

GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural Networks

Zemin Liu^{1*}, Xingtong Yu^{2*}, Yuan Fang^{3†}, Xinming Zhang ^{2†}

¹ National University of Singapore, Singapore
 ² University of Science and Technology of China, China
 ³ Singapore Management University, Singapore

In Proceeding of THE WEB CONFERENCE, APRIL 30 - MAY 4, 2023

* Co-first author* Corresponding author

- 1 .Motivation
- 2.Challenges
- 3 .Proposed Model: GraphPrompt
- 4.Experiment
- 5. Conclusions

Motivation

Scarce of labeled data

Gap between pre-train

and downstream tasks[5]

Problem1:

• task-specific labeled data is often difficult or costly to obtain

Pre-Training+Finetuning [3,4]

Problem2:

- pre-training step aims to preserve various intrinsic graph properties
- fine-tuning step aims to reduce the downstream task loss

Will Hamilton et.al. 2017. Inductive representation learning on large graphs. NIPS.
 Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with graph convolutional networks. ICLR.

[3] Weihua Hu et.al. 2020. Strategies for Pre-training Graph Neural Networks. ICLR.
[4] Ziniu Hu et.al. 2020. GPT-GNN: Generative pre-training of graph neural networks. KDD.
[5] Pengfei Liu et.al. 2021. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. ACM Computing Survey.

Pre-Training+Prompt

- 1.Motivation
- 2.Challenges
- 3 .Proposed Model: GraphPrompt
- 4 .Experiment
- 5. Conclusions

Challenges

Challenges

- Different downstream tasks often have different objectives[6]
- Distinction between various downstream tasks

C1: How to unify pre-training with various downstream tasks on graph? C2: How to design prompts on graphs?[7]

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. NeurIPS.

[7] Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang.2022. GPPT: Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks. SIGKDD

Figure 1: Illustration of the motivation. (a) Pre-training on graphs. (b/c) Downstream node/graph classification.

- 1.Motivation
- 2 .Challenges
- 3 .Proposed Model: GraphPrompt
- 4.Experiment
- 5. Conclusions

SMU Classification: Restricted

Proposed Method: GraphPrompt

- 1 .Motivation
- 2 .Challenges
- 3 .Proposed Model: GraphPrompt
- 4.Experiment
- 5. Conclusions

Experiment

Node Classification and Graph Classification

Table 2: Accuracy evaluation on node classification.

All tabular results are in percent, with best **bolded** and runner-up <u>underlined</u>.

Methods	Flickr 50-shot	PROTEINS 1-shot	ENZYMES 1-shot
GCN	9.22 ± 9.49	59.60 ± 12.44	61.49 ± 12.87
GRAPHSAGE	13.52 ± 11.28	59.12 ± 12.14	61.81 ± 13.19
GAT	16.02 ± 12.72	58.14 ± 12.05	60.77 ± 13.21
GIN	10.18 ± 5.41	60.53 ± 12.19	63.81 ± 11.28
DGI	17.71 ± 1.09	54.92 ± 18.46	63.33 ± 18.13
GraphCL	18.37 ± 1.72	52.00 ± 15.83	58.73 ± 16.47
GPPT	18.95 ± 1.92	50.83 ± 16.56	53.79 ± 17.46
GraphPrompt	20.21 ± 11.52	63.03 ± 12.14	67.04 ± 11.48

Table 3: Accuracy evaluation on graph classification.

Methods	PROTEINS 5-shot	COX2 5-shot	ENZYMES 5-shot	BZR 5-shot
GCN GraphSAGE GAT GIN		51.37 ± 11.06 52.87 ± 11.46 51.20 ± 27.93 51.89 ± 8.71	18.31 ± 6.22	$56.16 \pm 11.07 57.23 \pm 10.95 53.19 \pm 20.61 57.45 \pm 10.54$
InfoGraph GraphCL GraphPrompt	54.12 ± 8.20 56.38 ± 7.24 64.42 ± 4.37	<u>55.40</u> ± 12.04		57.57 ± 9.93 59.22 ± 7.42 61.63 ± 7.68

- GraphPrompt outperforms all baselines for both node classification task and graph classification task, which implies
 - GraphPrompt is able to narrow the gap between pre-training task and downstream tasks.
 - GraphPrompt could effectively derive the downstream tasks to exploit the pre-trained model in taskspecific manner.

SMU Classification: Restricted

Experiment

Figure 3: Impact of shots on few-shot node classification.

Figure 4: Impact of shots on few-shot graph classification.

- GraphPrompt consistently outperforms the baselines especially with lower shots
- For node classification task, 10 shot is sufficient for semi-supervised learning since graph is small
- For graph classification task, GraphPrompt can be surpassed by some baselines when given more shots

- 1 .Motivation
- 2 .Challenges
- 3 .Proposed Model: GraphPrompt
- 4 .Experiment
- 5.Conclusions

Conclusions

• Problem: Pretraining-Prompting

- Unify pre-training task and downstream tasks
- Attain task-specific optima

Proposed-Model: GraphPrompt

- Unify upstream and downstream tasks via subgraph similarity
- Using prompt vector to change the feature weights of each dimension of the node embedding to guide subgraph readout

• Experiment

 GraphPrompt outperforms all baselines for both node classification task and graph classification task

Thanks!

Paper, data & code available at https://xingtongyu.netlify.app/

Zemin Liu^{*}, Xingtong Yu^{*}, Yuan Fang[†], Xinming Zhang[†] GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural Networks

n Proceeding of THE WEB CONFERENCE, APRIL 30 - MAY 4, 2023