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ABSTRACT

Graphs can model complex relationships between objects, enabling
a myriad of Web applications such as online page/article classifi-
cation and social recommendation. While graph neural networks
(GNNs) have emerged as a powerful tool for graph representation
learning, in an end-to-end supervised setting, their performance
heavily relies on a large amount of task-specific supervision. To re-
duce labeling requirement, the “pre-train, fine-tune” and “pre-train,
prompt” paradigms have become increasingly common. In partic-
ular, prompting is a popular alternative to fine-tuning in natural
language processing, which is designed to narrow the gap between
pre-training and downstream objectives in a task-specific manner.
However, existing study of prompting on graphs is still limited, lack-
ing a universal treatment to appeal to different downstream tasks.
In this paper, we propose GRAPHPROMPT, a novel pre-training and
prompting framework on graphs. GRAPHPROMPT not only unifies
pre-training and downstream tasks into a common task template,
but also employs a learnable prompt to assist a downstream task in
locating the most relevant knowledge from the pre-trained model in
a task-specific manner. Finally, we conduct extensive experiments
on five public datasets to evaluate and analyze GRAPHPROMPT.
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1 INTRODUCTION

The ubiquitous Web is becoming the ultimate data repository, capa-
ble of linking a broad spectrum of objects to form gigantic and com-
plex graphs. The prevalence of graph data enables a series of down-
stream tasks for Web applications, ranging from online page/article
classification to friend recommendation in social networks. Mod-
ern approaches for graph analysis generally resort to graph repre-
sentation learning including graph embedding and graph neural
networks (GNNs). Earlier graph embedding approaches [12, 33, 41]
usually embed nodes on the graph into a low-dimensional space,
in which the structural information such as the proximity between
nodes can be captured [5]. More recently, GNNs [13, 20, 43, 50]
have emerged as the state of the art for graph representation learn-
ing. Their key idea boils down to a message-passing framework,
in which each node derives its representation by receiving and
aggregating messages from its neighboring nodes recursively [48].

Graph pre-training. Typically, GNNs work in an end-to-end man-
ner, and their performance depends heavily on the availability of
large-scale, task-specific labeled data as supervision. This super-
vised paradigm presents two problems. First, task-specific supervi-
sion is often difficult or costly to obtain. Second, to deal with a new
task, the weights of GNN models need to be retrained from scratch,
even if the task is on the same graph. To address these issues, pre-
training GNNs [15, 16, 30, 34] has become increasingly popular,
inspired by pre-training techniques in language and vision appli-
cations [1, 7]. The pre-training of GNNs leverages self-supervised
learning on more readily available label-free graphs (i.e., graphs
without task-specific labels), and learns intrinsic graph properties
that intend to be general across tasks and graphs in a domain. In
other words, the pre-training extracts a task-agnostic prior, and can
be used to initialize model weights for a new task. Subsequently,
the initial weights can be quickly updated through a lightweight
fine-tuning step on a smaller number of task-specific labels.

However, the “pre-train, fine-tune” paradigm suffers from the
problem of inconsistent objectives between pre-training and down-
stream tasks, resulting in suboptimal performance [23]. On one
hand, the pre-training step aims to preserve various intrinsic graph
properties such as node/edge features [15, 16], node connectiv-
ity/links [13, 16, 30], and local/global patterns [15, 30, 34]. On the
other hand, the fine-tuning step aims to reduce the task loss, i.e.,
to fit the ground truth of the downstream task. The discrepancy
between the two steps can be quite large. For example, pre-training
may focus on learning the connectivity pattern between two nodes
(i.e., related to link prediction), whereas fine-tuning could be deal-
ing with a node or graph property (i.e., node classification or graph
classification task).
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Figure 1: Illustration of the motivation. (a) Pre-training on
graphs. (b/c) Downstream node/graph classification.

Prior work. To narrow the gap between pre-training and down-
stream tasks, prompting [4] has first been proposed for language
models, which is a natural language instruction designed for a
specific downstream task to “prompt out” the semantic relevance
between the task and the language model. Meanwhile, the parame-
ters of the pre-trained language model are frozen without any fine-
tuning, as the prompt can “pull” the task toward the pre-trained
model. Thus, prompting is also more efficient than fine-tuning, espe-
cially when the pre-trained model is huge. Recently, prompting has
also been introduced to graph pre-training in the GPPT approach
[39]. While the pioneering work has proposed a sophisticated de-
sign of pre-training and prompting, it can only be employed for the
node classification task, lacking a universal treatment that appeals
to different downstream tasks such as both node classification and
graph classification.

Research problem and challenges. To address the divergence
between graph pre-training and various downstream tasks, in this
paper we investigate the design of pre-training and prompting for
graph neural networks. In particular, we aim for a unified design
that can suit different downstream tasks flexibly. This problem is
non-trivial due to the following two challenges.

Firstly, to enable effective knowledge transfer from the pre-
training to a downstream task, it is desirable that the pre-training
step preserves graph properties that are compatible with the given
task. However, since different downstream tasks often have differ-
ent objectives, how do we unify pre-training with various downstream
tasks on graphs, so that a single pre-trained model can universally
support different tasks? That is, we try to convert the pre-training
task and downstream tasks to follow the same “template”. Using pre-
trained language models as an analogy, both their pre-training and
downstream tasks can be formulated as masked language modeling.

Secondly, under the unification framework, it is still important
to identify the distinction between different downstream tasks,
in order to attain task-specific optima. For pre-trained language
models, prompts in the form of natural language tokens or learnable
word vectors have been designed to give different hints to different
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tasks, but it is less apparent what form prompts on graphs should
take. Hence, how do we design prompts on graphs, so that they can
guide different downstream tasks to effectively make use of the
pre-trained model?

Present work. To address these challenges, we propose a novel
graph pre-training and prompting framework, called GRAPHPROMPT,
aiming to unify the pre-training and downstream tasks for GNNs.
Drawing inspiration from the prompting strategy for pre-trained
language models, GRAPHPROMPT capitalizes on a unified template
to define the objectives for both pre-training and downstream tasks,
thus bridging their gap. We further equip GRAPHPROMPT with task-
specific learnable prompts, which guides the downstream task to
exploit relevant knowledge from the pre-trained GNN model. The
unified approach endows GRAPHPROMPT with the ability of working
on limited supervision such as few-shot learning tasks.

More specifically, to address the first challenge of unification, we
focus on graph topology, which is a key enabler of graph models. In
particular, subgraph is a universal structure that can be leveraged
for both node- and graph-level tasks. At the node level, the infor-
mation of a node can be enriched and represented by its contextual
subgraph, i.e., a subgraph where the node resides in [17, 55]; at the
graph level, the information of a graph is naturally represented by
the maximum subgraph (i.e., the graph itself). Consequently, we
unify both the node- and graph-level tasks, whether in pre-training
or downstream, into the same template: the similarity calculation
of (sub)graph! representations. In this work, we adopt link predic-
tion as the self-supervised pre-training task, given that links are
readily available in any graph without additional annotation cost.
Meanwhile, we focus on the popular node classification and graph
classification as downstream tasks, which are node- and graph-
level tasks, respectively. All these tasks can be cast as instances of
learning subgraph similarity. On one hand, the link prediction task
in pre-training boils down to the similarity between the contex-
tual subgraphs of two nodes, as shown in Fig. 1(a). On the other
hand, the downstream node or graph classification task boils down
to the similarity between the target instance (a node’s contextual
subgraph or the whole graph, resp.) and the class prototypical sub-
graphs constructed from labeled data, as illustrated in Figs. 1(b) and
(c). The unified template bridges the gap between the pre-training
and different downstream tasks.

Toward the second challenge, we distinguish different down-
stream tasks by way of the READOUT operation on subgraphs. The
ReEADOUT operation is essentially an aggregation function to fuse
node representations in the subgraph into a single subgraph repre-
sentation. For instance, sum pooling, which sums the representa-
tions of all nodes in the subgraph, is a practical and popular scheme
for READOUT. However, different downstream tasks can benefit
from different aggregation schemes for their READOUT. In particu-
lar, node classification tends to focus on features that can contribute
to the representation of the target node, while graph classification
tends to focus on features associated with the graph class. Moti-
vated by such differences, we propose a novel task-specific learnable
prompt to guide the READOUT operation of each downstream task
with an appropriate aggregation scheme. As shown in Fig. 1, the

!As a graph is a subgraph of itself, we may simply use subgraph to refer to a graph too.
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learnable prompt serves as the parameters of the READOUT opera-
tion of downstream tasks, and thus enables different aggregation
functions on the subgraphs of different tasks. Hence, GRAPHPROMPT
not only unifies the pre-training and downstream tasks into the
same template based on subgraph similarity, but also recognizes
the differences between various downstream tasks to guide task-
specific objectives.

Contributions. To summarize, our contributions are three-fold. (1)
We recognize the gap between graph pre-training and downstream
tasks, and propose a unification framework GRAPHPROMPT based
on subgraph similarity for both pre-training and downstream tasks,
including both node and graph classification tasks. (2) We propose a
novel prompting strategy for GRAPHPROMPT, hinging on a learnable
prompt to actively guide downstream tasks using task-specific
aggregation in READOUT, in order to drive the downstream tasks
to exploit the pre-trained model in a task-specific manner. (3) We
conduct extensive experiments on five public datasets, and the
results demonstrate the superior performance of GRAPHPROMPT in
comparison to the state-of-the-art approaches.

2 RELATED WORK

Graph representation learning. The rise of graph representation
learning, including earlier graph embedding [12, 33, 41] and recent
GNN s [13, 20, 43, 50], opens up great opportunities for various
downstream tasks at node and graph levels. Note that learning
graph-level representations requires an additional READOUT op-
eration which summarizes the global information of a graph by
aggregating node representations through a flat [8, 11, 50, 56] or
hierarchical [10, 21, 31, 51] pooling algorithm. We refer the readers
to two comprehensive surveys [5, 48] for more details.
Graph pre-training. Inspired by the application of pre-training
models in language [2, 7] and vision [1, 29] domains, graph pre-
training [49] emerges as a powerful paradigm that leverages self-
supervision on label-free graphs to learn intrinsic graph properties.
While the pre-training learns a task-agnostic prior, a relatively
light-weight fine-tuning step is further employed to update the
pre-trained weights to fit a given downstream task. Different pre-
training approaches design different self-supervised tasks based
on various graph properties such as node features [15, 16], links
[13, 16, 19, 30], local or global patterns [15, 30, 34], local-global
consistency [14, 32, 37, 44], and their combinations [40, 52, 53].
However, the above approaches do not consider the gap between
pre-training and downstream objectives, which limits their gen-
eralization ability to handle different tasks. Some recent studies
recognize the importance of narrowing this gap. L2P-GNN [30]
capitalizes on meta-learning [9] to simulate the fine-tuning step
during pre-training. However, since the downstream tasks can still
differ from the simulation task, the problem is not fundamentally ad-
dressed. In other fields, as an alternative to fine-tuning, researchers
turn to prompting [4], in which a task-specific prompt is used to
cue the downstream tasks. Prompts can be either handcrafted [4]
or learnable [22, 24]. On graph data, the study of prompting is still
limited. One recent work called GPPT [39] capitalizes on a sophisti-
cated design of learnable prompts on graphs, but it only works with
node classification, lacking a unification effort to accommodate
other downstream tasks like graph classification. Besides, there
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is a model also named as GraphPrompt [54], but it considers an
NLP task (biomedical entity normalization) on text data, where
graph is only auxiliary. It employs the standard text prompt unified
by masked language modeling, assisted by a relational graph to
generate text templates, which is distinct from our work.

Comparison to other settings. Our few-shot setting is different
from other paradigms that also deal with label scarcity, including
semi-supervised learning [20] and meta-learning [9]. In particular,
semi-supervised learning cannot cope with novel classes not seen
in training, while meta-learning requires a large volume of labeled
data in their base classes for a meta-training phase, before they can
handle few-shot tasks in testing.

3 PRELIMINARIES

In this section, we give the problem definition and introduce the
background of GNNG.

3.1 Problem Definition

Graph. A graph can be defined as G = (V, E), where V is the set of
nodes and E is the set of edges. We also assume an input feature
matrix of the nodes, X € RlVle, is available. Let x; € R4 denote
the feature vector of node v; € V. In addition, we denote a set of
graphs as G = {G1,G2,...,GN}-

Problem. In this paper, we investigate the problem of graph pre-
training and prompting. For the downstream tasks, we consider
the popular node classification and graph classification tasks. For
node classification on a graph G = (V, E), let C be the set of node
classes with #; € C denoting the class label of node v; € V. For
graph classification on a set of graphs G, let C be the set of graph
labels with L; € C denoting the class label of graph G; € G.

In particular, the downstream tasks are given limited supervi-
sion in a few-shot setting: for each class in the two tasks, only
k labeled samples (i.e., nodes or graphs) are provided, known as
k-shot classification.

3.2 Graph Neural Networks

The success of GNNs boils down to the message-passing mechanism
[48], in which each node receives and aggregates messages (i.e.,
features or embeddings) from its neighboring nodes to generate
its own representation. This operation of neighborhood aggrega-
tion can be stacked in multiple layers to enable recursive message
passing. Formally, in the [-th GNN layer, the embedding of node
v, denoted by hi,, is calculated based on the embeddings in the
previous layer, as follows.

hl = Acer(bl ! (bl i u e Ny} 6Y), (1)

where N is the set of neighboring nodes of v, 6! is the learnable
GNN parameters in layer I. AGGR(+) is the neighborhood aggrega-
tion function and can take various forms, ranging from the simple
mean pooling [13, 20] to advanced neural networks such as neural
attention [43] or multi-layer perceptrons [50]. Note that in the first
layer, the input node embedding hY can be initialized as the node
features in X. The total learnable GNN parameters can be denoted
as © = {61,602, . .}. For brevity, we simply denote the output node
representations of the last layer as h,.
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4 PROPOSED APPROACH

In this section, we present our proposed approach GRAPHPROMPT.

4.1 Unification Framework

We first introduce the overall framework of GRaAPHPROMPT in Fig. 2.
Our framework is deployed on a set of label-free graphs shown in
Fig. 2(a), for pre-training in Fig. 2(b). The pre-training adopts a link
prediction task, which is self-supervised without requiring extra
annotation. Afterward, in Fig. 2(c), we capitalize on a learnable
prompt to guide each downstream task, namely, node classification
or graph classification, for task-specific exploitation of the pre-
trained model. In the following, we explain how the framework
supports a unified view of pre-training and downstream tasks.

Instances as subgraphs. The key to the unification of pre-training
and downstream tasks lies in finding a common template for the
tasks. The task-specific prompt can then be further fused with
the template of each downstream task, to distinguish the varying
characteristics of different tasks.

In comparison to other fields such as visual and language process-
ing, graph learning is uniquely characterized by the exploitation
of graph topology. In particular, subgraph is a universal structure
capable of expressing both node- and graph-level instances. On one
hand, at the node level, every node resides in a local neighborhood,
which in turn contextualizes the node [25, 27, 28]. The local neigh-
borhood of a node v on a graph G = (V, E) is usually defined by
a contextual subgraph Sy = (V(Sy), E(Sy)), where its set of nodes
and edges are respectively given by

V(Sy) ={d(u,0) <5 |ueV}, and (2)
E(So) = {(uwu') € E|ueV(Sy),u' € V(Sy)}, ®3)

where d(u,v) gives the shortest distance between nodes u and v
on the graph G, and § is a predetermined threshold. That is, S,
consists of nodes within é hops from the node v, and the edges
between those nodes. Thus, the contextual subgraph S, embodies
not only the self-information of the node v, but also rich contex-
tual information to complement the self-information [17, 55]. On
the other hand, at the graph level, the maximum subgraph of a
graph G, denoted Sg, is the graph itself, i.e, S = G. The maxi-
mum subgraph Sg spontaneously embodies all information of G.
In summary, subgraphs can be used to represent both node- and
graph-level instances: Given an instance x which can either be a
node or a graph (e.g., x = v or x = G), the subgraph Sy offers a
unified access to the information associated with x.

Unified task template. Based on the above subgraph definitions
for both node- and graph-level instances, we are ready to unify
different tasks to follow a common template. Specifically, the link
prediction task in pre-training and the downstream node and graph
classification tasks can all be redefined as subgraph similarity learn-
ing. Let sy be the vector representation of the subgraph S, and
sim(-, -) be the cosine similarity function. As illustrated in Figs. 2(b)
and (c), the three tasks can be mapped to the computation of sub-
graph similarity, which is formalized below.

e Link prediction: This is a node-level task. Given a graph G =
(V,E) and a triplet of nodes (v, a,b) such that (v,a) € E and
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(v,b) ¢ E, we shall have
sim(sy, Sq) > sim(sy, sp)- (4)

Intuitively, the contextual subgraph of v shall be more similar to
that of a node linked to v than that of another unlinked node.
Node classification: This is also a node-level task. Consider
a graph G = (V,E) with a set of node classes C, and a set of
labeled nodes D = {(v1, 1), (v2, £2),...} where v; € V and ¢ is
the corresponding label of v;. As we adopt a k-shot setting, there
are exactly k pairs of (v, £ = ¢) € D for every class ¢ € C. For
each class ¢ € C, further define a node class prototypical subgraph
represented by a vector $., given by

Sc=— Z Sv;- ©)
(v3,6;) €D, t;=c

Note that the class prototypical subgraph is a “virtual” subgraph
with a latent representation in the same embedding space as
the node contextual subgraphs. Basically, it is constructed as
the mean representation of the contextual subgraphs of labeled
nodes in a given class. Then, given a node v; not in the labeled
set D, its class label ¢; shall be

{j = arg rcneaé( sim(so;, 8c)- (6)

Intuitively, a node shall belong to the class whose prototypical
subgraph is the most similar to the node’s contextual subgraph.

o Graph classification: This is a graph-level task. Consider a set
of graphs G with a set of graph classes C, and a set of labeled
graphs D = {(G1,L1), (G2, Lz), ...} where G; € G and L; is the
corresponding label of G;. In the k-shot setting, there are exactly
k pairs of (G;,L; = ¢) € D for every class ¢ € C. Similar to
node classification, for each class ¢ € C, we define a graph class
prototypical subgraph, also represented by the mean embedding
vector of the (sub)graphs in c:

Sc=— SG; - (™)
(Gi,Li)e D,Li=c
Then, given a graph G; not in the labeled set D, its class label
Lj shall be

L; = arg max sim(sg., S¢). 8
j gcec (G] ¢) )

Intuitively, a graph shall belong to the class whose prototypical
subgraph is the most similar to itself. O

It is worth noting that node and graph classification can be
further condensed into a single set of notations. Let (x,y) be an
annotated instance of graph data, i.e., x is either a node or a graph,
and y € Y is the class label of x among the set of classes Y. Then,

y = arg max sim(sx, §¢). 9)
ceY

Finally, to materialize the common task template, we discuss how
to learn the subgraph embedding vector sy for the subgraph Sy.
Given node representations h, generated by a GNN (see Sect. 3.2), a
standard approach of computing sy is to employ a READOUT oper-
ation that aggregates the representations of nodes in the subgraph
Sx. That is,

sx = READOUT({hy : v € V(Sx)}). (10)
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Figure 2: Overall framework of GRAPHPROMPT.

The choice of the aggregation scheme for READOUT is flexible,
including sum pooling and more advanced techniques [50, 51]. In
our implementation, we simply use sum pooling.

In summary, the unification framework is enabled by the com-
mon task template of subgraph similarity learning, which lays the
foundation of our pre-training and prompting strategies as we will
introduce in the following parts.

4.2 Pre-Training Phase

As discussed earlier, our pre-training phase employs the link predic-
tion task. Using link prediction/generation is a popular and natural
way [13, 16, 18, 30], as a vast number of links are readily available
on large-scale graph data without extra annotation. In other words,
the link prediction objective can be optimized on label-free graphs,
such as those shown in Fig. 2(a), in a self-supervised manner.

Based on the common template defined in Sect. 4.1, the link
prediction task is anchored on the similarity of the contextual sub-
graphs of two candidate nodes. Generally, the subgraphs of two
positive (i.e., linked) candidates shall be more similar than those
of negative (i.e., non-linked) candidates, as illustrated in Fig. 2(b).
Subsequently, the pre-trained prior on subgraph similarity can be
naturally transferred to node classification downstream, which
shares a similar intuition: the subgraphs of nodes in the same class
shall be more similar than those of nodes from different classes.
On the other hand, the prior can also support graph classification
downstream, as graph similarity is consistent with subgraph simi-
larity not only in letter (as a graph is technically always a subgraph
of itself), but also in spirit. The “spirit” here refers to the tendency
that graphs sharing similar subgraphs are likely to be similar them-
selves, which means graph similarity can be translated into the
similarity of the containing subgraphs [36, 42, 56].

Formally, given a node v on graph G, we randomly sample one
positive node a from v’s neighbors, and a negative node b from the
graph that does not link to v, forming a triplet (v, a, b). Our objective
is to increase the similarity between the contextual subgraphs S,
and S,, while decreasing that between S, and S,. More generally,
on a set of label-free graphs G, we sample a number of triplets from
each graph to construct an overall training set 7pre. Then, we define

the following pre-training loss.

Lpre(@) == Z In

(v,a,b) €7;)re

exp(sim(sy, 84)/7)

S ian) pGim(so s/ Y

where 7 is a temperature hyperparameter to control the shape of
the output distribution. Note that the loss is parameterized by ©,
which represents the GNN model weights.

The output of the pre-training phase is the optimal model pa-
rameters ©g = arg ming Lpre (0). O can be used to initialize the
GNN weights for downstream tasks, thus enabling the transfer of
prior knowledge downstream.

4.3 Prompting for Downstream Tasks

The unification of pre-training and downstream tasks enables more
effective knowledge transfer as the tasks in the two phases are made
more compatible by following a common template. However, it is
still important to distinguish different downstream tasks, in order
to capture task individuality and achieve task-specific optimum.

To cope with this challenge, we propose a novel task-specific
learnable prompt on graphs, inspired by prompting in natural lan-
guage processing [4]. In language contexts, a prompt is initially
a handcrafted instruction to guide the downstream task, which
provides task-specific cues to extract relevant prior knowledge
through a unified task template (typically, pre-training and down-
stream tasks are all mapped to masked language modeling). More
recently, learnable prompts [22, 24] have been proposed as an al-
ternative to handcrafted prompts, to alleviate the high engineering
cost of the latter.

Prompt design. Nevertheless, our proposal is distinctive from
language-based prompting for two reasons. Firstly, we have a dif-
ferent task template from masked language modeling. Secondly,
since our prompts are designed for graph structures, they are more
abstract and cannot take the form of language-based instructions.
Thus, they are virtually impossible to be handcrafted. Instead, they
should be topology related to align with the core of graph learning.
In particular, under the same task template of subgraph similarity
learning, the READOUT operation (used to generate the subgraph



WWW °23, May 1-5, 2023, Austin, TX, USA

representation) can be “prompted” differently for different down-
stream tasks. Intuitively, different tasks can benefit from different
aggregation schemes for their READOUT. For instance, node clas-
sification pays more attention to features that are topically more
relevant to the target node. In contrast, graph classification tends
to focus on features that are correlated to the graph class. More-
over, the important features may also vary given different sets of
instances or classes in a task.

Formally, let p; denote a learnable prompt vector for a down-
stream task ¢, as shown in Fig. 2(c). The prompt-assisted READOUT
operation on a subgraph Sy for task ¢ is

st x = READOUT({p; O hy : v € V(Sx)}), (12)

where s; x is the task t-specific subgraph representation, and © de-
notes the element-wise multiplication. That is, we perform a feature
weighted summation of the node representations from the subgraph,
where the prompt vector p; is a dimension-wise reweighting in
order to extract the most relevant prior knowledge for the task ¢.

Note that other prompt designs are also possible. For example,
we could consider a learnable prompt matrix P;, which applies a
linear transformation to the node representations:

st,x = READOUT({Pshy : v € V(Sx)}). (13)

More complex prompts such as an attention layer is another alter-
native. However, one of the main motivation of prompting instead
of fine-tuning is to reduce reliance on labeled data. In few-shot
settings, given very limited supervision, prompts with fewer pa-
rameters are preferred to mitigate the risk of overfitting. Hence, the
feature weighting scheme in Eq. (12) is adopted for our prompting
as the prompt is a single vector of the same length as the node
representation, which is typically a small number (e.g., 128).
Prompt tuning. To optimize the learnable prompt, also known
as prompt tuning, we formulate the loss based on the common
template of subgraph similarity, using the prompt-assisted task-
specific subgraph representations.

Formally, consider a task t with a labeled training set 7; =
{(x1,y1), (x2,92), ...}, where x; is an instance (i.e., a node or a
graph), and y; € Y is the class label of x; among the set of classes
Y. The loss for prompt tuning is defined as

exp(sim(sy,x;, ¢, Yi )/7)

In = ,
Z Ycey eXP(Sim(St,x,—: St,c)/T)

(x1,yi) €Tz

Lprompt(Pt) == (14)

where the class prototypical subgraph for class ¢ is represented by
S¢,¢, which is also generated by the prompt-assisted, task-specific
ReEADOUT.

Note that, the prompt tuning loss is only parameterized by the
learnable prompt vector p;, without the GNN weights. Instead, the
pre-trained GNN weights ©¢ are frozen for downstream tasks, as
no fine-tuning is necessary. This significantly decreases the number
of parameters to be updated downstream, thus not only improving
the computational efficiency of task learning and inference, but
also reducing the reliance on labeled data.

5 EXPERIMENTS

In this section, we conduct extensive experiments including node
classification and graph classification as downstream tasks on five
benchmark datasets to evaluate the proposed GRAPHPROMPT.

Zemin Liu, Xingtong Yu, Yuan Fang, Xinming Zhang

Table 1: Summary of datasets.

Graphs Graph  Avg. Avg. Node  Node Task
classes nodes edges features classes (N/G)
Flickr 1 - 89,250 899,756 500 7 N
PROTEINS 1,113 2 39.06 72.82 1 3 N,G
COX2 467 2 41.22 43.45 3 - G
ENZYMES 600 6 32.63 62.14 18 3 NG
BZR 405 2 3575 38.36 3 - G

5.1 Experimental Setup

Datasets. We employ five benchmark datasets for evaluation. (1)
Flickr [47] is an image sharing network. (2) PROTEINS [3] is a
collection of protein graphs which include the amino acid sequence,
conformation, structure, and features such as active sites of the
proteins. (3) COX2 [35] is a dataset of molecular structures including
467 cyclooxygenase-2 inhibitors. (4) ENZYMES [46] is a dataset of
600 enzymes collected from the BRENDA enzyme database. (5) BZR
[35] is a collection of 405 ligands for benzodiazepine receptor.

We summarize these datasets in Table 1, and present further
details in Appendix B. Note that the “Task” column indicates the
type of downstream task performed on each dataset: “N” for node
classification and “G” for graph classification.

Baselines. We evaluate GRAPHPROMPT against the state-of-the-art
approaches from three main categories, as follows. (1) End-to-end
graph neural networks: GCN [20], GraphSAGE [13], GAT [43] and
GIN [50]. They capitalize on the key operation of neighborhood
aggregation to recursively aggregate messages from the neighbors,
and work in an end-to-end manner. (2) Graph pre-training models:
DGI [44], InfoGraph [38], and GraphCL [53]. They work in the “pre-
train, fine-tune” paradigm. In particular, they pre-train the GNN
models to preserve the intrinsic graph properties, and fine-tune
the pre-trained weights on downstream tasks to fit task labels. (3)
Graph prompt models: GPPT [39]. GPPT utilizes a link prediction
task for pre-training, and resorts to a learnable prompt for the node
classification task, which is mapped to a link prediction task.

Note that other few-shot learning methods on graphs, such as
Meta-GNN [57] and RALE [26], adopt a meta-learning paradigm [9].
Thus, they cannot be used in our setting, as they require labeled data
in their base classes for the meta-training phase. In our approach,
only label-free graphs are utilized for pre-training.

Settings and parameters. To evaluate the goal of our GrRaPH-
PROMPT in realizing a unified design that can suit different down-
stream tasks flexibly, we consider two typical types of downstream
tasks, i.e, node classification and graph classification. In particular,
for the datasets which are suitable for both of these two tasks, i.e.,
PROTEINS and ENZYMES, we only pre-train the GNN model once
on each dataset, and utilize the same pre-trained model for the two
downstream tasks with their task-specific prompting.

The downstream tasks follow a k-shot classification setting. For
each type of downstream task, we construct a series of k-shot clas-
sification tasks. The details of task construction will be elaborated
later when reporting the results in Sect. 5.2. For task evaluation, as
the k-shot tasks are balanced classification, we employ accuracy as
the evaluation metric following earlier work [26, 45].
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For all the baselines, based on the authors’ code and default
settings, we further tune their hyper-parameters to optimize their
performance. We present more implementation details of the base-
lines and our GRAPHPROMPT in Appendix D.

5.2 Performance Evaluation

As discussed, we perform two types of downstream task different
from the link prediction task in pre-training, namely, node clas-
sification and graph classification in few-shot settings. We first
evaluate on a fixed-shot setting, and then vary the shot numbers to
see the performance trend.

Few-shot node classification. We conduct this node-level task
on three datasets, i.e., Flickr, PROTEINS, and ENZYMES. Following
a typical k-shot setup [26, 45, 57], we generate a series of few-shot
tasks for model training and validation. In particular, for PROTEINS
and ENZYMES, on each graph we randomly generate ten 1-shot
node classification tasks (i.e.,, in each task, we randomly sample
1 node per class) for training and validation, respectively. Each
training task is paired with a validation task, and the remaining
nodes not sampled by the pair of training and validation tasks will
be used for testing. For Flickr, as it contains a large number of very
sparse node features, selecting very few shots for training may
result in inferior performance for all the methods. Therefore, we
randomly generate ten 50-shot node classifcation tasks, for training
and validation, respectively. On Flickr, 50 shots are still considered
few, accounting for less than 0.06% of all nodes on the graph.

Table 2 illustrates the results of few-shot node classification. We

have the following observations. First, our proposed GRAPHPROMPT
outperforms all the baselines across the three datasets, demonstrat-
ing the effectiveness of GRAPHPROMPT in transferring knowledge
from the pre-training to downstream tasks. In particular, by virtue
of the unification framework and prompt-based task-specific ag-
gregation in READOUT function, GRAPHPROMPT is able to narrow
the gap between pre-training and downstream tasks, and guide the
downstream tasks to exploit the pre-trained model in a task-specific
manner. Second, compared to graph pre-training models, end-to-
end GNN models can sometimes achieve comparable or even better
performance. This implies that the discrepancy between the pre-
training and downstream tasks in these pre-training approaches
obstructs the knowledge transfer from the former to the latter. In
such a case, even with sophisticated pre-training, they cannot ef-
fectively promote the performance of downstream tasks. Third, the
graph prompt model GPPT is only comparable to or even worse
than the other baselines, despite also using prompts. A potential
reason is that GPPT requires much more learnable parameters in
their prompts than ours, which may not work well given very few
shots (e.g., 1-shot).
Few-shot graph classification. We further conduct few-shot
graph classification on four datasets, i.e., PROTEINS, COX2, EN-
ZYMES, and BZR. For each dataset, we randomly generate 100
5-shot classification tasks for training and validation, following
a similar process for node classification tasks.

We illustrate the results of few-shot graph classification in Ta-
ble 3, and have the following observations. First, our proposed
GrapHPROMPT significantly outperforms the baselines on these
four datasets. This again demonstrates the necessity of unification
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Table 2: Accuracy evaluation on node classification.

All tabular results are in percent, with best bolded and runner-up underlined.

Methods Flickr PROTEINS ENZYMES
50-shot 1-shot 1-shot
GCN 9.22 + 9.49 59.60 + 12.44 61.49 + 12.87
GRAPHSAGE 13.52 + 11.28 59.12 + 12.14 61.81 + 13.19
GAT 16.02 £ 12.72 58.14 + 12.05 60.77 + 13.21
GIN 10.18 + 5.41 60.53 + 12.19 63.81 + 11.28
DGI 17.71 £ 1.09 54.92 + 18.46 63.33 + 18.13
GraPHCL 1837 + 1.72 52.00 + 15.83 58.73 + 16.47
GPPT | 1895+192 | 50.83£16.56 | 53.79+17.46
GrapHPROMPT | 20.21+1152 | 63.03+12.14 | 67.04+11.48

Table 3: Accuracy evaluation on graph classification.

Method PROTEINS COX2 ENZYMES BZR
ethods 5-shot 5-shot 5-shot 5-shot

GCN 54.87 £ 11.20|51.37 £ 11.06 | 20.37 + 5.24 | 56.16 + 11.07
GRrRAPHSAGE 52.99 + 10.57 | 52.87 + 11.46 | 18.31 £ 6.22 | 57.23 + 10.95
GAT 48.78 + 18.46 | 51.20 + 27.93| 15.90 + 4.13 | 53.19 + 20.61
GIN 58.17 + 858 | 51.89 + 8.71 | 20.34 £ 5.01 | 57.45 + 10.54
INFOGRAPH 54.12 + 8.20 | 54.04 £ 9.45 | 20.90 + 3.32 | 57.57 £ 9.93
GraruHCL 56.38 + 7.24 [55.40 + 12.04 | 28.11 + 4.00 | 59.22 + 7.42

GRAPHPROMPT | 64.42 + 4.37 | 59.21 = 6.82 | 31.45 + 4.32| 61.63 + 7.68

for pre-training and downstream tasks, and the effectiveness of
prompt-assisted task-specific aggregation for READOUT. Second, as
both node and graph classification tasks share the same pre-trained
model on PROTEINS and ENZYMES, the superior performance of
GRAPHPROMPT on both types of task further demonstrates that, the
gap between different tasks is well addressed by virtue of our unifi-
cation framework. Third, the graph pre-training models generally
achieve better performance than the end-to-end GNN models. This
is because both InfoGraph and GraphCL capitalize on graph-level
tasks for pre-training, which are naturally closer to the downstream
graph classification.

Performance with different shots. We study the impact of num-
ber of shots on the PROTEINS and ENZYMES datasets. For node clas-
sification, we vary the number of shots between 1 and 10, and com-
pare with several competitive baselines (i.e., GIN, DGI, GraphCL,
and GPPT) in Fig. 3. For few-shot graph classification, we vary the
number of shots between 1 and 30, and compare with competitive
baselines (i.e., GIN, InfoGraph, and GraphCL) in Fig. 4. The task
settings are identical to those stated earlier.

In general, our proposed GRAPHPROMPT consistently outper-
forms the baselines especially with lower shots. For node classifica-
tion, as the number of nodes in each graph is relatively small, 10
shots per class might be sufficient for semi-supervised node classi-
fication. Nevertheless, GRAPHPROMPT is competitive even with 10
shots. For graph classification, GRAPHPROMPT can be surpassed by
some baselines when given more shots (e.g., 20 or more), especially
on ENZYMES. On this dataset, 30 shots per class implies 30% of the
600 graphs are used for training, which is not our target scenario.
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Figure 5: Ablation study.

5.3 Model Analysis

We further analyse several aspects of our model. Due to space
constraint, we only report the ablation and parameter efficiency
study, and leave the rest to Appendix E.

Ablation study. To evaluate the contribution of each component,
we conduct an ablation study by comparing GRapHPROMPT with
different prompting strategies: (1) no prompt: for downstream tasks,
we remove the prompt vector, and conduct classification by em-
ploying a classifier on the subgraph representations obtained by a
direct sum-based READOUT. (2) lin. prompt: we replace the prompt
vector with a linear transformation matrix in Eq. (13).

We conduct the ablation study on three datasets for node classi-
fication (Flickr, PROTEINS, and ENZYMES) and graph classification
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Table 4: Study of parameter efficiency on node classification.

Method Flickr PROTEINS ENZYMES
ethods Params FLOPs | Params FLOPs | Params FLOPs
GIN 22,183 240,100 5,730 12,380 6,280 11,030
GPPT 4,096 4,582 1,536 1,659 1,536 1,659
GRAPHPROMPT 96 96 96 96 96 96
GrapHPROMPT-ft | 21,600 235,200 | 6,176 13,440 | 6,176 10,944

(COX2, ENZYMES, and BZR), respectively, and illustrate the compar-
ison in Fig. 5. We have the following observations. (1) Without the
prompt vector, no prompt usually performs the worst among the
variants, showing the necessity of prompting the READOUT opera-
tion differently for different downstream tasks. (2) Converting the
prompt vector into a linear transformation matrix also hurts the per-
formance, as the matrix involves more parameters thus increasing
the reliance on labeled data.

Parameter efficiency. We also compare the number of parameters
that needs to be updated in a downstream node classification task
for a few representative models, as well as their number of floating
point operations (FLOPs), in Table 4.

In particular, as GIN works in an end-to-end manner, it is obvious
that it involves the largest number of parameters for updating. For
GPPT, it requires a separate learnable vector for each class as its
representation, and an attention module to weigh the neighbors
for aggregation in the structure token generation. Therefore, GPPT
needs to update more parameters than GRAPHPROMPT, which is
one factor that impairs its performance in downstream tasks. For
our proposed GRAPHPROMPT, it not only outperforms the baselines
GIN and GPPT as we have seen earlier, but also requires the least
parameters and FLOPs for downstream tasks. For illustration, in
addition to prompt tuning, if we also fine-tune the pre-trained
weights instead of freezing them (denoted GRAPHPROMPT+f{t), there
will be significantly more parameters to update.

6 CONCLUSIONS

In this paper, we studied the research problem of prompting on
graphs and proposed GRAPHPROMPT, in order to overcome the lim-
itations of graph neural networks in the supervised or “pre-train,
fine-tune” paradigms. In particular, to narrow the gap between pre-
training and downstream objectives on graphs, we introduced a
unification framework by mapping different tasks to a common task
template. Moreover, to distinguish task individuality and achieve
task-specific optima, we proposed a learnable task-specific prompt
vector that guides each downstream task to make full of the pre-
trained model. Finally, we conduct extensive experiments on five
public datasets, and show that GRAPHPROMPT significantly outper-
forms various state-of-the-art baselines.
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APPENDICES
A Algorithm and Complexity Analysis

Algorithm. We present the algorithm for prompt design and tuning
of GRaPHPROMPT in Alg. 1. In line 1, we initialize the prompt
vector and the objective Lprompt. In lines 2-3, we obtain the node
embeddings of input graphs based on the pre-trained GNN. In
lines 5-13, we accumulate the loss for the given tuning samples. In
particular, in lines 5-6, we design the prompt for the specific task
t. In lines 7-8, we calculate the subgraph representation for each
class prototype. Then, in lines 9-13, we calculate and accumulate
the loss and get the overall objective. Finally, in line 14 we optimize
the prompt vector by minimizing the objective Lprompt-

Algorithm 1 PromPT DESIGN AND TUNING

Input: Graphs set G = {Gj|j = 1,2,...}, task t-specific subgraphs set
S ={Stxlx=1,2,...}, labeled set D = {(x;,y;)|i =1,2,...}, class
set Y, pre-trained GNN model fg, which takes in a graph and outputs
its node embedding vectors.

Output: Prompt vector p;.

1: p; « prompt vector initialization, mempt «— 0;
2: for each graph G; € G do > Load pre-trained GNN

Hj — fo,(Gj)

@

4: while not converged do > Tuning iteration
5: for each subgraph s;,» € S do > Prompt design, Eq. (12)
6: St,x < READOUT({p; ®hy : 0 € V(Sx)})
7: for each class ¢ € Y do > Class prototypical subgraph
8: $¢,c < Mean of node/graph embedding vectors
9: for each labeled pair (x;, y;) € D do » Accumulate loss, Eq. (14)
10: Z;—0
11: for each class ¢ € Y do
12: Z; = exp(sim(syx;,8¢.c)/7) + Z;
13: Lorompt = Lprompt — In(exp(sim(sy,x;,8t,y;)/7) /Z;)
14: Update p; by minimize Lyrompt;

15: return p;.

Complexity analysis. For a node v, with average degree d, k GNN
layers, & hops for subgraph extraction, D hidden dimensions, the
complexity of GNN-based embedding calculation is O(D - d¥), and
the complexity of subgraph extraction is 0(d%). Thus, the embed-
ding calculation of v’s subgraph with ReapOur is O(D - dk - %),
where k, § are small constants. Furthermore, if some neighborhood
sampling [13] is adopted during GNN aggregation, d is a relatively
small constant too.

B Further Descriptions of Datasets

We provide further details of the datasets.

(1) Flickr [47] is an image sharing network, which is collected
by SNAP?. In particular, each node is an image, and there exists an
edge between two images if they share some common properties,
such as commented by the same user, or from the same location.
Each image belongs to one of the 7 categories.

(2) PROTEINS [3] is a collection of protein graphs which include
the amino acid sequence, conformation, structure, and features such

Zhttps://snap.stanford.edu/data/
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as active sites of the proteins. The nodes represent the secondary
structures, and each edge depicts the neighboring relation in the
amino-acid sequence or in 3D space. The nodes belong to three
categories, and the graphs belong to two classes.

(3) COX2 [35] is a dataset of molecular structures including 467
cyclooxygenase-2 inhibitors, in which each node is an atom, and
each edge represents the chemical bond between atoms, such as
single, double, triple or aromatic. All the molecules belong to two
categories.

(4) ENZYMES [46] is a dataset of 600 enzymes collected from
the BRENDA enzyme database. These enzymes are labeled into 6
categories according to their top-level EC enzyme.

(5) BZR [35] is a collection of 405 ligands for benzodiazepine
receptor, in which each ligand is represented by a graph. All these
ligands belong to 2 categories.

Note that we conduct node classification on Flickr, PROTEINS and
ENZYMES, since their node labels generally appear on all the graphs,
which is suitable for the setting of few-shot node classification on
each graph. Note that, we only choose the graphs which consist
of more than 50 nodes for the downstream node classification, to
ensure there exist sufficient labeled nodes for testing. Additionally,
graph classification is conducted on PROTEINS, COX2, ENXYMES
and BZR. We use the given node features in the cited datasets to
initialize input feature vectors, without additional processing.

C Further Descriptions of Baselines

In this section, we present more details for the baselines, which are
chosen from three main categories.

(1) End-to-end graph neural networks.

e GCN [20]: GCN resorts to mean-pooling based neighborhood
aggregation to receive messages from the neighboring nodes for
node representation learning in an end-to-end manner.

e GraphSage [13]: GraphSAGE has a similar neighborhood ag-
gregation mechanism with GCN, while it focuses more on the
information from the node itself.

e GAT [43] : GAT also depends on neighborhood aggregation for
node representation learning in an end-to-end manner, while
it can assign different weights to neighbors to reweigh their
contributions.

e GIN [50]: GIN employs a sum-based aggregator to replace the
mean-pooling method in GCN, which is more powerful in ex-
pressing the graph structures.

(2) Graph pre-training models.

e DGI [44]: DGI capitalizes on a self-supervised method for pre-
training, which is based on the concept of mutual information
(MI). It maximizes the MI between the local augmented instances
and the global representation.

e InfoGraph [38]: InfoGraph learns a graph-level representation,
which maximizes the MI between the graph-level representation
and substructure representations at various scales.

e GraphCL [53]: GraphCL applies different graph augmentations
to exploit the structural information on the graphs, and aims to
maximize the agreement between different augmentations for
graph pre-training.

(3) Graph prompt models.
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e GPPT [39]. GPPT pre-trains a GNN model based on the link
prediction task, and employs a learnable prompt to reformulate
the downstream node classification task into the same format as
link prediction.

D Further Implementation Details

For baseline GCN [20], we employ a 3-layer architecture, and set
the hidden dimension as 32. For GraphSAGE [13], we utilize the
mean aggregator, and employ a 3-layer architecture. The hidden
dimension is also set to 32. For GAT [43], we employ a 2-layer
architecture and set the hidden dimension as 32. Besides, we apply
4 attention heads in the first GAT layer. Similarly, for GIN [50], we
also employ a 3-layer architecture and set the hidden dimension
as 32. For the pre-training and prompting approaches, we use the
backbones in their original paper. Specifically, for DGI [44], we
use a 1-layer GCN as the backbone, and set the hidden dimension
as 512. Besides, we utilize PReLU as the activation function. For
InfoGraph [38], we use a 3-layer GIN as the backbone, and set
its hidden dimension as 32. For GraphCL [53], we also employ
a 3-layer GIN as its backbone, and set the hidden dimension as
32. In particular, we choose the augmentations of node dropping
and subgraph, with a default augmentation ratio of 0.2. For GPPT
[39], we utilize a 2-layer GraphSAGE as its backbone, set its hidden
dimension as 128, and utilize the mean aggregator. For our proposed
GRrRAPHPROMPT, we employ a 3-layer GIN as the backbone, and set
the hidden dimensions as 32. In addition, we set § = 1 to construct
1-hop subgraphs for the nodes.

E Further Experimental Results

Scalability study. We investigate the scalability of GRAPHPROMPT
on the dataset PROTEINS for graph classification. We divide the
graphs into six groups based on their size (i.e., number of nodes).
The size of graphs in each group is approximately 50, 60, . .., 100
nodes. We sample 10 graphs from each group, and record the prompt
tuning time on the 10 graphs in each epoch. The results are pre-
sented in Fig. 6. Note that we also report the tuning time for GraPH-
PrompT-ft, a variant of GRAPHPROMPT, which fine-tunes all the
parameters including the pre-trained GNN weights. We first ob-
serve that the tuning time of our GRAPHPROMPT increases linearly
as the graph size increases, demonstrating the scalability of GrapH-
PromPT on larger graphs. In addition, compared to GRAPHPROMPT,
GRrRAPHPROMPT-ft needs more tuning time, showing the inefficiency
of the fine-tuning paradigm.
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—&— GraphPrompt
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Figure 6: Scalability study.
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Parameter sensitivity. We evaluate the sensitivity of two im-
portant hyperparameters in GRAPHPROMPT, and show the impact
in Figs. 7 and 8 for node classification and graph classification,
respectively.

For the number of hops (§) in subgraph construction, the perfor-
mance on node classification gradually decreases as the number of
hops increases. This is because a larger subgraph tends to bring in
irrelevant information for the target node, and may suffer from the
over-smoothing issue [6]. On the other hand, for graph classifica-
tion, the number of hops only affects the pre-training stage as the
whole graph is used in downstream classification. In this case, the
number of hops does not show a clear trend, implying less impact
on graph classification since both small and large subgraphs are
helpful in capturing substructure information at different scales.

For the hidden dimension, a smaller dimension is better for node
classification, such as 32 and 64. For graph classification, a slightly
larger dimension might be better, such as 64 and 128. Overall, 32 or
64 appears to be robust for both node and graph classification.
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Figure 7: Parameter sensitivity on node classification.
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Figure 8: Parameter sensitivity on graph classification.

F Data Ethics Statement

To evaluate the efficacy of this work, we conducted experiments
which only use publicly available datasets, namely, Flickr®, PRO-
TEINS, COX2, ENZYMES and BZR?, in accordance to their usage
terms and conditions if any. We further declare that no personally
identifiable information was used, and no human or animal subject
was involved in this research.

Shttps://snap.stanford.edu/data/web-flickrhtml
*https://chrsmrrs.github.io/datasets/
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