN 0.858 ± 0.001 0.893 ± 0.001 0.838 ± 0.003 0.877 ± 0.002 0.932 ± 0.003 0.949 ± 0.002 0.879 ± 0.001 0.909 ± 0.001

Table 3: Evaluation of link prediction on LHGs with pseudo

types for heterogeneous GNNs and translation models.

Methods

FB15k-237 WN18RR DBLP OGB-MAG

MAP NDCG MAP NDCG MAP NDCG MAP NDCG

TransE-3 0.693 0.767 0.510 0.623 0.599 0.693 0.568 0.670

TransE-10 0.701 0.773 0.519 0.630 0.677 0.754 0.599 0.694

TransR-3 0.749 0.810 0.485 0.604 0.585 0.683 0.599 0.695

TransR-10 0.727 0.794 0.497 0.614 0.631 0.719 OOM OOM

HAN-3 0.594 0.685 0.673 0.616 0.603 0.687 OOM OOM

HAN-10 0.648 0.734 0.384 0.529 0.618 0.708 OOM OOM

HGT-3 0.799 0.850 0.733 0.797 0.888 0.916 0.837 0.878

HGT-10 0.750 0.812 0.607 0.701 0.857 0.893 0.837 0.878

HGN-3 0.746 0.809 0.814 0.859 0.903 0.927 0.815 0.861

HGN-10 0.735 0.800 0.822 0.864 0.898 0.923 0.813 0.859

at that type. We also note that some previous works [13, 25] can

predict missing type information. However, they cannot be used

to generate the pseudo types, as they still need partial type infor-

mation from some nodes and edges as supervision.

Besides, in the third scenario, we also evaluate the heteroge-

neous GNNs on a complete HIN with all node/edge types given.

This assesses if explicit type information is useful, and how the

baselines with full type information compare to our model.

Performance on LHGs. In the first scenario, all methods do not

have access to the node/edge types. We report the results in Ta-

ble 2, and make the following observations.

First, our proposed LHGNN consistently outperforms all the

baselines across different metrics and datasets. The results imply

that LHGNN can adeptly capture latent semantics between nodes

to assist link prediction, even without any type information.

Second, the performance of classic GNNbaselines is consistently

competitive or even slightly better than heterogeneous GNNs. This

finding is not surprising—while heterogeneous GNNs can be effec-

tive on HINs, their performance heavily depends on high-quality

type information which is absent from LHGs.

Third, translation models are usually worse than GNNs, possi-

bly because they do not take advantage of node features, and lack

a message-passing mechanism to fully exploit graph structures.

Performance with pseudo types. In the second scenario, we

generate pseudo types for heterogeneous GNNs and translation

models, and report their results in Table 3. We observe different

outcomes on different kinds of baselines.

On one hand, translation models generally benefit from the use

of pseudo types. Compared to Table 2 without using pseudo types,

TransE-𝐾 can achieve an improvement of 13.2% and 8.5% in MAP

andNDCG, respectively, while TransR-𝐾 can improve the twomet-

rics by 5.2% and 3.6%, respectively (numbers are averaged over the

four datasets). This demonstrates that even very crude type esti-

mation (e.g., 𝐾-means clustering) is useful in capturing latent se-

mantics between nodes. Nevertheless, our model LHGNN still out-

performs translation models using pseudo types.

On the other hand, heterogeneous GNNs can only achieve mar-

ginal improvements with pseudo types, if not worse performance.

A potential reason is that pseudo types are noisy, and the message-

passing mechanism of GNNs can propagate local errors caused by

the noises and further amplify them across the graph. In contrast,

the lack of message passing in translation models make them less

susceptible to noises, and the benefit of pseudo types outweighs

the effect of noises.

Overall, while pseudo types can be useful to some extent, they

cannot fully reveal the latent semantics between nodes due to po-

tential noises. Moreover, we need to set a predetermined number

of pseudo types, which is not required by our model LHGNN.

Performance on complete HINs. The third scenario is designed

to further evaluate the importance of type information, and how

LHGNN fares against baselines equipped with full type informa-

tion on HINs. Specifically, we compare the performance of the

heterogeneous GNNs on the two datasets DBLP and OGB-MAG,

where type information is fully provided. To enhance the link pre-

diction of the heterogeneous GNN models, we adopt a relation-

aware decoder [22] to compute the score for a candidate link (𝑥,𝑦)
as h𝑇𝑥W𝑟h𝑦 , where W𝑟 ∈ R𝑑ℎ×𝑑ℎ is a learnable matrix for each

edge type 𝑟 ∈ 𝑅. We report the results in Table 4.

We observe that heterogeneous GNNs with full type informa-

tion consistently perform better than themselves without any type

information (cf. Table 2). This is not surprising given the rich se-

mantics expressed by explicit types. Moreover, LHGNN achieves

comparable results to the heterogeneous GNNs or sometimes bet-

ter results (cf. Table 2), despite LHGNN not requiring any explicit

WWW ’23, May 1–5, 2023, Austin, TX, USA Trung-Kien Nguyen, Zemin Liu, and Yuan Fang

Table 4: Evaluation of link prediction on HINs with full ac-

cess to node/edge types for heterogeneous GNNs. Percent-

ages in parenthesis indicate the improvement to their per-

formance on LHGs (cf. Table 2).

Methods

DBLP OGB-MAG

MAP NDCG MAP NDCG

HAN 0.789 (+3.4%) 0.821 (+2.5%) OOM OOM

HGT 0.902 (+0.6%) 0.927 (+0.4%) 0.872 (+4.4%) 0.904 (+3.2%)

HGN 0.909 (+0.2%) 0.932 (+0.2%) 0.855 (+4.5%) 0.892 (+3.4%)

Table 5: Evaluation of node type classification on LHGs.

Methods

DBLP OGB-MAG

MacroF Accuracy MacroF Accuracy

GCN 0.376 ± 0.009 0.785 ± 0.002 0.599 ± 0.011 0.890 ± 0.003

GAT 0.310 ± 0.003 0.782 ± 0.001 0.624 ± 0.035 0.894 ± 0.007

GraphSAGE 0.477 ± 0.021 0.842 ± 0.012 0.550 ± 0.014 0.902 ± 0.004

HGT 0.464 ± 0.009 0.837 ± 0.005 0.823 ± 0.018 0.973 ± 0.003

HGN 0.292 ± 0.001 0.778 ± 0.001 0.531 ± 0.003 0.847 ± 0.003

LHGNN 0.662 ± 0.001 0.995 ± 0.001 0.884 ± 0.002 0.953 ± 0.001

type. A potential reason is the node- and path-level semantic em-

beddings in LHGNN can capture latent semantics in a finer granu-

larity, whereas the explicit types on a HIN may be coarse-grained.

For example, on a typical academic graph, there are node types of

Author or Paper, but no finer-grained types like Student/Faculty

Author or Research/Application Paper is available.

5.3 Evaluation of Node Type Classification

To evaluate the expressiveness of semantic embeddings in captur-

ing type information, we further use them to conduct node type

classification on DBLP and OGB-MAG thanks to their accessible

ground truth types. We perform stratified train/test splitting, i.e.,
for each node type, we use 60% nodes for training and 40% for

testing. For each node, we concatenate its primary node embed-

ding and semantic embedding, and feed it into a logistic regression

classifier to predict its node type. We choose five competitive base-

lines, and use their output node embeddings to also train a logistic

regression classifier on the same split.

We employ macro-F score and accuracy as the evaluation met-

rics, and report the results in Table 5. We observe that LHGNN can

significantly outperform the other baselines, with only one excep-

tion in accuracy on OGB-MAG. Since the node types are imbal-

anced (e.g., authors account for 77.8% of all nodes on DBLP, and

64.4% on OGB-MAG), accuracy may be skewed by the majority

class and is often not a useful indicator of predictive power. The

results demonstrate the usefulness of semantic embedding in our

model to effectively express type information.

5.4 Model Analyses

Ablation study. To evaluate the contribution of each module in

LHGNN, we conduct an ablation study by comparing with sev-

eral degenerate variants: (1) no link encoder : we remove the link

Table 6: Training time.

Nodes Edges Time Epochs

20k 370k 1084s 24

40k 810k 1517s 11

60k 1.2M 2166s 8

80k 1.6M 2428s 6

100k 1.8M 2251s 5

Figure 3: Ablation study.

encoder, by setting all pairwise semantic embeddings s𝑥,𝑦 to zero

in both training and testing; (2) no personalization: we remove the

personalization conditioned on semantic path embeddings, by us-

ing a simple mean pooling for context aggregation; (3) no link en-
coder & personalization: we remove both modules as described ear-

lier, which is equivalent to removing the semantic embeddings al-

together.

We present the results in Fig. 3 and make the following observa-

tions. First, the performance of LHGNN drops significantly when

removing the link encoder, showing their importance on LHGs.

In other words, the learned latent semantics between nodes are

effective for link prediction. Second, without the personalization

for context aggregation, the performance also declines. This shows

that the context nodes have heterogeneous relationships to the tar-

get node, and the semantic path embeddings can work as intended

to personalize the contexts. Third, without both of them, the model

usually achieves the worst performance.

Scalability. We sample five subgraphs from the largest dataset

OGB-MAG, with sizes ranging from 20k to 100k nodes. We present

the total training time and number of epochs of LHGNN on these

subgraphs in Table 6. As the graph grows by 5 times, total training

time to converge only increases by 2 times, since generally fewer

epochs are needed for convergence on larger graphs.

Additional studies.We present results on additional model stud-

ies in Appendices E, F and G, respectively.

6 CONCLUSION

In this paper, we investigated a challenging and unexplored set-

ting of latent heterogeneous graphs (LHG) for the task of link pre-

diction. Existing approaches on heterogeneous graphs depend on

explicit type-based information, and thus they do not work well

on LHGs. To deal with the absence of types, we proposed a novel

model named LHGNN for link prediction on an LHG, based on the

novel idea of semantic embedding at both node and path levels,

and a personalized aggregation of latent heterogeneous contexts

for target nodes in a fine-grainedmanner. Finally, extensive experi-

ments on four benchmark datasets show the superior performance

of LHGNN.

ACKNOWLEDGMENTS

This research is supported by the Agency for Science, Technology

and Research (A*STAR) under its AMEProgrammatic Funds (Grant

No. A20H6b0151).

Link Prediction on Latent Heterogeneous Graphs WWW ’23, May 1–5, 2023, Austin, TX, USA

REFERENCES

[1] Yoshua Bengio, AaronCourville, and Pascal Vincent. 2013. Representation learn-

ing: A review and new perspectives. TPAMI 35, 8 (2013), 1798–1828.
[2] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.

2008. Freebase: a collaboratively created graph database for structuring human

knowledge. In SIGMOD. 1247–1250.
[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational

data. In NeurIPS.
[4] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2018. A com-

prehensive survey of graph embedding: Problems, techniques, and applications.

TKDE 30, 9 (2018), 1616–1637.

[5] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:

Scalable representation learning for heterogeneous networks. In KDD. 135–144.
[6] Yuan Fang,Wenqing Lin, VincentWZheng,MinWu, Kevin Chen-ChuanChang,

and Xiao-Li Li. 2016. Semantic proximity search on graphs with metagraph-

based learning. In ICDE. 277–288.
[7] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning

with PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).
[8] Tao-yang Fu,Wang-Chien Lee, and Zhen Lei. 2017. Hin2vec: Exploremeta-paths

in heterogeneous information networks for representation learning. In CIKM.

1797–1806.

[9] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. 2020. MAGNN: Metap-

ath aggregated graph neural network for heterogeneous graph embedding. In

WWW. 2331–2341.

[10] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In KDD. 855–864.
[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NeurIPS. 1024–1034.
[12] Huiting Hong, Hantao Guo, Yucheng Lin, Xiaoqing Yang, Zang Li, and Jieping

Ye. 2020. An attention-based graph neural network for heterogeneous structural

learning. In AAAI. 4132–4139.
[13] Jon Arne Bø Hovda, Darío Garigliotti, and Krisztian Balog. 2019. NeuType: A

Simple and Effective Neural Network Approach for Predicting Missing Entity

Type Information in Knowledge Bases. arXiv preprint arXiv:1907.03007 (2019).

[14] Binbin Hu, Yuan Fang, and Chuan Shi. 2019. Adversarial learning on heteroge-

neous information networks. In KDD. 120–129.
[15] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen

Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets

for machine learning on graphs. In NeurIPS. 22118–22133.
[16] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous

graph transformer. In WWW. 2704–2710.

[17] Xunqiang Jiang, Tianrui Jia, Yuan Fang, Chuan Shi, Zhe Lin, and Hui Wang.

2021. Pre-training on large-scale heterogeneous graph. In KDD. 756–766.
[18] Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with

graph convolutional networks. In ICLR.
[19] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learn-

ing entity and relation embeddings for knowledge graph completion. In AAAI.
2181–2187.

[20] Zemin Liu, Yuan Fang, Chenghao Liu, and Steven C.H. Hoi. 2021. Node-wise Lo-

calization of Graph Neural Networks. In Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence. 1520–1526.

[21] Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. 2021. Tail-GNN: Tail-Node

Graph Neural Networks. In KDD. 1109–1119.
[22] Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming

He, Chang Zhou, Jianguo Jiang, Yuxiao Dong, and Jie Tang. 2021. Are we really

making much progress? Revisiting, benchmarking and refining heterogeneous

graph neural networks. In KDD. 1150–1160.

[23] George A Miller. 1995. WordNet: a lexical database for English. CACM 38, 11

(1995), 39–41.

[24] Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017. SummaRuNNer: A re-

current neural network based sequence model for extractive summarization of

documents. In AAAI. 3075–3081.
[25] Arvind Neelakantan and Ming-Wei Chang. 2015. Inferring missing entity type

instances for knowledge base completion: New dataset and methods. In NAACL.
515–525.

[26] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron

Courville. 2018. FiLM: Visual reasoning with a general conditioning layer. In

AAAI. 3942–3951.
[27] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online learn-

ing of social representations. In KDD. 701–710.
[28] Aravind Sankar, Xinyang Zhang, and Kevin Chen-Chuan Chang. 2019. Meta-

GNN:Metagraph neural network for semi-supervised learning in attributed het-

erogeneous information networks. In ASONAM. 137–144.

[29] Yizhou Sun and Jiawei Han. 2012. Mining heterogeneous information networks:

principles and methodologies. Synthesis Lectures on Data Mining and Knowledge
Discovery 3, 2 (2012), 1–159.

[30] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. 2011. Path-

sim: Meta path-based top-k similarity search in heterogeneous information net-

works. PVLDB 4, 11 (2011), 992–1003.

[31] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2018. RotatE: Knowl-

edge Graph Embedding by Relational Rotation in Complex Space. In ICLR.
[32] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. LINE: Large-scale information network embedding. InWWW. 1067–1077.

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you

need. In NeurIPS. 5998–6008.
[34] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2018. Graph attention networks. In ICLR.
[35] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S

Yu. 2019. Heterogeneous graph attention network. In WWW. 2022–2032.

[36] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge

graph embedding by translating on hyperplanes. In AAAI. 1112–1119.
[37] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. 2020. A comprehensive survey on graph neural networks. TNNLS
32, 1 (2020), 4–24.

[38] Keyulu Xu,WeihuaHu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful

are graph neural networks?. In ICLR.
[39] Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. 2020. Heteroge-

neous network representation learning: A unified framework with survey and

benchmark. TKDE 34, 10 (2020), 4854–4873.

[40] Seongjun Yun,Minbyul Jeong, RaehyunKim, JaewooKang, andHyunwoo J Kim.

2019. Graph transformer networks. In NeurIPS. 11983–11993.
[41] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V

Chawla. 2019. Heterogeneous graph neural network. In KDD. 793–803.
[42] Han Zhang, Yu Hao, Xin Cao, Yixiang Fang, Won-Yong Shin, and Wei Wang.

2021. Relation prediction via graph neural network in heterogeneous informa-

tion networks with missing type information. In CIKM. 2517–2526.

[43] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural

networks. In NeurIPS. 5171–5181.
[44] Wentao Zhang, Yuan Fang, Zemin Liu, Min Wu, and Xinming Zhang. 2022.

mg2vec: Learning Relationship-Preserving Heterogeneous Graph Representa-

tions via Metagraph Embedding. TKDE 34, 3 (2022), 1317–1329.

[45] Tianyu Zhao, Cheng Yang, Yibo Li, QuanGan, ZhenyiWang, Fengqi Liang, Huan

Zhao, Yingxia Shao, Xiao Wang, and Chuan Shi. 2022. Space4HGNN: A Novel,

Modularized and Reproducible Platform to Evaluate Heterogeneous Graph Neu-

ral Network. In SIGIR. 2776–2789.

WWW ’23, May 1–5, 2023, Austin, TX, USA Trung-Kien Nguyen, Zemin Liu, and Yuan Fang

APPENDICES

A Algorithm and Complexity

We outline the model training for LHGNN in Algorithm 1.

Algorithm 1 Model Training for LHGNN

Input: latent heterogeneous graph𝐺 = (𝑉 , 𝐸) , training triplets𝑇 , a set of
random walk paths 𝑃𝑣 for each node 𝑣

Output: Model parameters Θ.
1: initialize parameters Θ;
2: while not converged do

3: sample a batch of triplets𝑇
bat
⊂ 𝑇 ;

4: for each target node 𝑣 in the batch𝑇
bat

do

5: for each layer 𝑙 ∈ {1, 2, . . . , ℓ } do
6: s𝑙𝑣 ← 𝑓𝑠 (h𝑙−1

𝑣 ;𝜃𝑙𝑠) ;
7: for each path 𝑝 ∈ 𝑃𝑣 that ends at context node 𝑢 do

8: s𝑙𝑝 ← 𝑓𝑝 ({s𝑙𝑣𝑖 |𝑣𝑖 in the path 𝑝 }) ;
9:

˜h𝑙
𝑢 |𝑝 ← 𝜏 (h𝑙−1

𝑢 , s𝑙𝑝 ;𝜃𝑙𝜏) ;

10: h𝑙𝑣 ← Aggregate({ ˜h𝑙
𝑢 |𝑝 |𝑝 ∈ 𝑃𝑣 };

11: Calculate the loss L by Eqs. (10),(11) and (12);

12: update Θ by minimizing L;
13: return Θ.

In line 1, we initialize themodel parameters. In line 3, we sample

a batch of triplets from training data. In lines 4–10, we calculate

layer-wise node representations on the training set. Specifically,

for each node 𝑣 in layer 𝑙 , we calculate the semantic embeddings at

the node level in line 6 and path level in line 8. Next, we personalize

the contexts in line 9 and aggregate them in line 10. In lines 11-12,

We compute the loss and update the parameters.

We compare the complexity of one layer and one target node in

LHGNN against a standard message-passing GNN. In a standard

GNN, the aggregation for one node in the 𝑙-th layer has complex-

ity𝑂 (¯𝑑𝑑𝑙
ℎ
𝑑𝑙−1

ℎ
), where 𝑑𝑙

ℎ
is the output dimension of the 𝑙-th layer

and
¯𝑑 is the node degree. In our model, we first need to compute

the node- and path-level semantic embeddings. At the node level,

the cost is 𝑂 (𝑑𝑙𝑠𝑑𝑙−1

ℎ
) based on Eq. (1); at the path level, given a

nodewith𝑘 paths of maximum length 𝐿max, the cost is𝑂 (𝑘𝐿max𝑑
𝑙
𝑠)

based on Eq. (2). The computation of scaling and shifting vectors

takes 𝑂 (𝑘𝑑𝑙−1

ℎ
𝑑𝑙𝑠) based on Eqs. (5) and (6), and the personaliza-

tion of context embeddings takes𝑂 (𝑘𝑑𝑙−1

ℎ
) based on Eq. (4). Thus,

the aggregation and representation update step takes 𝑂 (𝑘𝑑𝑙
ℎ
𝑑𝑙−1

ℎ
)

based on Eqs. (7) and (8). Furthermore, the cost to sample a path

of length 𝐿max is 𝑂 (𝐿max). To sample 𝑘 paths for a target node in

one LHGNN layer, the overhead is 𝑂 (𝑘𝐿max), which is negligible

compared to the aggregation cost, as 𝐿max is small (less than 5 in

our experiments). Therefore, the total complexity for one node in

one layer is 𝑂 (𝑘𝐿max𝑑
𝑙
𝑠 + 𝑘𝑑𝑙ℎ𝑑

𝑙−1

ℎ
+ 𝑘𝑑𝑙

ℎ
𝑑𝑙−1

𝑠). As 𝐿max is a small

constant and 𝑑𝑙−1

𝑠 ≪ 𝑑𝑙−1

ℎ
, the complexity reduces to𝑂 (𝑘𝑑𝑙

ℎ
𝑑𝑙−1

ℎ
).

Furthermore, we can limit 𝑘 , the number of sampled paths from

each node, by some constant value, in which case our model has

the same complexity class as a standard GNN.

B Details of Baselines

We provide detailed descriptions for the baselines.

• Classic GNNs: GCN [18] aggregates information for the target

node by applying mean-pooling over its neighbors. GAT [34]:

utilizes self-attention to assign different weights to neighbors

of the target node during aggregation. Meanwhile, GraphSAGE

[11]: concatenates the target node with the aggregated informa-

tion from its neighbors to produce the node embedding. These

models treat all nodes or edges as a uniform type and do not

attempt to distinguish them.

• Heterogeneous GNNs: HAN [35] makes use of handcrafted meta-

paths to decompose HIN into multiple homogeneous graphs,

one for each metapath, then employs hierarchical attention to

learn both node-level and semantic-level importance for aggre-

gation. HGT [16] applies the transformer model, using node and

edge type parameters to capture the heterogeneity. HGN [22]

extends GAT by employing node type information in the calcu-

lation of attention scores. These threemodels require type-based

information in their architectures. Given an LHG, we either as-

sume a single node/edge type or employ pseudo types for these

methods, as described in the main paper.

• Translation models: TransE [3] models the relation between en-

tities as a translation in the same embedding space. TransR [19]

maps entity embeddings into a relation-wise space before the

translation. These models require the relation type (i.e., edge

type) to be known. Similarly, we assume a single edge type or

employ pseudo types for them.

C Environment

All experiments are conducted on a workstation with a 12-core

CPU, 128GB RAM, and 2 RTX-A5000 GPUs. We implemented the

proposed LHGNN using Pytorch 1.10 and Python 3.8 in Ubuntu-

20.04.

D Model Settings

For all the approaches, we use the same output dimension as 32

for fair comparison to conduct link prediction. For the two knowl-

edge graph datasets (i.e., FB15k-237 and WN18RR), we randomly

initialize a learnable parameter vector for each entity with embed-

ding dimension 200. We tune the margin hyperparameter 𝛼 for

each model in order to achieve its optimal performance. All exper-

iments are repeated 5 times, and we report the average results with

standard deviations.

For all GNN baselines, we employ two layers with L2 Normal-

ization on each layer. We use a margin 0.2 and dropout ratio 0.5 for

all of them. For GCN, we set the hidden dimension as 32. For GAT,

we use four attention heads with hidden dimension of each head

as 16. For GraphSAGE, we use the mean aggregator and set its hid-

den dimension as 32. For all HGNN baselines, wemainly follow the

default setting in [22]. In particular, we also employ 2-layer archi-

tectures for all of them. For HAN, for the node-level aggregation,

we use GAT with eight attention heads with hidden dimension 8

for each head, and its dropout ratio is 0.6; and we set the dimen-

sion for semantic-level attention as 128 and set 𝛼 = 1. For HGT,

we use eight attention heads, with dropout ratio as 0.2 and margin

as 1. For HGN, we use eight attention heads with dropout ratio as

0.5. We set the dimension of edge embeddings as 64, and the mar-

gin as 0.5. For translation models including TransE and TransR, we

Link Prediction on Latent Heterogeneous Graphs WWW ’23, May 1–5, 2023, Austin, TX, USA

Table VII: Impact of different number of layers. In each column, the best is bolded and the runner-up is underlined.

Methods

FB15k-237 WN18RR DBLP OGB-MAG

MAP NDCG MAP NDCG MAP NDCG MAP NDCG

GCN-2 0.790 ± 0.001 0.842 ± 0.001 0.729 ± 0.002 0.794 ± 0.001 0.879 ± 0.001 0.910 ± 0.001 0.848 ± 0.001 0.886 ± 0.001

GCN-3 0.782 ± 0.001 0.837 ± 0.001 0.726 ± 0.005 0.792 ± 0.003 0.861 ± 0.001 0.896 ± 0.001 0.799 ± 0.003 0.849 ± 0.002

GCN-4 0.778 ± 0.001 0.833 ± 0.001 0.711 ± 0.005 0.781 ± 0.004 0.851 ± 0.003 0.888 ± 0.003 0.802 ± 0.002 0.851 ± 0.002

HGT-2 0.782 ± 0.001 0.837 ± 0.001 0.724 ± 0.003 0.791 ± 0.002 0.897 ± 0.001 0.923 ± 0.001 0.835 ± 0.003 0.876 ± 0.002

HGT-3 0.788 ± 0.001 0.841 ± 0.001 0.727 ± 0.012 0.792 ± 0.009 0.890 ± 0.001 0.917 ± 0.001 0.826 ± 0.002 0.870 ± 0.002

HGT-4 0.784 ± 0.005 0.838 ± 0.003 0.751 ± 0.007 0.811 ± 0.006 0.881 ± 0.011 0.911 ± 0.009 0.822 ± 0.003 0.867 ± 0.003

LHGNN 0.858 ± 0.001 0.893 ± 0.001 0.838 ± 0.003 0.877 ± 0.002 0.932 ± 0.003 0.949 ± 0.002 0.879 ± 0.001 0.909 ± 0.001

Table VIII: Impact of model size. |Θ| denotes the number of

learnable parameters in a model.

Methods

DBLP OGB-MAG

|Θ | MAP NDCG |Θ | MAP NDCG

GCN-32 12K 0.879 ± 0.001 0.910 ± 0.001 5K 0.848 ± 0.001 0.886 ± 0.001

GCN-64 25K 0.890 ± 0.001 0.918 ± 0.001 12K 0.849 ± 0.001 0.887 ± 0.001

GCN-96 41K 0.890 ± 0.001 0.918 ± 0.001 21K 0.847 ± 0.001 0.886 ± 0.001

GAT-16 26K 0.913 ± 0.001 0.936 ± 0.001 13K 0.830 ± 0.004 0.872 ± 0.003

GAT-32 60K 0.910 ± 0.001 0.932 ± 0.001 33K 0.828 ± 0.001 0.871 ± 0.001

GAT-48 102K 0.910 ± 0.002 0.933 ± 0.002 62K 0.815 ± 0.005 0.861 ± 0.004

HGT-32 21K 0.897 ± 0.001 0.923 ± 0.001 14K 0.835 ± 0.003 0.876 ± 0.002

HGT-64 61K 0.907 ± 0.001 0.930 ± 0.001 48K 0.836 ± 0.003 0.877 ± 0.002

HGN-32 239K 0.907 ± 0.003 0.930 ± 0.002 231K 0.818 ± 0.001 0.863 ± 0.001

HGN-64 717K 0.905 ± 0.001 0.929 ± 0.001 703K 0.826 ± 0.001 0.869 ± 0.001

LHGNN 25K 0.932 ± 0.003 0.949 ± 0.002 12K 0.879 ± 0.001 0.909 ± 0.001

Figure IV: Impact of parameters.

set the learning rate as 0.005, embedding dimension as 200 and the

margin as 0.2.

For ourmodel, we also employ a two-layer architecture with L2-

Normalization. We randomly sample 50 paths starting from each

target node. We set the dimension of semantic embeddings as 10,

decay ratio 𝜆 as 0.1, the weight of scaling and shifting constraints

𝜇 as 0.0001, and margin as 0.2.

E Number of Layers

We investigate the impact of number of layers in representative

baseline models. Results from Table VII show that adding more

layers might not give better results. Overall, they are still much

worse than our proposed LHGNN.

F Impact of Model Size

We investigate the impact of model size (i.e., the number of learn-

able parameters in a model) on empirical performance. Specifi-

cally, we select several representative GNNs from the baselines,

and vary the size of each GNN by increasing its hidden dimen-

sion. For instance, GCN-32 indicates that its hidden layer has 32

neurons. Table VIII shows the link prediction performance of the

GNNs with varying model sizes. Overall, larger models employ-

ing the same GNN architecture can only achieve slight improve-

ments, and LHGNN continues to outperform them despite having

a relatively small model. The results imply that the effectiveness of

LHGNN comes from the architectural design rather than stacking

with more parameters.

G Parameter Sensitivity

To study the impact of model parameters, we showcase two of

the important parameters, including the maximum length for path

sampling 𝐿max, and the weight of scaling and shifting constraint 𝜇.

We present the results in Fig. IV. For sparse datasets with low av-

erage degree such as WN18RR and DBLP, using a large maximum

length for paths can generally improve the performance, as it can

exploit more contextual structures around the target node. For the

other two datasets, their performance is generally less affected as

the maximum length of paths increases. For the hyper-parameter

𝜇, LHGNN generally achieves the best performance in the interval

[0.0001, 0.001] across the four datasets, demonstrating the neces-

sity of this constraint.

H Data Ethics Statement

To evaluate the efficacy of this work, we conducted experiments

which only use publicly available datasets
234

, in accordance to

their usage terms and conditions if any. We further declare that

no personally identifiable information was used, and no human or

animal subject was involved in this research.

2
https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding.git

3
https://github.com/seongjunyun/Graph_Transformer_Networks.git

4
https://github.com/snap-stanford/ogb.git

https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding.git
https://github.com/seongjunyun/Graph_Transformer_Networks.git
https://github.com/snap-stanford/ogb.git

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Proposed Method: LHGNN
	4.1 Overall Framework
	4.2 Semantic Embedding
	4.3 Latent Heterogeneous Context Aggregation
	4.4 Link Prediction

	5 Experiments
	5.1 Experimental Setup
	5.2 Evaluation of Link Prediction
	5.3 Evaluation of Node Type Classification
	5.4 Model Analyses

	6 Conclusion
	Acknowledgments
	References
	A Algorithm and Complexity
	B Details of Baselines
	C Environment
	D Model Settings
	E Number of Layers
	F Impact of Model Size
	G Parameter Sensitivity
	H Data Ethics Statement

