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ABSTRACT
Temporal graph representation learning has drawn significant at-

tention for the prevalence of temporal graphs in the real world.

However, most existing works resort to taking discrete snapshots

of the temporal graph, or are not inductive to deal with new nodes,

or do not model the exciting effects which is the ability of events

to influence the occurrence of another event. In this work, We

propose TREND, a novel framework for temporal graph representa-

tion learning, driven by TempoRal Event and Node Dynamics and

built upon a Hawkes process-based graph neural network (GNN).

TREND presents a few major advantages: (1) it is inductive due to

its GNN architecture; (2) it captures the exciting effects between

events by the adoption of the Hawkes process; (3) as our main

novelty, it captures the individual and collective characteristics of

events by integrating both event and node dynamics, driving a more

precise modeling of the temporal process. Extensive experiments

on four real-world datasets demonstrate the effectiveness of our

proposed model.

CCS CONCEPTS
• Computing methodologies→ Learning latent representa-
tions; • Information systems→ Data mining.
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1 INTRODUCTION
Graph-structured data widely exist in real-world scenarios, e.g.,
social networks, citation networks, e-commerce networks, and the

World Wide Web. To discover insights from these data, graph repre-

sentation learning has emerged as a key enabler which can encode

graph structures into a low-dimensional latent space. The state of
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the art has made important progress and many approaches are pro-

posed, which can be mainly divided into two categories: network

embedding [1] and graph neural networks (GNN) [41]. Network

embedding approaches are often transductive, which directly learn

node embedding vectors using various local structures, like random

walks in DeepWalk [30] and node2vec [7], and 1st- and 2nd-order

proximity in LINE [35]. In contrast, GNNs do not directly learn node

embedding vectors. They instead learn an inductive aggregation

function [10, 16, 37, 40, 44] which can be generalized to unseen

nodes or even new graphs in the same feature space. Typical GNNs

follow a message passing framework, where each node receives

and aggregates messages (i.e., node features or embeddings) from

its neighboring nodes recursively in multiple layers. In other words,

GNNs are capable of not only encoding graph structures, but also

preserving node features.

Most of these graph representation methods focus on static

graphs with structures frozen in time. However, real-world graphs

often present complex dynamics that evolve continuously in time.

For instance, in social networks, burst events often rapidly change

the short-term social interaction pattern, while on an e-commerce

user-item graph, long-term user preferences may drift as new gen-

erations of product emerge. More precisely, in a temporal graph

[19], the temporal evolution arises from the chronological forma-

tion of links between nodes. As illustrated in Fig. 1, the toy graph

evolving from time 𝑡1 through 𝑡3 can be described by a series of

triple {(𝐴, 𝐵, 𝑡1), (𝐵,𝐶, 𝑡1), (𝐶, 𝐷, 𝑡2), (𝐶, 𝐸, 𝑡2), (𝐵,𝐶, 𝑡3), . . .}, where
each triple (𝑖, 𝑗, 𝑡) denotes a link formed between nodes 𝑖 and 𝑗 at

time 𝑡 . Hence, the prediction of future links depends heavily on the

dynamics embodied in the historical link formation [33]. In this

paper, we investigate the important problem of temporal graph rep-
resentation learning, in which we learn representations that evolve

with time on a graph. In particular, we treat the formation of a

link at a specific time as an event, and a graph evolves or grows

continuously as more events are accumulated [12].

Prior work. In general, the requirement for temporal graph rep-

resentation learning is that the learned representations must not

only preserve graph structures and node features, but also reflect

its topological evolution. However, this goal is non-trivial, and it is

not until recently that several works on this problem have emerged.

Among them, some [2, 6, 21, 27, 32, 45] discretize the temporal

graph into a sequence of static graph snapshots to simplify the

model. As a consequence, they cannot fully capture the continu-

ously evolving dynamics, for the fine-grained link formation events

“in-between” the snapshots are inevitably lost. For continuous-time

methods, CTDNE [25] resort to temporal randomwalks that respect

the chronological sequence of the edges; TGAT [42] employs a GNN

framework with functional time encoding to map continuous time
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and self-attention to aggregate temporal-topological neighborhood.

However, these methods often fail to explicitly capture the exciting
effects [47] between sequential events, particularly the influence of

historical events on the current events. Nonetheless, such effects

can be well captured by temporal point processes, most notably

the Hawkes process [11, 23], which assumes that historical events

prior to time 𝑡 can excite the process in the sense that future events

become more probable for some time after 𝑡 . This property is desir-

able for modeling the graph-wide link formation process, in which

each link formation is considered an event that can be excited by

recent events. For example, in social networks, a celebrity who has

attracted a large crowd of followers lately (e.g., due to winning a

prestigious award) is likely to attract more followers in the near

future. However, for temporal graph representation learning, exist-

ing Hawkes process-based network embedding methods [22, 47]

are inherently transductive. While DyRep [36] presents an induc-

tive framework based on the temporal point process, it addresses a

different problem setting of two-time scale with both association

and communication events. In our paper, we focus on learning the

dynamics of evolving topology, where each event represents the

formation of a link.

Challenges and present work. To effectively model the events of

link formation on a temporal graph, we propose a Hawkes process-

based GNN framework to reap the benefits of both worlds. Pre-

vious methods do not employ Hawkes or similar point processes

for modeling the exciting effects between events [42], or not use

message-passing GNNs for preserving the structures and features

of nodes in an inductive manner [22, 47], or neither [25]. More im-

portantly, while the Hawkes process is well suited for modeling the

graph-wide link formation process, prior methods fail to examine

two open challenges on modeling the events (i.e., link formation),

as follows.

Challenge 1: How do we capture the uniqueness of the events on
an individual scale? Different links are often formed out of different

contexts and time periods, causing subtle differences among events.

Taking the research collaboration network in Fig. 1 as an example,

while links are all collaborations, each collaboration can be unique

in its own way. For instance, the collaboration between researchers

𝐴 and 𝐵, and that between 𝐹 and𝐺 , could be formed due to different

backgrounds and reasons (e.g., they might simply be students of the

same advisor who devised the solution together, or they possess

complementary skills required in a large multi-disciplinary project).

Multiple collaborations can also be formed at different times, such

as between 𝐵 and 𝐶 at 𝑡1 and 𝑡3, for potentially different reasons.

Conventional methods on temporal graphs train one model to fit

all events, where different events tend to pull the model in many

opposing directions. The resulting model would be overly diffuse

with its center of mass around the most frequent patterns among

the events, whilst neglecting many long-tailed patterns covering

their individual characteristics. Hence, in this paper, motivated by

hypernetworks [8, 29, 39], we learn an event prior, which only en-

codes the general knowledge of link formation. This event prior can

be further specialized in an event-wise manner to fit the individual

characteristics of events.

Challenge 2: How do we govern the occurrence of events on
a collective scale? While events exhibit individual characteristics,
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Figure 1: Toy temporal graph for research collaborations that
evolves through time 𝑡1, 𝑡2, 𝑡3, · · · . Each node is a researcher
and each link is a collaboration between researchers formed
at a specific time.

they are not formed in isolation and related events often manifest

collective characteristics. Events sharing a common node can be

"constrained as a collection" due to the common influence from their

shared node. That is, the collection of events of each node should

match the arrival rate of the node, which we call node dynamics.

Of course, for two different nodes, each would have its own event

collection, and each collection should match different arrival rates

of the two nodes. As shown in Fig. 1, researchers 𝐴 and 𝐶 have

different tendency to form a collaboration with others at time 𝑡3,

with 𝐶 being more active in seeking collaborations. Moreover, as

the graph evolves from time 𝑡1 to 𝑡3, researcher 𝐶’s tendency in

collaborating with others also evolves to become higher (e.g., due to
𝐶’s growing reputation). In other words, the events stemming from

a common node are collectively governed by the dynamics of the

node as a function of time. Hence, we formulate the notion of node
dynamics to model the collective characteristics of the events from

the same node. Intuitively, integrating the node dynamics provides

a regularizing mechanism beyond individual events, to ensure that

the events from a node, as a collection, conform to the continuous

evolution of the node. Despite the importance of node dynamics, it

has not been explored in temporal graph representation learning.

Contributions.We propose TREND, a novel framework for tem-

poral graph representation learning driven by TempoRal Event and

Node Dynamics. TREND is built upon a Hawkes process-based

GNN, and presents a few major advantages. Firstly, owning to its

GNN architecture, it is inductive in nature, i.e., able to handle new

nodes at test time. Secondly, owning to the adoption of the Hawkes

process, it maps the graph-wide link formation process to capture a

holistic view of the temporal evolution. Thirdly, TREND integrates

both the event and node dynamics to respectively capture the indi-

vidual and collective characteristics of events, which drives a more

precise modeling of the link formation process.

In summary, our work encompasses the following contributions.

(1) For the first time in temporal graph representation learning, we

recognize the importance of modeling the events at an individual

and collective scale, and formulate them as event and node dynam-

ics. (2) We propose a novel framework called TREND with both

event and node dynamics to more precisely model events under

a Hawkes process-based GNN. On one hand, the event dynamics

learns an adaptable event prior to capture the uniqueness of events

individually. On the other hand, the node dynamics regularizes the

events at the node level to govern their occurrences collectively.

(3) We conduct extensive experiments on four real-world datasets,

which demonstrate the advantages of TREND.
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2 RELATEDWORK
Recently, a large body of graph representation learning methods

has been proposed, including network embedding [1] and graph

neural networks [41]. To address real-world scenarios in which

graphs continuously evolve in time, there have been some efforts

in temporal graph representation learning. Intuitively, a temporal

graph can be modeled as a series of snapshots. The general idea is to

learn node representations for each graph snapshot, and then cap-

ture both the graph structures in each snapshot and the sequential

effect across the snapshots. The specific techniques vary in different

works, such as matrix perturbation theory [20, 46], skip-grams [2]

and triadic closure process [45]. To effectively capture the sequential

effect, recurrent neural networks (RNNs) have been a popular tool

[5, 9, 17, 34], which leverage the chronological sequence of repre-

sentations across all snapshots. From a different perspective, instead

of using RNNs to generate node representations, EvolveGCN [27]

uses RNN to evolve GCN parameters. Besides, rather than directly

learning the representation, DynGEM [6] incrementally builds the

representations of a snapshot from those of the previous snapshot.

However, snapshots are approximations which discretize a con-

tinuously evolving graph, inevitably suffering from a fair degree

of information loss in the temporal dynamics. To overcome this

problem, another line of work aims to model the continuous process

of temporal graph evolution, usually by treating each event (typi-

cally defined as the formation of a link that can occur continuously

in time) as an individual training instance. Among them, some

employ temporal random walks to capture the continuous-time

network dynamics, including CTDNE [25] based on time-respect

random walks, and CAW-N [38] based on causal anonymous walks.

Apart from random walks, GNN-based models have also emerged

to deal with continuous time, e.g., TGAT [42]. While these methods

can deal with a continuously evolving graph, they fail to explicitly

model the exciting effects between sequential events holistically

on the entire graph. In view of this, several network embedding

methods [13, 22, 47] incorporate temporal point processes such

as Hawkes process into their models, being capable of modeling

the graph-wide formation process. Moreover, DyREP [36] is an

inductive GNN-based model that also exploits the temporal point

processes.

Note that, among existing methods for temporal graph represen-

tation learning, those employing an embedding lookup for node

representations are usually transductive [2, 22, 25, 34, 45, 47] and

thus unable to directly make predictions on new nodes at a future

time. In contrast, GNN-based methods [27, 36, 42] are naturally

inductive, able to extend to new nodes in the same feature space.

However, among them only DyREP [36] leverages temporal point

processes, but it is designed to capture association and communica-

tion events, which differs from our problem setting to specifically

deal with the link formation process. Furthermore, none of existing

methods integrates both event- and node-dynamics to capture the

individual and collective characteristics of events, respectively.

3 PRELIMINARIES
In this section, we first present the problem of temporal graph

representation learning, and then introduce a brief background on

the Hawkes process.

3.1 Temporal Graph Representation Learning
A temporal graph G = (V, E,T ,X) is defined on a set of nodes

V , a set of edges E, a time domain T and an input feature matrix

X ∈ R |V |×𝑑0 . Each node has a 𝑑0-dimensional input feature vector

corresponding to one row in X. An event is a triple (𝑖, 𝑗, 𝑡) denoting
the formation of an edge (𝑖, 𝑗) ∈ E (also called a link) between

node 𝑖 ∈ V and node 𝑗 ∈ V at time 𝑡 ∈ T . Alternatively, a
temporal graph can be defined as a chronological series of events

I = {(𝑖, 𝑗, 𝑡)𝑚 :𝑚 = 1, 2, . . . , |E |}. Note that two nodes may form

a link more than once at different times. Thus, there may be two

events (𝑖, 𝑗, 𝑡1) and (𝑖, 𝑗, 𝑡2) such that 𝑡1 ≠ 𝑡2. Besides, in this work,

we only consider the growth of temporal graph, and make deletions

of node and edge as future work.

We study the problem of inductive temporal graph representa-

tion learning. Specifically, given G = (V, E,T ,X), we aim to learn

a parametric model Φ(·;𝜃 ) with parameters 𝜃 , such that Φ maps

any node in the same feature space of X at any time to a represen-

tation vector. That is, Φ : V ′ × T → R𝑑 , whereV ⊂ V ′. The set
differenceV ′ \ V consists of new nodes in the same feature space

of X that may appear at a future time. Such a model Φ is apparently

inductive given the ability to handle new nodes.

3.2 Hawkes Process
A Hawkes process [11] is a stochastic process that can be under-

stood as counting the number of events up to time 𝑡 . Its behavior

is typically modeled by a conditional intensity function 𝜆(𝑡), the
rate of event occurring at time 𝑡 given the past events. A common

formulation of the conditional intensity [22, 47] is given by

𝜆(𝑡) = 𝜇 (𝑡) +
∫ 𝑡

−∞
𝜅 (𝑡 − 𝑠)𝑑𝑁 (𝑠), (1)

where 𝜇 (𝑡) is the base intensity at time 𝑡 , 𝜅 is a kernel function to

model the time decay effect of historical events on the current event

(usually in the shape of an exponential function), and 𝑁 (𝑡) is the
number of events occurred until 𝑡 . Since the Hawkes process is able

tomodel the exciting effects between events to capture the influence

of historical events holistically, it is well suited for modeling the

graph-wide link formation process in a temporal graph.

4 PROPOSED APPROACH
In this section, we present a novel framework for temporal graph

representation learning called TREND.

4.1 Overview of TREND
Building upon a Hawkes process-based GNN, the proposed TREND

is able to model the graph-wide link formation process in an in-

ductive manner. More importantly, it integrates event and node

dynamics into the model to fully capture the individual and collec-

tive characteristics of events.

The overall framework of TREND is shown in Fig. 2. First of all,

in Fig. 2(a), an input temporal graph undergoes a temporal GNN

aggregation in multiple layers, whose output representations serve

as the input for modeling event and node dynamics. The GNN layer

aggregates both the self-information and historical neighbors’ in-

formation, which are building blocks to materialize the conditional

intensity in the Hawkes process. Next, we model event dynamics
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Figure 2: Overall framework of TREND, which integrates event and node dynamics in a Hawkes process-based GNN.

to capture the individual characteristics of events, as shown in

Fig. 2(b). We perform an event-conditioned, learnable transforma-

tion to adapt the event prior to the input event, resulting in an

event-specific transfer function to generate the conditional inten-

sity in the Hawkes process. Moreover, we model node dynamics

to capture the collective characteristics of events at the node level,

as shown in Fig. 2(c). We build an estimator to predict the node

dynamics across nodes and times, which governs the behavior of

events occurring on the same node. At last, we integrate the event

and node losses to jointly optimize event and node dynamics.

4.2 Hawkes process-based GNN
We first introduce a Hawkes process-based GNN framework, which

is to be further integrated with event and node dynamics later.

Hawkes process on temporal graph. In the context of temporal

graph, the Hawkes process is able to model the graph-wide link

formation process. Specifically, whether nodes 𝑖 and 𝑗 form a link

at 𝑡 , can be quantified by the conditional intensity of the event,

𝜆𝑖, 𝑗 (𝑡) = 𝜇𝑖, 𝑗 (𝑡) +
∑︁

(𝑖, 𝑗 ′,𝑡 ′) ∈H𝑖 (𝑡 )
𝛾 𝑗 ′ (𝑡 ′)𝜅 (𝑡 − 𝑡 ′)

+
∑︁

(𝑖′, 𝑗,𝑡 ′) ∈H𝑗 (𝑡 )
𝛾𝑖′ (𝑡 ′)𝜅 (𝑡 − 𝑡 ′). (2)

In particular, 𝜇𝑖, 𝑗 (𝑡) is the base rate of the event that 𝑖 and 𝑗 form a

link at time 𝑡 , which is not influenced by historical events on 𝑖 or 𝑗 .

H𝑖 (𝑡) is the set of historical events on 𝑖 w.r.t. time 𝑡 , i.e.,H𝑖 (𝑡) =
{(𝑖, 𝑗 ′, 𝑡 ′) ∈ I : 𝑡 ′ < 𝑡}, and we call 𝑗 ′ a historical neighbor of 𝑖 .
𝛾 𝑗 ′ (𝑡 ′) represents the amount of excitement induced by a historical

neighbor 𝑗 ′ at 𝑡 ′ on the current event. Note that we are treating

each link as undirected, and thus the current event is influenced by

historical neighbors of both nodes 𝑖 and 𝑗 . In the case of directed link,

we can modify Eq. (2) by keeping only one of the two summation

terms. 𝜅 (·) is a kernel function to capture the time decay effect

w.r.t. 𝑡 , defined in the form of an exponential function as 𝜅 (𝑡 − 𝑡 ′) =
exp(−𝛿 (𝑡 − 𝑡 ′)), where 𝛿 > 0 is a learnable scalar to control the

rate of decay.

Next, temporal graph representations are used to materialize the

conditional intensity in Eq. (2). Given the temporal representations

of nodes 𝑖, 𝑗 at time 𝑡 , denoted h𝑡
𝑖
, h𝑡

𝑗
respectively, the conditional

intensity can be generated from a transfer function 𝑓 [23, 36], i.e.,

𝜆𝑖, 𝑗 (𝑡) = 𝑓 (h𝑡𝑖 , h
𝑡
𝑗 ), (3)

which should meet the following criteria. (1) The input represen-

tations h𝑡
𝑖
, h𝑡

𝑗
should be derived from not only their inherent self-

information, but also their historical neighbors’ information. While

the self-information is the basis of the base intensity 𝜇𝑖, 𝑗 (𝑡), his-
torical neighbors are crucial to model the excitement induced by

historical events. (2) The output of the transfer function 𝑓 must be

positive, since it represents an intensity. We will discuss the choice

of the transfer function in Sect. 4.3.

Temporal GNN layer. We materialize the temporal representa-

tions in Eq. (3) using GNNs, owning to their inductive nature and

superior performance. Based on the message passing scheme, each

node receives, aggregates and maps messages (e.g., features or em-

beddings) from its neighboring nodes recursively, in multiple layers.

Here we present a temporal formulation of GNN in consideration

of the representational criteria listed above, so that the learned

temporal representations can be used to materialize the conditional

intensity. Formally, let h𝑡,𝑙
𝑖
∈ R𝑑𝑙 be the 𝑑𝑙 -dimensional embedding

vector of node 𝑖 at time 𝑡 in the 𝑙-th layer, which is computed by

h𝑡,𝑙
𝑖

= 𝜎

(
h𝑡,𝑙−1
𝑖

W𝑙
self︸       ︷︷       ︸

self-information

(for base intensity)

+
∑︁

(𝑖, 𝑗 ′,𝑡 ′) ∈H𝑖 (𝑡 )
h𝑡
′,𝑙−1
𝑗 ′ W𝑙

hist
𝜅̃𝑖 (𝑡 − 𝑡 ′)︸                                        ︷︷                                        ︸

historical neighbors’ information

(for excitement by historical events)

)
, (4)

where 𝜎 is an activation function (e.g., ReLU),W𝑙
self
∈ R𝑑𝑙−1×𝑑𝑙 is

a learnable weight matrix to map the embedding of node 𝑖 itself

from the previous layer, W𝑙
hist
∈ R𝑑𝑙−1×𝑑𝑙 is another learnable

weight matrix to map the embeddings of historical neighbors, and

𝜅̃𝑖 (𝑡 − 𝑡 ′) captures the time decay effect based on the time kernel

with softmax, which is given by 𝜅̃𝑖 (𝑡 − 𝑡 ′) = 𝜅 (𝑡−𝑡 ′)∑
(𝑖,𝑗′′,𝑡′′)∈H𝑖 (𝑡 ) 𝜅 (𝑡−𝑡

′′) .

In other words, the temporal representation of a node is derived

by receiving and aggregating messages of itself and the historical

neighbors from the previous layer. The self-information is responsi-

ble for capturing the base intensity, while the historical neighbors’

information is responsible for capturing the excitement induced

by historical events. To enhance the representational capacity, we

stack multiple temporal GNN layers. In the first layer, the node

message can be initialized by the input node features X; in the last
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layer, the output temporal representation is denoted as h𝑡
𝑖
∈ R𝑑 for

node 𝑖 at time 𝑡 . The collection of parameters of all the layers is

𝜃𝑔 = {W𝑙
self
,W𝑙

hist
: 𝑙 = 1, 2, . . .}.

Connection to conditional intensity. A well chosen transfer

function 𝑓 , taking the temporal representations as input, is equiva-

lent to the conditional intensity of the Hawkes process in Eq. (2).

We formally show the connection in Appendix A.

4.3 Modeling Event Dynamics
The key to materialize the conditional intensity is to fit a transfer

function 𝑓 on top of the temporal GNN layers. Previous studies

on Hawkes process employ the softplus function or its variant

[23, 36] as the transfer function. To ensure that 𝑓 is well-fit to

the conditional intensity, our first proposal is to instantiate 𝑓 as

a learnable function. More specifically, we use a fully connected

layer (FCL). That is,

𝜆𝑖, 𝑗 (𝑡) = 𝑓 (h𝑡𝑖 , h
𝑡
𝑗 ) = FCL𝑒 ((h𝑡𝑖 − h

𝑡
𝑗 )
◦2
;𝜃𝑒 ), (5)

where 𝜃𝑒 denotes the parameters of the fully connected layer FCL𝑒 .

Note that the input to FCL𝑒 can be in various forms, such as the

concatenation of h𝑡
𝑖
and h𝑡

𝑗
, or the element-wise square (denoted

by
◦
2) of the difference between them. We use the latter in our

formulation, which tends to achieve better empirical performance.

A potential reason is that the differential representation is a good

predictor of whether an event occurs between the two nodes. Lastly,

FCL𝑒 employs a sigmoid activation, to ensure the transfer function

is positive.

Meanwhile, we recognize that each event can be unique in its

ownway, as different links are often formed out of different contexts

and time periods. To precisely capture the uniqueness of events

on an individual scale (Challenge 1), a global model in Eq. (5)—

our first proposal—becomes inadequate. To be more specific, in

a conventional one-model-fits-all approach, given the diversity

in events, the learned model tends to converge around the most

frequent patterns among events, while leaving long-tailed patterns

that reflect the individual characteristics of events uncovered. On

the other hand, training a large number of models for different

kinds of events can easily cause overfiting and scalability issues,

not to mention that it is difficult to categorize events in the first

place. Inspired by meta-learning, particularly the line of work on

hypernetworks [8, 29], we address the dilemma by learning an event
prior, which can be quickly adapted to a unique model for each

event, without the need to train a large number of models.

Event prior and adaptation. In our first proposal in Eq. (5), we

learn a global model for all events, i.e., the same 𝜃𝑒 parameterizes a

global FCL𝑒 as the transfer function for all events. To deal with the

diversity of events, we propose to learn an event prior 𝜃𝑒 that aims

to encode the general knowledge of link formation, such that it can

be quickly specialized to fit the individual characteristics of each

event. In other words, 𝜃𝑒 does not directly parameterize FCL𝑒 used

as the transfer function; instead, it will be adapted to each event via

a learnable transformation model first, and the adapted parameters

will instantiate an event-specific FCL𝑒 as the transfer function for

each event. This approach is a form of hypernetwork [8], in which

a secondary neural network is used to generate the parameters of

the primary network. This means the parameters of the primary

network can flexibly adapt to its input, as opposed to conventional

models whose parameters are frozen once training is completed. In

our context, the primary network is FCL𝑒 for the transfer function,

and the secondary network is the learnable transformation model.

Particularly, during the adaptation, the event prior 𝜃𝑒 will trans-

form into event (𝑖, 𝑗, 𝑡)-specific parameters 𝜃
(𝑖, 𝑗,𝑡 )
𝑒 as follows.

𝜃
(𝑖, 𝑗,𝑡 )
𝑒 = 𝜏 (𝜃𝑒 , h𝑡𝑖 ∥h

𝑡
𝑗 ;𝜃𝜏 ), (6)

which (1) is parameterized by 𝜃𝜏 ; (2) is conditioned on event-specific

temporal representations of nodes 𝑖, 𝑗 , namely, h𝑡
𝑖
∥h𝑡

𝑗
where ∥ is the

concatenation operator; (3) outputs adapted parameters 𝜃
(𝑖, 𝑗,𝑡 )
𝑒 by

transforming the event prior 𝜃𝑒 conditioned on h𝑡
𝑖
∥h𝑡

𝑗
. The trans-

formed 𝜃
(𝑖, 𝑗,𝑡 )
𝑒 will further parameterize FCL𝑒 as the transfer func-

tion, and materialize the conditional intensity below.

𝜆𝑖, 𝑗 (𝑡) = FCLe ((h𝑡𝑖 − h
𝑡
𝑗 )
◦2
;𝜃
(𝑖, 𝑗,𝑡 )
𝑒 ) . (7)

In the following, we will materialize the transformation model 𝜏

and its parameters 𝜃𝜏 in detail.

Learnable transformation. We consider Feature-wise Linear

Modulation (FiLM) [29], which employs affine transformations in-

cluding scaling and shifting on the event prior, conditioned on

event-specific temporal representations. Compared with gating

[43] which can only adjust the parameters in a diminishing way,

FiLM is more flexible in adjusting the parameters and can be condi-

tioned on arbitrary input. Specifically, we employ fully connected

layers to generate the scaling operator 𝛼 (𝑖, 𝑗,𝑡 ) and shifting operator
𝛽 (𝑖, 𝑗,𝑡 ) , conditioned on the event-specific input h𝑡

𝑖
∥h𝑡

𝑗
, as follows.

𝛼 (𝑖, 𝑗,𝑡 ) = 𝜎
(
(h𝑡𝑖 ∥h

𝑡
𝑗 )W𝛼 + b𝛼

)
, (8)

𝛽 (𝑖, 𝑗,𝑡 ) = 𝜎
(
(h𝑡𝑖 ∥h

𝑡
𝑗 )W𝛽 + b𝛽

)
, (9)

whereW𝛼 ,W𝛽 ∈ R2𝑑×𝑑𝜃𝑒 and b𝛼 , b𝛽 ∈ R𝑑𝜃𝑒 are learnable weight

matrices and bias vectors of the fully connected layers, in which 𝑑 is

the dimension of node representation and 𝑑𝜃𝑒 is the total number of

parameters in the event prior 𝜃𝑒 . The output 𝛼
(𝑖, 𝑗,𝑡 ) , 𝛽 (𝑖, 𝑗,𝑡 ) ∈ R𝑑𝜃𝑒

are both 𝑑𝜃𝑒 -dimensional vectors, which represent the scaling and

shifting operations of the transformation model 𝜏 . They are used

to transform the event prior into event (𝑖, 𝑗, 𝑡)-specific parameters

by element-wise scaling and shifting, given by

𝜃
(𝑖, 𝑗,𝑡 )
𝑒 = 𝜏 (𝜃𝑒 , h𝑡𝑖 ∥h

𝑡
𝑗 ;𝜃𝜏 ) = (𝛼

(𝑖, 𝑗,𝑡 ) + 1) ⊙ 𝜃𝑒 + 𝛽 (𝑖, 𝑗,𝑡 ) , (10)

where ⊙ stands for element-wise multiplication, and 1 is a vector
of ones to ensure that the scaling factors are centered around one.

Note that 𝜃𝑒 contains all the weights and biases of FCL𝑒 , and we

flatten it into a 𝑑𝜃𝑒 -dimensional vector.

In summary, the learnable transformation model 𝜏 is parameter-

ized by 𝜃𝜏 = {W𝛼 , b𝛼 ,W𝛽 , b𝛽 }, i.e., the collection of parameters of

the fully connected layers that generate the scaling and shifting

operators. Furthermore, 𝜏 is also a function of the event condition

h𝑡
𝑖
∥h𝑡

𝑗
, for 𝛼 (𝑖, 𝑗,𝑡 ) and 𝛽 (𝑖, 𝑗,𝑡 ) are functions of the event condition.

Event loss. Given an event (𝑖, 𝑗, 𝑡) ∈ I that has occurred on the

graph, we expect a higher conditional intensity 𝜆𝑖, 𝑗 (𝑡). On the con-

trary, given an event (𝑖, 𝑗, 𝑡) ∉ I that does not happen, we expect a

lower conditional intensity. Thus, we formulate the event loss based
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on negative log-likelihood, the optimization of which encourages

the conditional intensity of an event to match its occurrence or

non-occurrence. Given any event (𝑖, 𝑗, 𝑡) ∈ I that has occurred, its

loss is defined as

𝐿𝑒 (𝑖, 𝑗, 𝑡) = − log(𝜆𝑖, 𝑗 (𝑡)) −𝑄 · E𝑘∼𝑃𝑛 log(1 − 𝜆𝑖,𝑘 (𝑡)), (11)

where we sample a negative node 𝑘 according to the distribution

𝑃𝑛 , so that (𝑖, 𝑘, 𝑡) ∉ I does not occur, and 𝑄 is the number of

negative samples for each positive event. As a common practice,

𝑃𝑛 is defined on the node degrees, namely, 𝑃𝑛 (𝑣) ∝ deg(𝑣)
3

4 where

deg(𝑣) is the degree of node 𝑣 .

4.4 Modeling Node Dynamics
Different from the event dynamics that captures the individual char-

acteristics of events, node dynamics aims to govern the collective

characteristics of events. While events can be individually different,

they do not occur in isolation. Particularly, links are formed to con-

nect nodes, which means their behaviors are collectively bounded

by their common nodes. Thus, we propose to govern the collective

characteristics of nodes at the node level, to capture the “event

tendency” of nodes (Challenge 2)—different nodes have varying

tendency to form new links with others, and even the same node

would manifest different tendency at different times.

Estimator of node dynamics.More specifically, the node dynam-

ics or the event tendency of a node at time 𝑡 can be quantified by the

number of new events occurring on the node at 𝑡 , denoted Δ𝑁𝑖 (𝑡).
We build an estimator for node dynamics with a fully connected

layer, trying to fit the number of new events on a given node:

Δ𝑁̂𝑖 (𝑡) = FCL𝑛 (h𝑡𝑖 ;𝜃𝑛), (12)

where the input is the temporal representation h𝑡
𝑖
, the output

Δ𝑁̂𝑖 (𝑡) is the predicted number of new events occurring on node 𝑖

at time 𝑡 , and 𝜃𝑛 contains the parameters of FCL𝑛 .

Node loss. To ensure that the occurrence of events are consistent

with the node dynamics evolving continuously on a temporal graph,

we formulate a node loss such that the estimator Δ𝑁̂𝑖 (𝑡) can ac-

curately reflect the groundtruth dynamics Δ𝑁𝑖 (𝑡) across all nodes
and times. In particular, we adopt the following smooth 𝐿1 loss [4]:

𝐿𝑛 (𝑖, 𝑡) =
{
0.5(Δ𝑁̂𝑖 (𝑡) − Δ𝑁𝑖 (𝑡))2, |Δ𝑁̂𝑖 (𝑡) − Δ𝑁𝑖 (𝑡) | < 1

|Δ𝑁̂𝑖 (𝑡) − Δ𝑁𝑖 (𝑡) | − 0.5. otherwise

(13)

The smooth 𝐿1 loss can be viewed as a combination of both 𝐿1 loss

and 𝐿2 loss. It is less sensitive to outliers than the 𝐿2 loss when the

input is large, and it suffers from less oscillations than the 𝐿1 loss

when the input is small. In our scenario, there exist some nodes

with a very large number of new links at certain times (e.g., due to
burst topics on social networks). To prevent the models from being

overly skewed to these nodes, and to simultaneously cater to nodes

with only a few links, the smooth 𝐿1 loss is an ideal choice.

4.5 Overall Model: TREND
Finally, we integrate both event and node dynamics into a Hawkes

process-based GNNmodel, resulting in our proposed model TREND.

Consider the set of training events Itr = {(𝑖, 𝑗, 𝑡) ∈ I : 𝑡 ≤ 𝑡 tr},
i.e., all events on the graph up to time 𝑡 tr. (New events after time

Table 1: Statistics of datasets.

Dataset CollegeMsg cit-HepTh Wikipedia Taobao

# Events 59,835 51,315 157,474 4,294,000

# Nodes 1,899 7,577 8,227 1,818,851

# Node features − 128 172 128

Multi-edge? Yes No Yes Yes

New nodes in testing 22.79% 100% 7.26% 23.46%

𝑡 tr can be reserved for testing.) We optimize all parameters Θ =

(𝜃𝑔, 𝜃𝑒 , 𝜃𝜏 , 𝜃𝑛) jointly, including those of the temporal GNN layers

𝜃𝑔 , the event prior𝜃𝑒 , the transformationmodel𝜃𝜏 and the estimator

of node dynamics 𝜃𝑛 , based on the following loss:

argmin

Θ

∑︁
(𝑖, 𝑗,𝑡 ) ∈Itr

𝐿𝑒 + 𝜂1𝐿𝑛 + 𝜂2 (∥𝛼 (𝑖, 𝑗,𝑡 ) ∥22 + ∥𝛽
(𝑖, 𝑗,𝑡 ) ∥2

2
), (14)

where (1) 𝜂1 > 0 is a hyper-parameter controlling the contribution

of node dynamics to our model TREND; (2) the 𝐿2 regularization on

𝛼 (𝑖, 𝑗,𝑡 ) and 𝛽 (𝑖, 𝑗,𝑡 ) constrains the scaling and shifting operators, as

it is preferred that the scaling is close to 1 and the shifting is close

to zero, in order to avoid overfitting to individual events; (3) 𝜂2 > 0

is a hyperparameter controlling the effect of the 𝐿2 regularizor.

For implementation, we perform optimization over batches of

training events using a gradient-based optimizer. The overall train-

ing procedure of TREND is outlined in Appendix B. It can be seen

that the training time complexity is 𝑂 (𝐾 |Itr |ℎ𝑙𝑄)), where 𝐾 is the

number of epochs, |Itr | is the number of training events, ℎ is the

number of historical neighbors in temporal GNN aggregation, 𝑙

is the number of temporal GNN layers, and 𝑄 is the number of

negative samples per training event. Note that 𝑄 and 𝑙 are small

constants (typically 5 or less), and ℎ can also be a constant when

employing a commonly used neighborhood sampling approach

[10]. Hence, the complexity can be regarded as linear in the number

of events or temporal edges on the graph.

5 EXPERIMENTS
We conduct extensive experiments to evaluate TREND, with com-

parison to state-of-the-art baselines and in-depth model analysis.

5.1 Experimental Setup

Datasets. Four public temporal networks are used in our experi-

ments, as summarized in Tab. 1. Note that “new nodes in testing”

refers to the ratio of testing events containing at least one new

node not seen during training. (1) CollegeMsg [26]: an online so-

cial network in which an event is a user sending another user a

private message. (2) cit-HepTh [18]: a citation graph about high

energy physics theory in which an event is a paper citation. (3)

Wikipedia [17]: a Wikipedia graph in which an event is a user

editing a page. (4) Taobao [3]: an e-commerce platform in which

an event is a user purchasing an item. More dataset details are

presented in Appendix C.

Prediction tasks.We adopt temporal link prediction as our main

task. We evaluate a model by predicting future links based on

historical links [33]. Given a temporal graph, we split the events

into training and testing. Specifically, the set of training events

Itr = {(𝑖, 𝑗, 𝑡) ∈ I : 𝑡 ≤ 𝑡 tr} consists of all events up to time



TREND: TempoRal Event and Node Dynamics
for Graph Representation Learning WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Table 2: Performance of temporal link prediction by TREND and the baselines, in percent, with 95% confidence intervals.

In each column, the best result is bolded and the runner-up is underlined. Improvement by TREND is calculated relative to the best baseline. “-" indicates no

result obtained due to out of memory issue;
∗
indicates that our model significantly outperforms the best baseline based on two-tail 𝑡 -test (𝑝 < 0.05) .

CollegeMsg cit-HepTh Wikipedia Taobao

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

DeepWalk 66.54±5.36 67.86±5.86 51.55±0.90 50.39±0.98 65.12±0.94 64.25±1.32 53.59±0.18 56.67±0.12
Node2vec 65.82±4.12 69.10±3.50 65.68±1.90 66.13±2.15 75.52±0.58 75.61±0.52 52.74±0.33 54.86±0.32
VGAE 65.82±5.68 68.73±4.49 66.79±2.58 67.27±2.84 66.35±1.48 68.04±1.18 55.97±0.22 59.80±0.16
GAE 62.54±5.11 66.97±3.22 69.52±1.10 70.28±1.33 68.70±1.34 69.74±1.43 58.13±0.15 61.40±0.07

GraphSAGE 58.91±3.67 60.45±4.22 70.72±1.96 71.27±2.41 72.32±1.25 73.39±1.25 60.74±0.18 61.61±0.20

CTDNE 62.55±3.67 65.56±2.34 49.42±1.86 44.23±3.92 60.99±1.26 62.71±1.49 51.64±0.32 43.99±0.38
EvolveGCN 63.27±4.42 65.44±4.72 61.57±1.53 62.42±1.54 71.20±0.88 73.43±0.51 - -

GraphSAGE+T 69.09±4.91 69.41±5.45 67.80±1.27 69.12±1.12 57.93±0.53 63.41±0.91 67.05±0.23 67.69±0.17
TGAT 58.18±4.78 57.23±7.57 78.02±1.93 78.52±1.61 76.45±0.91 76.99±1.16 70.07±0.59 71.31±0.18

HTNE 73.82±5.36 74.24±5.36 66.70±1.80 67.47±1.16 77.88±1.56 78.09±1.40 59.03±0.17 60.34±0.19
MMDNE 73.82±5.36 74.10±3.70 66.28±3.87 66.70±3.39 79.76±0.89 79.87±0.95 58.24±0.10 59.04±0.16

TREND 74.55±1.95 75.64±2.09 80.37∗±2.08 81.13∗±1.92 83.75∗±1.19 83.86∗±1.24 78.56∗±0.17 80.67∗±0.15
(improv.) (+0.99%) (+1.89%) (+3.01%) (+3.32%) (+5.00%) (+4.99%) (+12.11%) (+13.12%)

𝑡 tr. The remaining events after time 𝑡 tr, denoted by the set Ite =
I \ Itr, is reserved for testing. Given a candidate triple (𝑖, 𝑗, 𝑡) for
some 𝑡 > 𝑡 tr, the objective is to predict whether a link between

nodes 𝑖 and 𝑗 is formed at the given future time 𝑡 , i.e., if (𝑖, 𝑗, 𝑡) ∈
Ite. Note that our model can perform temporal link prediction

between all nodes, including new nodes not seen during training,

due to its inductive nature. Specifically, in testing, we first generate

temporal node representations based on the trained model, and

feed them to a downstream logistic regression classifier to predict

if a candidate triple is positive or negative. The classifier is trained

using a 80%/20% train/test split on the testing events, and repeated

for five different splits. More details are given in Appendix D.

We further adopt a secondary task of temporal node dynamics
prediction. While the training and testing events follow the same

setup of the main task, we aim to predict the number of new neigh-

bors of a node 𝑖 at a specific future time 𝑡 > 𝑡 tr. Similarly, the first

step in testing is to generate temporal node representations based

on the trained model, which are then fed into a downstream linear

regression model. To train the regression model, we randomly split

the nodes of the testing events into 80%/20% train/test split.

Settings of TREND. For the temporal GNN, we employ two layers

with a ReLU activation. The hidden layer dimension is set to 16 on

all datasets. The output dimension is set to 32 on CollegeMsg, 16

on cit-HepTh and 128 on Wikipedia and Taobao, based on the size

and complexity of the graph. The transfer function FCL𝑒 employs

a sigmoid activation, the estimator of node dynamics FCL𝑛 uses a

ReLU activation, and 𝛼 (𝑖, 𝑗,𝑡 ) , 𝛽 (𝑖, 𝑗,𝑡 ) both employ a LeakyReLU. The

number of negative samples per positive event is set to 𝑄 = 1. For

the final loss function in Eq. (14), the coefficient of node loss is set

to 𝜂1 = 0.1 on Taobao and 𝜂1 = 0.01 on other datasets, whereas the

coefficient of 𝐿2 regularizer is set to 𝜂2 = 0.001 on CollegeMsg and

cit-HepTh, 𝜂2 = 0.01 on Taobao, and 𝜂2 = 1 onWikipedia. Note that

we will present an analysis on the impact of the hyperparameters

𝑄,𝜂1 and 𝜂2 in Sect. 5.4. Lastly, we use the Adam optimizer with

the learning rate 0.001.

Baselines. We compare TREND with a competitive suit of base-

lines from three categories. (1) Static approaches: DeepWalk [30],

Node2vec [7], VGAE [15], GAE [15] and GraphSAGE [10]. They

train a model or node embedding vectors on the static graph formed

from the training events, without considering any temporal infor-

mation. (2) Temporal approaches: CTDNE [25], EvolveGCN [27],

GraphSAGE+T [10] and TGAT [42]. They train a model or node

embedding vectors on the temporal graph formed from the train-

ing events. Note that GraphSAGE+T is a temporal extension of

GraphSAGE implemented by us, in which the time decay effect

is incorporated into the aggregation function. (3) Hawkes process-
based approaches: HTNE [47] and MMDNE [22]. They similarly

train node embedding vectors on the temporal graph formed from

the training events. However, they leverage the node representa-

tions to model the conditional intensity of events based on the

Hawkes process. More baseline descriptions are in Appendix E.

5.2 Temporal Link Prediction
In Tab. 2, we compare the performance of TRENDwith the baselines

on the main task. In general, our method performs the best among

all methods, demonstrating the benefits of event and node dynamics.

We make two further observations.

First, among static methods, we can see that GNN-based methods

(VGAE, GAE and GraphSAGE) tend to perform better, as they are

inductive in nature, and their message passing scheme is able to in-

tegrate both node features and graph structures. On the other hand,

DeepWalk and Node2vec are transductive, which cannot directly

extend to new nodes in testing. In our experiments, the embedding

vector of new nodes are randomly initialized for tranductive meth-

ods, and thus their performance can be poor when dealing with

new nodes. One exception is on the CollegeMsg dataset, where

there is no node features and one-hot encoding of node IDs are

used instead. In this case, GNN-based methods lose the inductive

capability and do not outperform transductive methods.

Second, temporal approaches are generally superior to static ap-

proaches, showing the importance of temporal information. Among
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Figure 3: Effect of main components.

the three GNN-based approaches (EvolveGCN, GraphSAGE+T and

TGAT), EvolveGCN often performs the worst. The reason is that

EvolveGCN is based on discrete snapshots, which inevitably suffers

from some loss in the temporal evolution. Moreover, the Hawkes

process-based approaches (HTNE and MMDNE) achieve strong

performance, demonstrating that the Hawkess process is ideal for

modeling the temporal evolution on graphs. Unfortunately, they

are transductive and thus do not outperform GraphSAGE-T and

TGAT on cit-HepTh and Taobao where there are a large proportion

of new nodes in testing. Besides, we can see that TREND performs

much better on Taobao than on other datasets. A potential reason is

that Taobao is the biggest graph having more “diversity” in events,

such that the adaptation of event prior becomes more crucial and

can lead to larger performance gain.

5.3 Ablation Study
To understand the contribution of each component in TREND, we

study the following ablated models on the task of temporal link

prediction. (1) TGNN, which only stacks two temporal GNN layers

and optimizes the inner product of node pairs; (2) TGNN+H, which
adds the global transfer function for the Hawkess process in Eq. (5)

to TGNN ; (3) TGNN+H+E and TGNN+H+N, which further model

the event and node dynamics on top of TGNN+H, respectively. Note
that TGNN+H+E uses the event-specific transfer function in Eq. (7).

As shown in Fig. 3, the performance generally increases when

we gradually add more components to TGNN. This shows that
every component is useful for modeling temporal graphs. Note

that TGNN+H+E typically outperforms TGNN+H+N, since the event
dynamics directly deals with individual events while the node dy-

namics only works at the node level. Nevertheless, when integrating

both event and node dynamics, the full model TREND achieves the

best performance, showing that it is important to jointly model

both event and node dynamics.

5.4 Hyperparameter Study
Here we present a sensitivity analysis of the hyperparameters.

Negative sampling size. As shown in Fig. 4(a), generally speaking,

the performance of TREND does not improve with more negative

samples. On all datasets, it is robust to choose just one negative

sample for each positive event for efficiency.

Regularization on scaling and shifting. To prevent overfitting,

the event-conditioned transformations are regularized to prevent

excessive scaling or shifting. The regularization is controlled by

the coefficient 𝜂2, and we study its effect in Fig. 4(b). The perfor-

mance is quite stable over different values of 𝜂2, although smaller
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Figure 4: Hyperparameter sensitivity.

Table 3: Performance of node dynamics prediction.

Model CollegeMsg cit-HepTh Wikipedia Taobao

CTDNE 10.0636 3.0173 7.3265 0.5789

EvolveGCN 3.1964 2.5610 6.8651 -

GraphSAGE+T 21.9444 2.2421 5.9231 0.5505

TGAT 2.6903 2.8094 7.7737 0.5550

HTNE 12.3587 3.2781 6.8860 0.5749

MMDNE 8.0555 2.7456 6.9552 0.5643

TREND 2.3549 2.2066 5.9140 0.5491

values in the range [0.0001, 0.01] tend to perform better. Worse

performance can be observed on larger values, which implies very

little scaling and shifting similar to removing the event-conditioned

transformation.

Coefficient for node loss. We vary 𝜂1, which controls the weight

of the node loss, and study its impact in Fig. 4(c). We observe that

the performance is suboptimal if 𝜂1 is too small or large, and the

performance of TREND is generally robust when 𝜂1 is round 0.01.

This shows that a well balanced node and event loss can improve

the stability and performance.

5.5 Temporal Node Dynamics Prediction
Finally, we evaluate the task of temporal node dynamics prediction.

We report the mean absolute error (MAE) between the predicted

value Δ𝑁̂𝑖 (𝑡) and the groundtruth Δ𝑁𝑖 (𝑡) in Tab. 3. The results

show that TREND consistently achieves the smallest MAE on all

four datasets, which demonstrate its versatility beyond temporal

link prediction, and that the estimator of node dynamics works

well as intended.

6 CONCLUSION
In this paper, we studied the problem of temporal graph representa-

tion learning. Specifically, we proposed TREND, a novel framework

for temporal graph representation learning, driven by event and

node dynamics on a Hawkes process-based GNN. TREND is induc-

tive and able to capture a holistic view of the link formation process.

More importantly, it integrates both the event and node dynamics

to respectively capture the individual and collective characteristics

of events, for a more precise modeling of the temporal evolution.

Finally, we conducted extensive experiments on four real-world

datasets and demonstrated the superior performance of TREND.
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APPENDICES
A CONNECTION BETWEEN TRANSFER

FUNCTION AND CONDITIONAL INTENSITY
In the following, we show that a well chosen transfer function 𝑓 ,

taking the temporal representations as input, is equivalent to the

conditional intensity of the Hawkes process in Eq. (2). Suppose the

temporal representations are generated through stacking 𝑙 temporal

GNN layers. First, let us define the base intensity as a function of

the self-information:

𝜇𝑖, 𝑗 (𝑡) = 𝑓𝜇 (h𝑡,𝑙−1𝑖
W𝑙

self
, h𝑡,𝑙−1

𝑗
W𝑙

self
). (15)

Next, we define the amount of excitement induced by a historical

neighbor as a function of the historical neighbors’ information:

𝛾 𝑗 ′ (𝑡 ′) = 𝑓𝛾 (h𝑡
′,𝑙−1
𝑗 ′ W𝑙

hist
), 𝛾𝑖′ (𝑡 ′) = 𝑓𝛾 (h𝑡

′,𝑙−1
𝑖′ W𝑙

hist
) . (16)

Given these building blocks, we rewrite the conditional intensity

in Eq. (2) as

𝜆𝑖, 𝑗 (𝑡) = 𝑓𝜆
(
h𝑡,𝑙−1
𝑖

W𝑙
self
, {h𝑡

′,𝑙−1
𝑗 ′ W𝑙

hist
: (𝑖, 𝑗 ′, 𝑡 ′) ∈ H𝑖 (𝑡)},

h𝑡,𝑙−1
𝑗

W𝑙
self
, {h𝑡

′,𝑙−1
𝑖′ W𝑙

hist
: (𝑖 ′, 𝑗, 𝑡 ′) ∈ H𝑗 (𝑡)}

)
, (17)

where 𝑓𝜆 is a composite function of 𝑓𝜇 , 𝑓𝛾 and the summation. By

choosing the right transfer function 𝑓 , we further rewrite 𝑓𝜆 as the

composition of 𝑓 and the temporal GNN layer 𝑓𝑔 given in Eq. (4),

i.e., 𝑓𝜆 = 𝑓 ◦ 𝑓𝑔 . Subsequently, the conditional intensity is given by

𝜆𝑖, 𝑗 (𝑡) = (𝑓 ◦ 𝑓𝑔)
(
h𝑡,𝑙−1
𝑖

W𝑙
self
, {h𝑡

′,𝑙−1
𝑗 ′ W𝑙

hist
: (𝑖, 𝑗 ′, 𝑡 ′) ∈ H𝑖 (𝑡)},

h𝑡,𝑙−1
𝑗

W𝑙
self
, {h𝑡

′,𝑙−1
𝑖′ W𝑙

hist
: (𝑖 ′, 𝑗, 𝑡 ′) ∈ H𝑗 (𝑡)}

)
= 𝑓 (h𝑡𝑖 , h

𝑡
𝑗 ) . (18)

Thus, a well-fit transfer function 𝑓 , such as a neural network, can

approximate the conditional intensity.

B PSEUDOCODE
We outline the training procedure of TREND in Algorithm 1.

Algorithm 1 Training Procedure of TREND

Input: Training graph G = (V, E, T,X) , training events Itr.
Output: Temporal GNN 𝜃𝑔 , event prior 𝜃𝑒 , transformation model 𝜃𝜏 , esti-

mator of node dynamics 𝜃𝑛 .

1: 𝜃𝑔, 𝜃𝑒 , 𝜃𝜏 , 𝜃𝑛 ← parameters initialization;

2: while not converged do
3: sample a batch of temporal events (𝑖, 𝑗, 𝑡 ) from Itr;
4: for each event (𝑖, 𝑗, 𝑡 ) in the batch do
5: calculate node representations h𝑡

𝑖
, h𝑡

𝑗
for nodes 𝑖 ,𝑗 ; ⊲ Eq. (4)

6: 𝜃
(𝑖,𝑗,𝑡 )
𝑒 ← event-conditioned adaptation on 𝜃𝑒 ; ⊲ Eq. (10)

7: calculate event intensity 𝜆𝑖,𝑗 (𝑡 ) ; ⊲ Eq. (7)

8: calculate the overall loss; ⊲ Eqs. (11), (13), (14)

9: end for
10: 𝜃𝑔, 𝜃𝑒 , 𝜃𝜏 , 𝜃𝑛 ← backpropagation of overall loss ⊲ Eq. (14)

11: end while
12: return 𝜃𝑔, 𝜃𝑒 , 𝜃𝜏 , 𝜃𝑛 .

C ADDITIONAL DESCRIPTION OF DATASETS
We include more details of the datasets below.

• CollegeMsg [26] is an online social network where private mes-

sages were sent and received at the University of California,

Irvine. If user 𝑖 sent a private message to user 𝑗 at time 𝑡 , there is

a temporal edge (𝑖, 𝑗, 𝑡). Since the nodes have no feature, we use

the one-hot encoding of the node ID as node features.

• cit-HepTh [18] is a citation graph about high energy physics

theory from the e-print arXiv, in the period from January 1993

to April 2003. A temporal edge (𝑖, 𝑗, 𝑡) here means a paper 𝑖 cites

paper 𝑗 at time 𝑡 . We use word2vec [24] to convert the text of

paper abstract (i.e., the raw node features) into node embedding

as the node feature.

• Wikipedia [17] is a graph in which temporal edges are interac-

tions induced by users’ editing on the Wikipedia pages in one

month. User edits consist of textual features, which are converted

into 172-dimensional LIWC [28] feature vectors. The edit vec-

tors of each user are added and normalized to serve as the node

feature.

• Taobao [3] is a quite large online purchase network on the e-

commerce platform taobao.com. If a user 𝑖 purchased an item

𝑗 at time 𝑡 , there is a temporal edge (𝑖, 𝑗, 𝑡). Node features are
preprocessed embeddings of textual features.

D DETAILS OF TASK SETUP
We describe more details of our main task, namely, temporal link

prediction. For each temporal graph, node representations are learnt

on the graph consisting of events before time 𝑡 tr, and we try to

predict events on or after 𝑡 tr. In our experiments, we use all the

events before the last time step for training, and test on the events

at the last time step. For instance, on the graph cit-HepTh, we

train the model only using events before the 78
th

time step, and we

predict the links formed at the 78
th
time step. At test time, a logistic

regression classifier is trained for the downstream task of temporal

link prediction. While links formed at the last time step are our

positive examples, we further randomly sample an equal number of

negative examples (i.e., node pairs which do not form a link at the

last time step). We define the feature vector of a candidate triple

(𝑖, 𝑗, 𝑡) as |h𝑡
𝑖
− h𝑡

𝑗
| [22].

E ADDITIONAL DESCRIPTION OF BASELINES
We include more details of the baselines below.

(1) Static approaches, in whichmodels or node embedding vectors

are trained on the static graph formed before the testing time,

regardless of the temporal information.

• DeepWalk [30]: a static network embedding method, which re-

gards the random walk sequences as sentences and leverages

skip-grams [24] to learn node embeddings.

• Node2vec [7]: another static network embedding method, which

generalizes DeepWalk with biased random walks.

• VGAE [15]: based on variational auto-encoder (VAE) [14, 31], it

is a classical GNN-based link prediction model, using a GCN [16]

encoder and an inner product decoder.

• GAE [15]: a non-probabilistic variant of the VGAE model.

• GraphSAGE [10]: a GNN model on static graphs, which supports

inductive representation learning on large graphs.
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Figure 5: Time complexity.

(2) Temporal approaches, which train models or node embedding

vectors on the temporal graph formed before the testing time.

• CTDNE [25]: based on random walks, it is a network embedding

methodwhich learns time-respecting embedding from continuous-

time dynamic networks.

• EvolveGCN [27]: using RNN to evolve GCNparameters to capture

the dynamic information of sequences of static graph snapshots.

• GraphSAGE+T: our implementation based onGraphSAGE. Specif-

ically, when aggregating neighbors’ information, it will con-

sider the time decay effect, i.e., earlier neighbors will get smaller

weights while more recent neighbors will get larger weights

during aggregation.

• TGAT [42]: it uses the self-attention mechanism to aggregate

temporal-topological neighborhood features. Besides, based on

Bochner’s theorem, it encodes the event time as part of the node

embedding vector.

(3) Hawkes process-based approaches, which train node embed-

ding vectors using the temporal graph formed before the testing

time, based on Hawkes process.

• HTNE [47]: a network embedding method which integrates the

Hawkes process into network embedding so as to capture the

influence of historical neighbors on the current neighbors.

• MMDNE [22]: a network embedding method with micro- and

macro-dynamics. Specifically, the micro-dynamics describe the

link formation process, while the macro-dynamics refer to the

evolution pattern of the network scale.

For DeepWalk, Node2vec and CTDNE, we set their random walk

sampling parameters, such as number of walks, walk length and

window size according to their recommended settings, respectively.

For all network embedding methods, the node embedding dimen-

sion is 128, which tends to perform well empirically. For all GNN-

based methods, we set the number of layers, the node embedding

dimensions and the learning rates to the same with our model

TREND. For HTNE, MMDNE and EvolveGCN, we set their histor-

ical window size to 5 (i.e., only use the 5 most recent neighbors),

given the empirical performance and efficiency considerations. For

efficiency reasons, we perform random neighborhood sampling on

GraphSAGE andGraphSAGE+T, setting the sample size to 10 on Col-

legeMsg and cit-HepTh, 20 on Wikipedia, and 5 on Taobao (which

is the most sparse graph), the same with TREND; we use the same

sample size on TGAT, but sample the more recent neighbors with

higher probability following its original design. For EvolveGCN,

we use the EvolveGCN-O version. For TGAT, we set the number of

attention heads to 3. Other hyperparameters are chosen empirically,

following guidance from literature.

F SCALABILITY STUDY
On Taobao (with a total of more than 4 million events), we extract

different ratios (20%–100%) of training events to form 5 subgraphs,

and record the training time per epoch on each subgraph. In Fig. 5,

the training time grows linearly in the number of training events,

which is consistent with our complexity analysis, and implies that

the proposed model is scalable.
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