TREND: TempoRal Event and Node Dynamics for Graph Representation Learning

Zhihao Wen, Yuan Fang
School of Computing and Information Systems
Singapore Managent University

School of

Computing and Information Systems

Outline

- **□** Introduction
- Methodology
- ☐ Experiment
- Conclusion

Issues of existing works

1. Take discrete snapshots

Dynamic network embedding: an extended approach for skip-gram based network embedding. IJCAI-2018.

DynGEM: Deep embedding method for dynamic graphs. arxiv-2018.

Dynamic network embedding by modeling triadic closure process. AAAI-2018.

Evolvegcn: Evolving graph convolutional networks for dynamic graphs. AAAI-2020.

2. Not inductive to new nodes

Embedding temporal network via neighborhood formation. KDD-2018.

Temporal network embedding with micro-and macro-dynamics. CIKM-2019.

Dynamic Heterogeneous Graph Embedding via Heterogeneous Hawkes Process. ECML-PKDD 2021.

3. Not model the exciting effects

DyRep: Learning representations over dynamic graphs. ICLR-2019.

Inductive representation learning on temporal graphs. ICLR-2020.

.....

Problem: temporal graph link prediction

Predict whether a **link** between *i* & *j* at *t*

Temporal point process and Hawkes Process

$$\lambda(t|\mathcal{H}(t)) = \lim_{\Delta t \to 0} \frac{\mathbb{E}[N(t+\Delta t)|\mathcal{H}_t]}{\Delta t}$$

$$\lambda(t) = \mu(t) + \int_{-\infty}^{t} \kappa(t - s) dN(s)$$

Point process models discrete sequential events, assuming that historical events can influence the current event.

Hawkes process is desirable for modeling temporal link formation!

For current event is influenced **more** by **recent** events, **less** by **previous** events

Outline

- ☐ Introduction
- Methodology
- ☐ Experiment
- Conclusion

Proposed model:TREND

Hawkes Process on temporal graph

amount of excitement

$$\lambda_{i,j}(t) = \mu_{i,j}(t) + \sum_{(i,j',t') \in \mathcal{H}_i(t)} \gamma_{j'}(t')\kappa(t-t')$$

$$+ \sum_{(i',j,t') \in \mathcal{H}_j(t)} \gamma_{i'}(t')\kappa(t-t')$$
base rate
$$\exp(-\delta(t-t'))$$

Hawkes Process on temporal graph

$$\lambda_{i,j}(t) = \mu_{i,j}(t) + \sum_{(i,j',t') \in \mathcal{H}_i(t)} \gamma_{j'}(t') \kappa(t-t')$$

$$+ \sum_{(i',j,t') \in \mathcal{H}_j(t)} \gamma_{i'}(t') \kappa(t-t')$$

$$\lambda_{i,j}(t) = f(\mathbf{h}_i^t, \mathbf{h}_j^t)$$

Temporal GNN layer

Modeling event dynamics

$$\lambda_{i,j}(t) = f(\mathbf{h}_i^t, \mathbf{h}_j^t) = FCL_e((\mathbf{h}_i^t - \mathbf{h}_j^t)^{\circ 2}; \theta_e)$$

Event prior and adaptation

$$\theta_e^{(i,j,t)} = \tau(\theta_e, \mathbf{h}_i^t || \mathbf{h}_j^t; \theta_\tau) \qquad \lambda_{i,j}(t) = \mathrm{FCL}_e((\mathbf{h}_i^t - \mathbf{h}_j^t)^{\circ 2}; \theta_e^{(i,j,t)})$$

Learnable transformation

Event loss

$$L_e(i, j, t) = -\log(\lambda_{i,j}(t)) - Q \cdot \mathbb{E}_{k \sim P_n} \log(1 - \lambda_{i,k}(t))$$

Modeling node dynamics

Predicted number of new events occurring on the node at *t*

$$\Delta \hat{N}_i(t) = \text{FCL}_n(\mathbf{h}_i^t; \theta_n)$$

Overall loss

Outline

- ☐ Introduction
- Methodology
- Experiment
- ☐ Conclusion

Statistics of datasets

Dataset	CollegeMsg	cit-HepTh	Wikipedia	Taobao	
# Events	59,835	51,315	157,474	4,294,000	
# Nodes	1,899	7,577	8,227	1,818,851	
# Node features	_	128	172	128	
Multi-edge?	Yes	No	Yes	Yes	
New nodes in testing	22.79%	100%	7.26%	23.46%	

https://www.shutterstock.co m/th/video/clip-21752794message-network-icon-linkconnection-technology-loop

https://www.researc hgate.net/publicatio n/297894915

https://www.dreamstime.co m/concept-e-commerceshopping-web-icons-linestyle-mobile-shop-digitalmarketing-bank-card-giftsdigital-concept-e-commerceimage 159818445

Performance comparison with baselines

In each column, the best result is **bolded** and the runner-up is <u>underlined</u>. Improvement by TREND is calculated relative to the best baseline. "-" indicates no result obtained due to out of memory issue; * indicates that our model significantly outperforms the best baseline based on two-tail t -test (p < 0.05).

		CollegeMsg		cit-HepTh		Wikipedia		Taobao	
		Accuracy	F1	Accuracy	F1	Accuracy	F1	Accuracy	F1
-	DeepWalk	66.54±5.36	67.86±5.86	51.55±0.90	50.39±0.98	65.12±0.94	64.25 ± 1.32	53.59±0.18	56.67±0.12
	Node2vec	65.82±4.12	69.10 ± 3.50	65.68±1.90	66.13 ± 2.15	75.52±0.58	75.61 ± 0.52	52.74±0.33	54.86 ± 0.32
	VGAE	65.82±5.68	68.73 ± 4.49	66.79±2.58	67.27 ± 2.84	66.35±1.48	68.04 ± 1.18	55.97±0.22	59.80 ± 0.16
	GAE	62.54±5.11	66.97 ± 3.22	69.52±1.10	70.28 ± 1.33	68.70±1.34	69.74 ± 1.43	58.13±0.15	61.40 ± 0.07
	GraphSAGE	58.91±3.67	60.45 ± 4.22	70.72±1.96	71.27 ± 2.41	72.32±1.25	73.39 ± 1.25	60.74±0.18	61.61 ± 0.20
	CTDNE	62.55±3.67	65.56±2.34	49.42±1.86	44.23±3.92	60.99±1.26	62.71±1.49	51.64±0.32	43.99±0.38
	EvolveGCN	63.27±4.42	65.44 ± 4.72	61.57±1.53	62.42 ± 1.54	71.20±0.88	73.43 ± 0.51	-	-
	GraphSAGE+T	69.09±4.91	69.41 ± 5.45	67.80±1.27	69.12±1.12	57.93±0.53	63.41 ± 0.91	67.05±0.23	67.69 ± 0.17
	TGAT	58.18±4.78	57.23±7.57	78.02±1.93	78.52 ± 1.61	76.45±0.91	76.99 ± 1.16	70.07 ± 0.59	71.31 ± 0.18
555	HTNE	73.82±5.36	74.24±5.36	66.70±1.80	67.47±1.16	77.88±1.56	78.09±1.40	59.03±0.17	60.34±0.19
	MMDNE	73.82±5.36	74.10 ± 3.70	66.28±3.87	66.70±3.39	79.76±0.89	79.87 ± 0.95	58.24±0.10	59.04±0.16
	TREND	74.55 ±1.95	75.64 ±2.09	80.37 *±2.08	81.13 *±1.92	83.75 *±1.19	83.86 *±1.24	78.56 *±0.17	$80.67^* \pm 0.15$
	(improv.)	(+0.99%)	(+1.89%)	(+3.01%)	(+3.32%)	(+5.00%)	(+4.99%)	(+12.11%)	(+13.12%)

Drocks

Ablation study

Outline

- ☐ Introduction
- Methodology
- ☐ Experiment
- Conclusion

Conclusion

- Conclusion:
 - Studied the problem of temporal graph representation learning and temporal link prediction.
 - Proposed TREND, a novel framework driven by event and node dynamics on a Hawkes process-based GNN.
 - Conduct extensive experiments on four real-world graph datasets and demonstrated the superior performance of TREND.

THANK YOU FOR YOUR ATTENTION

Paper, code, data... www.yfang.site

We are also hiring! Multiple positions open. www.yfang.site/hiring

School of

Computing and Information Systems