GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural Networks

Zemin Liu ${ }^{1 *}$, Xingtong Yu²* ${ }^{\text { }}$ Yuan Fang ${ }^{3 \dagger}$, Xinming Zhang ${ }^{2 \dagger}$
${ }^{1}$ National University of Singapore, Singapore
${ }^{2}$ University of Science and Technology of China, China
${ }^{3}$ Singapore Management University, Singapore
In Proceeding of THE WEB CONFERENCE, APRIL 30 - MAY 4, 2023

[^0]
Outline

1 .Motivation
2 .Challenges
3 .Proposed Model: GraphPrompt
4 .Experiment
5 .Conclusions

Motivation

Problem1:

- task-specific labeled data is often difficult or costly to obtain

GNNs' performance heavily depends on labeled data[1,2]

Scarce of labeled data

Pre-Training+Finetuning [3,4]

Gap between pre-train and downstream tasks[5]
[1] Will Hamilton et.al. 2017. Inductive representation learning on large graphs. NIPS. [2] Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with graph convolutional networks. ICLR.
[3] Weihua Hu et.al. 2020. Strategies for Pre-training Graph Neural Networks. ICLR. [4] Ziniu Hu et.al. 2020. GPT-GNN: Generative pre-training of graph neural networks. KDD. [5] Pengfei Liu et.al. 2021. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. ACM Computing Survey.

Outline

1 .Motivation

2 .Challenges
3 .Proposed Model: GraphPrompt
4 .Experiment
5 .Conclusions

Challenges

Challenges

- Different downstream tasks often have different objectives[6]
- Distinction between various downstream tasks

C1: How to unify pre-training with various

 downstream tasks on graph?C2: How to design prompts on graphs?[7]
[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. NeurIPS.
[7] Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. 2022. GPPT: Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks. SIGKDD

Figure 1: Illustration of the motivation. (a) Pre-training on graphs. (b/c) Downstream node/graph classification.

Outline

1 .Motivation

2 .Challenges
3 .Proposed Model: GraphPrompt
4 .Experiment
5 .Conclusions

Proposed Method: GraphPrompt

Unified task template
Link Prediction
$\operatorname{sim}\left(\mathbf{s}_{v}, \mathbf{s}_{a}\right)>\operatorname{sim}\left(\mathbf{s}_{v}, \mathbf{s}_{b}\right)$
Node Classification(NC)

G_{1}

G_{2}

(a) Toy graphs

Optimize with pre-training loss (Eq.(11))
(b) Pre-training

(c) Prompting for node classification (left) or graph classification (right)

Figure 2: Overall framework of GraphРrompt.
$L_{j}=\arg \max _{c \in C} \operatorname{sim}\left(\mathbf{s}_{G_{j}}, \tilde{\mathbf{s}}_{c}\right)$ mean embedding of (sub)graphs class label

> A Notation for NC and GC
> $y=\arg \max _{c \in Y} \operatorname{sim}\left(\mathbf{s}_{x}, \tilde{\mathbf{s}}_{c}\right)$
> $\mathbf{s}_{x}=\operatorname{ReADOUT}\left(\left\{\mathbf{h}_{v}: v \in V\left(S_{x}\right)\right\}\right)$

Pre-Training Objective

$$
\mathcal{L}_{\mathrm{pre}}(\Theta)=-\sum_{(v, a, b) \in \mathcal{T}_{\text {pre }}} \ln \frac{\exp \left(\operatorname{sim}\left(\mathbf{s}_{v}, \mathbf{s}_{a}\right) / \tau\right)}{\sum_{u \in\{a, b\}} \exp \left(\operatorname{sim}\left(\mathbf{s}_{v}, \mathbf{s}_{u}\right) / \tau\right)}
$$

Prompt Design

$$
\mathbf{s}_{t, x}=\operatorname{ReadOut}\left(\left\{\mathbf{p}_{t} \odot \mathbf{h}_{v}: v \in V\left(S_{x}\right)\right\}\right)
$$

Outline

1 .Motivation
2 .Challenges
3 .Proposed Model: GraphPrompt
4 .Experiment
5 .Conclusions

Experiment

Node Classification and Graph Classification

Table 2: Accuracy evaluation on node classification.
All tabular results are in percent, with best bolded and runner-up underlined.

Methods	Flickr 50-shot	PROTEINS 1-shot	ENZYMES 1-shot
GCN	9.22 ± 9.49	59.60 ± 12.44	61.49 ± 12.87
GRAPHSAGE	13.52 ± 11.28	59.12 ± 12.14	61.81 ± 13.19
GAT	16.02 ± 12.72	58.14 ± 12.05	60.77 ± 13.21
GIN	10.18 ± 5.41	$\underline{60.53} \pm 12.19$	$\underline{63.81} \pm 11.28$
DGI	17.71 ± 1.09	54.92 ± 18.46	63.33 ± 18.13
GRAPHCL	18.37 ± 1.72	52.00 ± 15.83	58.73 ± 16.47
GPPT	$\underline{18.95} \pm 1.92$	50.83 ± 16.56	53.79 ± 17.46
GRAPHPROMPT	20.21 ± 11.52	$\mathbf{6 3 . 0 3} \pm 12.14$	$\mathbf{6 7 . 0 4} \pm 11.48$

Table 3: Accuracy evaluation on graph classification.

Methods	PROTEINS 5-shot	COX2 5-shot	ENZYMES 5-shot	BZR 5-shot
GCN	54.87 ± 11.20	51.37 ± 11.06	20.37 ± 5.24	56.16 ± 11.07
GRAPHSAGE	52.99 ± 10.57	52.87 ± 11.46	18.31 ± 6.22	57.23 ± 10.95
GAT	48.78 ± 18.46	51.20 ± 27.93	15.90 ± 4.13	53.19 ± 20.61
GIN	$\underline{58.17} \pm 8.58$	51.89 ± 8.71	20.34 ± 5.01	57.45 ± 10.54
InFoGRAPH	54.12 ± 8.20	54.04 ± 9.45	20.90 ± 3.32	57.57 ± 9.93
GRAPHCL	56.38 ± 7.24	$\underline{55.40} \pm 12.04$	$\underline{28.11} \pm 4.00$	$\underline{59.22} \pm 7.42$
GRAPHPROMPT	$\mathbf{6 4 . 4 2} \pm 4.37$	$\mathbf{5 9 . 2 1} \pm 6.82$	$\mathbf{3 1 . 4 5} \pm 4.32$	$\mathbf{6 1 . 6 3} \pm 7.68$

- GraphPrompt outperforms all baselines for both node classification task and graph classification task, which implies
- GraphPrompt is able to narrow the gap between pre-training task and downstream tasks.
- GraphPrompt could effectively derive the downstream tasks to exploit the pre-trained model in taskspecific manner.

Experiment

Figure 3: Impact of shots on few-shot node classification.

Figure 4: Impact of shots on few-shot graph classification.

- GraphPrompt consistently outperforms the baselines especially with lower shots
- For node classification task, 10 shot is sufficient for semi-supervised learning since graph is small
- For graph classification task, GraphPrompt can be surpassed by some baselines when given more shots

Outline

1 .Motivation
2 .Challenges
3 .Proposed Model: GraphPrompt
4 .Experiment
5 .Conclusions

- Problem: Pretraining-Prompting

- Unify pre-training task and downstream tasks
- Attain task-specific optima
- Proposed-Model: GraphPrompt
- Unify upstream and downstream tasks via subgraph similarity
- Using prompt vector to change the feature weights of each dimension of the node embedding to guide subgraph readout
- Experiment
- GraphPrompt outperforms all baselines for both node classification task and graph classification task

Thanks!

Paper, data \& code available at https://xingtongyu.netlify.app/

Zemin Liu* ,Xingtong Yu*, Yuan Fang ${ }^{\dagger}$, Xinming Zhang ${ }^{\dagger}$
 GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural Networks
 n Proceeding of THE WEB CONFERENCE, APRIL 30 - MAY 4, 2023

[^0]: * Co-first author
 ${ }^{+}$Corresponding author

