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Recommendation systems are popular in many domains. Researchers usually focus on the effectiveness of recommendation (e.g.,
precision) but neglect the popularity bias that may affect the fairness of the recommendation, which is also an important consideration
that could influence the benefits of users and item providers. A few studies have been proposed to deal with the popularity bias, but
they often face two limitations. Firstly, most studies only consider fairness for one side—either users or items, without achieving
fairness jointly for both. Secondly, existing methods are not sufficiently tailored to each individual user or item to cope with the
varying extent and nature of popularity bias. To alleviate these limitations, in this paper, we propose FAiR, a fairness-centric model
that adaptively mitigates the popularity bias in both users and items for recommendation. Concretely, we design explicit fairness
discriminators to mitigate the popularity bias for each user and item locally, and an implicit discriminator to preserve fairness globally.
Moreover, we dynamically adapt the model to different input users and items to handle the differences in their popularity bias. Finally,
we conduct extensive experiments to demonstrate that our model significantly outperforms state-of-the-art baselines in fairness
metrics, while remaining competitive in effectiveness.

CCS Concepts: • Information systems→ Recommender systems; • Applied computing→ Sociology; • Social and professional
topics → Race and ethnicity.

Additional Key Words and Phrases: Fairness, Popularity bias

1 INTRODUCTION

As recommendation systems [52] have achieved widespread success in many real-world applications, more and more
researches have revealed that conventional recommendation is often plagued by biases which may harm the ethics
of recommendation outcomes and lead to negative social impacts [9]. One of the most well-known biases is called
the popularity bias: Users and items are distributed unevenly in the training data (often following some long-tailed
distribution), which means popular users or items would obtain higher weights during model training, making the
model biased toward those popular ones [2].

The popularity bias would hurt both users and item providers alike, and we illustrate the impact with a toy example
in Fig. 1. In this toy example, consider two user groups of different popularity, based on the number of interactions each
user has in the training data. For instance, in Fig. 1(a), users with two interactions in the training data (i.e., solid edges)
belongs to the popular group (denoted by solid circles), while users with only one interactions in the training data
belongs to less popular group (denoted by hollow circles). Similarly, there are also two groups of items with different
popularity in the training data (denoted by solid and hollow triangles, respectively). Suppose for each user, we rank
his/her non-interacted items in the training set, and recommend the top-1 item to the user. We regard the dotted edges
in Fig. 1(a) as the ground truth in the testing set. Due to the uneven distribution of data, Fig. 1(b) reveals the potential
outcomes of a conventional recommendation model (i.e., one that does not consider fairness such as NCF [20]). On
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Fig. 1. A toy example illustrating the effect of popularity bias in different models. The bipartite graph in (a) represents the user-item
interaction data, where the solid/dotted edges represent the training/test sets, respectively. Solid circles represent the group of popular
users with more interactions in the training set, and hollow circles represent the group of less popular users with fewer interactions in
the training set. Items are similarly grouped, where the solid/hollow triangles represent the popular/less popular groups of items,
respectively.

the user side, the mean precision of the popular user group (solid circle) is 1.0 while that of the less popular group
is only 0.33 (hollow circle). Although the overall mean precision of all users stands at 0.6 which seems reasonable,
the model is much more effective and thus useful for the popular users than for the less popular users. On the item
side, the popular items often receive disproportionally more “exposure” (i.e., being recommended more frequently)
than the less popular items. For instance, the popular item group (solid triangle) only accounts for 40% of all items in
the toy example and 4

7 of all the interactions in the training set, but they get an overrated 80% exposure in the top-1
recommendation. To sum up, users in a less popular group are unfairly disadvantaged by virtue of the access to lower
quality recommendations. At the same time, items from small local retailer tend to be less popular than those from
large chain businesses, resulting in disproportionally less exposure in the recommendation platform, which means
small local businesses systematically and unfairly suffer from the popularity bias. What could be even more worrying
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is, the popularity bias would be further amplified due to the feedback loop in recommendation, where the resulting
user-item interactions will be used as new training data [28]. Besides, popularity bias may also contribute to other
pernicious effects such as the filter bubble, which is a phenomenon that “users become isolated from the information
that varies from their dominant preferences" [14]. It typically occurs when a recommendation system only exposes
items that are narrowly aligned with a user’s historical interests, which eventually decreases the user’s satisfaction
toward the recommendation system [15]. Thus, filter bubble can be understood as a form of item over-exposure related
to the presence of popularity bias in a user’s historical interactions.

In this paper, we study the fairness issues arising from the popularity bias1, aiming to mitigate the popularity bias in
the recommendation results. As a branch of algorithmic fairness, popularity bias has attracted increasing attention
in recent years [3, 53]. A common idea is to “reshape” the population [25] through various means such as propensity
scoring [17] and causal inference [39, 53], in order to smooth the impact of the unevenness of popularity. The smoothing
would mitigate the unevenness between the popular and less popular groups, thereby generating equitable outcomes
for all groups toward fairness [4, 5]. For instance, Fig. 1(c) illustrates “fairer” recommendation results for users than a
conventional model in (b) would produce, where the difference in prec@1 between the two user groups reduces from
0.67 in (b) to 0.17 in (c). That is, the two groups of users shown in (c) receive recommendations of similar effectiveness
[24], and thus can both benefit from the recommendations to a similar extent. Further note that the overall prec@1 in
both (b) and (c) maintains the same, which means (c) is able to achieve fairness for users without compromising the
overall effectiveness.

However, most existing works only consider the popularity bias from the user-side as we have shown in Fig. 1(c), but
ignore its negative impact on the item-side. This would lead to the under-exposure of less popular items. For instance,
in Fig. 1(b) and 1(c), the less popular item group (hollow triangle) occupies only 20% of the top-1 recommendation,
which is disproportionally less than their proportion accounting for 3

7 of the total interactions or 60% of the total items
in the training set. In many scenarios, item-side fairness is as important as user-side fairness, in order to give small item
providers (e.g., neighborhood businesses in an e-commerce platform or minority authors in a book/library service)
equitable exposure. To date, only very few works have dealt with the impact of popularity bias on the item-side [46, 54],
which expects both popular and unpopular items to have more comparable share of exposure. For example, in Fig. 1(d),
the less popular item group now occupies 60% of the top-1 recommendation, which is much closer to their proportion
in the total items and/or training data. However, these models with only item-side fairness could still compromise
user-side fairness, resulting in recommendations of divergent effectiveness for the two user groups, e.g., as shown in (d).
Ideally, both user- and item-side fairness are important and should be considered jointly, as illustrated by the example
ranking in Fig. 1(e).

Hence, toward fairness w.r.t. the popularity bias in recommendation systems, the first open challenge is: How can we

jointly mitigate the popularity bias for both user- and item-side? A naïve solution is a multi-phase model [32] to tackle
the bias from each side one by one, but it would ignore the intrinsic relationships between the two sides. Moreover, the
popularity bias may vary in extent and nature for each user and item, given their different frequencies in the training
data and individual characteristics. Despite various mechanisms to tackle popularity bias, previous methods train one
global model to handle the bias for all users and items, in which the model is frozen after training completes. That
means the same model is applied in a uniform manner to any user or item alike at test time, lacking the opportunity to

1While fairness issues can also be related to other biases or consequences [9], to avoid any ambiguity hereafter we use the term “fair(ness)” to
specifically describe the group fairness [33] of recommendation models or results that are not affected by the popularity bias, following some previous
work [1]. We will give formal definitions of fair(ness) in Sect. 3
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fully adapt to each individual user or item with potentially different frequencies or characteristics. Hence, the second
open challenge is: How can we adaptively mitigate the bias to tailor to each individual user or item? In other words, an
adaptive debiasing model is warranted to account for the uniqueness of each input user or item in both training and
testing.

To address these challenges, we propose FAiR, a Fairness-centric model that Adaptively mitigates the popularity
bias in both users and items for Recommendation. For the first challenge, we propose two explicit discriminators to
simultaneously detect the bias in users and items locally, and an implicit discriminator to preserve fairness globally
in an end-to-end framework. This design allows us to mitigate popularity bias for both user- and item-side jointly so
that their intrinsic relationships can be captured, whilst preserving the overall effectiveness of recommendation in
the end-to-end training process. Despite using a simple architecture with multilayer perceptrons, empirical results
show that the explicit and implicit discriminators complement and collaborate well with each other to improve fairness
from the two sides. For the second challenge, we resort to Feature-wise Linear Modulation (FiLM) [34] to modulate
the generators so that they become conditioned on the input user or item. To our best knowledge, this is the first
attempt to utilize FiLM layers for recommendation fairness. Specifically, the input conditioning enables the generators
to sufficiently adapt to the differences and individual characteristics associated with each user or item.

In summary, the contribution of this work is threefold.

• We identify the impacts of popularity bias for both user- and item-side, and propose to jointly mitigate the
two-sided popularity bias in our model FAiR in an end-to-end fashion.

• We recognize that the extent and nature of popularity bias often vary remarkably for different users or items,
and propose to employ a FiLM mechanism for adaptive debiasing tailored to each individual user or item in our
model FAiR.

• We conduct comprehensive experiments to show that FAiR can significantly improve the fairness of recommen-
dation at a competitive level of effectiveness.

2 RELATEDWORK

In this section, we will review related work in three aspects, including general fairness learning, fairness for popularity
bias in recommendation, and other related problems and approaches.

2.1 General Fairness Learning

As an emerging topic in the wider machine learning community, different fairness learning approaches have been
proposed. One family of methods only involve pre- and post-processing strategies [12, 22] to simply alter the original
distribution of training data, or re-rank the predictions to enhance the fairness. Such methods do not address the
algorithmic cause of unfairness, thus their solutions cannot fundamentally address the bias. Furthermore, model accuracy
could be significantly compromised due to the pre- or post-processing steps. Other methods integrate various fairness
objectives or constraints into deep models including auto-encoders [27], graph neural networks [47] and generative
adversarial networks [51], which are able to mitigate biases at the model level and achieve desirable outcomes in term
of both accuracy and fairness for different problems such as classification [5] and representation learning [27].

It is worth-nothing that a typical objective of previous fairness learning is to debias certain sensitive attributes
such as demographic information [5, 27, 47], in order to enforce statistical parity [13, 50] or equal opportunity [18]
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for different groups. While sensitive attributes may also be subject to uneven distributions in the training data, in this
paper we specifically deal with the popularity bias not particularly associated with any attribute.

2.2 Fair Recommendation for Popularity Bias

The popularity bias in recommendation systems is less explored until recent years. Like in general fairness learning, some
studies resort to pre- or post-processing techniques, such as data re-balancing [37, 49] to change the distribution of the
training data, or adjust the ranking of some items to maintain a balance between popular and unpopular groups [24, 41].
To better cope with the popularity bias in an end-to-end manner to achieve both fair and effective recommendations,
adversarial learning [16] has been exploited. A typical adversarial framework consists of two players: generator and
discriminator. The two players compete with each other in a minimax game, where the generator aims to mitigate bias
from the input, and the discriminator aims to recover any residual bias in the generator’s output. Such adversarial
learning has been shown as a powerful strategy in improving recommendation accuracy or fairness [5, 7, 54]. However,
existing adversarial strategies deal with the fairness for either users [5] or items [54] only, but in reality both sides
can suffer from the popularity bias. Note that a small number of works deal with two-sided fairness [30, 32] for both
items and users. However, they have significant differences from our work. On one hand, Mondal et. al. [30] have
proposed two-sided fairness for non-personalized recommendation. Specifically, their goal is to find a global list of
recommendations which would be liked by most of the users, whereas our work makes personalized recommendation
to each user. On the other hand, Patro et. al. [32] define the user-side fairness as envy-freeness [35] and the item-side
fairness as maximin share of exposure, which differ from our goal of mitigating the popularity bias for equitable
outcomes among different user or item groups (the formal definition of our fairness objective is given in Sect. 3). Besides,
[32] is different from our paper in its non end-to-end optimization manner. Furthermore, a few studies utilize causal
inference to mitigate the popularity bias [46, 53]. However, similar to existing adversarial strategies, they usually focus
on one side fairness only. Moreover, these models are frozen once training is finished, lacking the flexibility of adapting
to different input users and items.

In another line of popularity bias, some researchers focus on the missing-not-at-random (MNAR) problem in
recommendation systems [6, 29, 38]. In the MNAR problem, it is hypothesized that “low ratings are much more likely
to be missing from the observed data than high ratings” [42], and could be regarded as a fairness problem caused by
uneven popularity across item ratings [6]. However, it is irrelevant to the user- and item-side fairness in our paper as
defined in Sect. 3.2. Furthermore, existing counter-measures against the unevenness associated with low or high ratings
are designed to improve the overall model effectiveness.

2.3 Other Fair Recommendation and Related Work

Some other perspectives of bias in recommendation have also been explored. For example, some works aim to tackle
model bias [40, 48] caused by biased assumptions and priors of the model itself, or deal with the sensitive attributes
of users in recommendation [47]. The feedback loop [28] is another widely explored topic, as users tend to interact
with recommended items and these interaction data are often used as new training data. That means the presence
of bias in the initial recommendation would be amplified during the feedback process. Moreover, there exist many
diversity models for recommendation [10], whose goal is to maximize the exposure of different item groups in the
recommendation results, which helps item-side fairness to some extent, but they do not aim for equal exposure between
popular and unpopular groups. Besides, there is a branch of machine learning called imbalanced learning [11, 23], and
some of which have also utilized the adversarial learning strategy [36]. Although the skewed data distribution caused
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Fig. 2. Uneven popularity of users and items in the Amazon dataset.

by popularity bias is a key factor in both imbalanced and fairness learning, their objectives diverge. That is, imbalanced
learning focuses on improving the overall model effectiveness, whereas fairness learning concerns about the differential
treatment and aims to achieve uniform treatment of all popularity group.

3 MOTIVATION AND PROBLEM STATEMENT

In this section, we will motivate and formalize the fairness problem caused by popularity bias for both user- and
item-side. First, we present a case study to further motivate the problem beyond the toy example in introduction. Then,
we lay down the formal definitions of our fairness objectives in this paper.

3.1 Case Study

We use a case study on a Amazon review dataset to motivate the fairness concerns arising from the popularity bias
in users and items. Specifically, we focus on the grocery and gourmet food category on Amazon2, a popular public
dataset in recommendation systems research. The detailed introduction of the Amazon dataset is given in Sect. 5.1.1.
On this dataset, we first showcase the uneven popularity of users and items, and further deploy two conventional
recommendation models to reveal the fairness concerns in the recommendation results.

First, for each user and item we count its number of user-item interactions in the dataset. The number of interactions
can represent the popularity of a user or an item. We plot the distribution of their popularity (i.e., number of interactions)
in descending order in Fig. 2(a) and (b) for the first 1,000 most popular users and items, respectively. It can be observed
that very few users or items have extremely large number of interactions while the remaining majority of users or
items only have limited interactions. In particular, if we focus on the group of top 5% most popular users/items in
the dataset, we can observe that the very small proportion of users/items (5%) makes up a significant proportion of
interactions (27%/53% for the group of top users/items as shown in Table 2). Such unevenness of popularity in users and
items shows a typical characteristic of long-tailed distribution [31], which eventually leads to the popularity bias and
the related fairness issues as we will show next [24, 43].

Next, we analyze how the unevenness of popularity can cause the so-called popularity bias and harm the fairness
of the recommendation results, if a recommendation model does not recognize or mitigate the bias. To reveal the
unfairness, we train and evaluate3 two conventional models on the Amazon dataset, namely, CFI4 [26] and NCF [20],
which are based on representative methods including matrix factorization and neural networks. However, they only
focus on the overall recommendation effectiveness and do not deal with the popularity bias.

2Henceforth we will simply call this subset “the Amazon dataset” or “Amazon”.
3The detailed experimental settings will be described in Sect. 5.1.4.
4In this case study, we adopt the alternating least squares implementation of CFI.
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Fig. 3. Impact of popularity bias on users, which results in differential recommendation quality for user groups of different popularity.
Recommendation quality is measured using (a) precision@1 and (b) recall@1.
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Fig. 4. Impact of popularity bias on items, which results in differential opportunity of exposure on the recommendation platform for
item groups of different popularity. The figures present the proportional share of each item group in (a) training items, (b)/(c) all
recommendations generated by CFI/NCF, (d) training interactions, (e)/(f) true-positive (TP) recommendations generated by CFI/NCF.

From the perspective of user-side fairness, we first divide the users into two groups: the top 5% most popular users
in “user group 1” and the remaining 95% in “user group 2”. We report the recommendation effectiveness in each user
group including precision and recall on top-1 recommendation, denoted as prec@1 and rec@1 respectively, in Fig. 3.
It can observed that, on average, users in group 1 receive significantly higher recommendation quality in terms of
both prec@1 and rec@1 than users in group 2. The reason is that the training instances (i.e., user-item interactions)
associated with users in group 1 are denser than those associated with users in group 2. More concretely, in the training
data the number of interactions per user in group 1 is about 6 times of that in group 2. Hence, users in group 1 tend to
have more robust and less noisy training data than users in group 2 do. This observation reflects how the popularity
bias can lead to imbalanced effectiveness for users in groups of different popularity. As a result, users in group 1 (only
representing 5% of the total users) benefit more from a superior recommendation service, while users in group 2 (95% of
the total users) would be unfairly subjected to a substandard recommendation service. This differential treatment of
users is a form of unfairness [24].

From the perspective of the item-side fairness, the items are similarly divided into two groups based on the 5%–95%
splitting. In item-side fairness, we are concerned in the differential exposure across item groups [54]. As shown in Fig. 4,
we compare the exposure of the two item groups w.r.t. their proportion in training data in two different ways. Firstly, in
Fig. 4(a)–(c), we simply count the items without considering the ground-truth. That is, in (a), we report the proportion
of items in the two groups in training data (6% belong to group 1, and 94% belong to group 2). However, items in group 1
get much more exposure in testing than in training, accounting for 20% or 25% of the top-1 recommendations generated
by CFI in (b) or NCF in (c) in testing. Secondly, in Fig. 4(d)–(f), we only consider items with the so-called “true positive”
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exposure, i.e., items belonging to the ground-truth interactions. Intuitively, here we investigate the impact of bias only
on the effective recommendations, which could be more important to item providers. That is, in (d), we report the
proportion of training interactions involving items in each group (55% of the interactions involve group 1 items, and
45% involve group 2 items). However, items in group 1 represent 73% or 77% of the true positive top-1 recommendations
generated by CFI in (e) or NCF in (f) in testing, which is significantly more than the share of group 1 in the training
interactions. It means popular items get disproportionally more exposure in testing than in training, in terms of not
only raw item counts, but also the true positive counts. As a result, providers of the less popular items (e.g., small local
business in an e-commerce platform, minority authors in a book/library service) are unfairly subjected to systematically
less exposure than they deserve, a form of discrimination brought by the recommendation model.

3.2 Problem Statement

The unfairness issues revealed in our case study above is manifested by virtue of uneven popularity in different user or
item groups. In this section, we formalize the problem statement on the mitigation of popularity bias for fairness-centric
recommendation models. We first define the recommendation task, followed by the fairness problem on both user- and
item-side.

A typical recommendation task involves a user set U and an item set I, where users may interact with some items.
As a user’s subjective preferences on items are different, let 𝑦𝑢,𝑖 ∈ R denote the rating of user 𝑢 ∈ U on item 𝑖 ∈ I. If
𝑦𝑢,𝑖 is given for certain 𝑢 and 𝑖 in the dataset, 𝑢 and 𝑖 are said to have a user-item interaction which belongs to the
ground truth; otherwise, we regard that there is no interaction between them. A recommendation system will generate
a top-𝐾 recommendation list for each user 𝑢 according to the predicted 𝑦𝑢,𝑖 for items in the test candidates.

Upon the recommendation task, in our paper, we investigate group-based fairness [33] caused by popularity bias on
both user- and item-side. In particular, each user and item are assigned into a certain group. Suppose there are𝑚 user
groups and 𝑛 item groups, i.e.,

U = 𝐺U
1 ∪𝐺U

2 ∪ · · · ∪𝐺U
𝑚 , (1)

I = 𝐺I
1 ∪𝐺I

2 ∪ · · · ∪𝐺I
𝑛 , (2)

where all groups 𝐺U
𝑗

⊂ U and 𝐺I
𝑗
⊂ I are disjoint. The groups can be defined on popularity directly as we did in the

case study, or on certain attributes that suffer from the popularity bias (e.g., gender of users, and vendor of items). It
means that some groups can be much more popular than the others, resulting in unfairness for users and/or items in
less popular groups. In this paper, we pursue group fairness that the algorithm should treat groups similarly, i.e., reduce
differential treatment across groups [33].

More specifically, for the user-side fairness, as motivated earlier we expect that a fair model could retain similar
recommendation quality or effectiveness for users in different groups, regardless of their popularity. Let𝑀 (𝑢) denote
the effectiveness metric of recommendation (e.g., precision or recall) for user 𝑢. Following previous work [24], we give
the following definition on the user-side fairness.

Definition 3.1 (User-oriented Group Fairness [24]). Given𝑚 user groups 𝐺U
1 ,𝐺

U
2 , . . . ,𝐺

U
𝑚 , the user-oriented group

fairness (UGF) requires

E
𝑢∼𝐺U

1
[𝑀 (𝑢)] = E

𝑢∼𝐺U
2
[𝑀 (𝑢)] = . . . = E

𝑢∼𝐺U
𝑚
[𝑀 (𝑢)] . (3)
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While this definition depicts an idealized binary classification of fairness, in practical models there often exist different
degrees of unfairness on a continuous scale. Hence, to evaluate user-side fairness of a recommendation model, we
measure the numerical difference in the recommendation effectiveness between different user groups. More concretely,
given two user groups 𝐺U

1 and 𝐺U
2 , the user-oriented group fairness (UGF) metric [24] w.r.t. an effectiveness metric𝑀

is defined as
UGF𝑀 =

���� 1
|𝐺U

1 |
∑
𝑢∈𝐺U

1
𝑀 (𝑢) − 1

|𝐺U
2 |

∑
𝑢∈𝐺U

2
𝑀 (𝑢)

���� . (4)

where the subscript𝑀 denotes an effectiveness metric for the recommendation. Smaller UGF values indicate that the
difference in the effectiveness 𝑀 between groups are smaller, thus better user-side fairness. More generally, when
there are more than two groups, we can easily extend UGF𝑀 by considering the average or maximum differences in𝑀
between pairwise groups.

Finally, for the item-side fairness, we expect that a fair recommendation model could balance the exposure rate and
opportunity between different item groups in the top-𝐾 recommendation list. Let 𝑃 𝑗 (𝐾) be the probability of an item in
the 𝑗-th item group 𝐺I

𝑗
being ranked in the top-𝐾 recommendation list and 𝑃 𝑗 (𝐾 |𝑦 = 1) be the probability of a item in

𝐺I
𝑗
being ranked among the true positives in the top-𝐾 recommendation list. Then, the two kinds of item-side fairness

can be defined as below.

Definition 3.2 (ItemRanking-based Statistical Parity and Equal Opportunity [54]). Given𝑛 item groups𝐺I
1 ,𝐺

I
2 , . . . ,𝐺

I
𝑛 ,

the item ranking-based statistical parity (RSP) requires

𝑃1 (𝐾) = 𝑃2 (𝐾) = . . . = 𝑃𝑛 (𝐾), (5)

and the item ranking-based equal opportunity (REO) requires

𝑃1 (𝐾 |𝑦 = 1) = 𝑃2 (𝐾 |𝑦 = 1) = . . . = 𝑃𝑛 (𝐾 |𝑦 = 1). (6)

Unlike user-side fairness, there are two alternative definitions of item-side fairness, namely, RSP and REO, which
are based on the concepts of statistical parity [13] and equal opportunity [18], respectively. They concern the fairness
issue caused by popularity bias in different aspects: RSP encourages the equality of overall exposure rate among groups
without factoring in user preferences; REO encourages the equality of true positive exposure rate among groups, which
also aligns with user preferences on items. Both definitions are commonly adopted. On one hand, the former could
benefit small item providers especially in raising their overall exposure, but their exposure may be less effective (e.g.,
with a lower conversion rate). On the other hand, the latter could benefit small item providers with more high-quality
exposure, but does not help with their overall exposure. To investigate item-side fairness comprehensively, we adopt
both definitions. Similar to user-side fairness, on practical models with non-binary fairness, we follow previous work
[54] to evaluate the following two metrics corresponding to RSP and REO, respectively.

RSP@𝐾 =
std(𝑃1 (𝐾 ),𝑃2 (𝐾 ),...,𝑃𝑛 (𝐾 ) )

mean(𝑃1 (𝐾 ),𝑃2 (𝐾 ),...,𝑃𝑛 (𝐾 ) ) , (7)

REO@𝐾 =
std(𝑃1 (𝐾 |𝑦=1),𝑃2 (𝐾 |𝑦=1),...,𝑃𝑛 (𝐾 |𝑦=1) )

mean(𝑃1 (𝐾 |𝑦=1),𝑃2 (𝐾 |𝑦=1),...,𝑃𝑛 (𝐾 |𝑦=1) ) , (8)

where 𝑃 𝑗 (𝐾) can be calculated as the ratio between the number of top-𝐾 recommendations in the 𝑗-th item group and
the total number of ranking candidates belonging to the 𝑗-th group, and 𝑃 𝑗 (𝐾 |𝑦 = 1) can be calculated as the number of
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Table 1. Summary of main notations used.

Symbol Definition

U, 𝑢 Set of users and a user instance
I, 𝑖 Set of items and an item instance
x𝑢 , x𝑖 Original biased embedding for user 𝑢 and item 𝑖

x′𝑢 , x′𝑖 Debiased embedding for user 𝑢 and item 𝑖

𝐺U
𝑗
,𝐺I

𝑗
Sets of user and item groups

F Adaptive fairness filters
DU ,DI Explicit fairness discriminators

Δ Implicit fairness discriminator
Θ• Parameters of different components

𝛼𝑢 , 𝛽𝑢 Scaling and shifting factors for modulation
g𝑢 , ĝ𝑢 Ground-truth and predicted user group probabilities (categorical data)
g𝑖 , ĝ𝑖 Ground-truth and predicted item group probabilities (categorical data)
r0, r𝑢 reference rating scale and rating scale of user 𝑢
𝑦𝑢,𝑖 , 𝑦𝑢,𝑖 Ground-truth and predicted interaction between 𝑢 and 𝑖
𝛿𝜙 , 𝛿𝜙 Ground-truth and predicted probability whether sampled rating belongs to r0

positive top-K recommendations in the 𝑗-th item group and the total number of positive ranking candidates belonging
to the 𝑗-th group. Similar to UGF, lower values in RSP and REO indicate better item-side fairness.

In summary, the main objective of this paper is to reduce popularity bias in recommendation models, in order
to achieve user- and item-side fairness simultaneously across different popularity groups. Of course, we also aim to
preserve the competitiveness of the recommendation model, which should only incur minimal compromise in the
overall model effectiveness.

4 PROPOSED METHOD

To address the fairness issues as stated in the last section, we present the framework as well as the details of the
proposed FAiR model. The overall framework is shown in Fig. 5, and main notations used are shown in Table 1.

4.1 Overall Framework

As Fig. 5 shows, the overall framework consists of several parts: (a) input data; (b) adaptive fairness filters; (c) explicit
and implicit fairness discriminators; (d) base recommendation model.

In Fig. 5(b), we design adaptive fairness filters for both users and items, which are able to adapt to each user/item
by flexibly mitigating popularity bias of potentially different extents for the given user/item with the help of a FiLM
layer. In Fig. 5(c), we design adversarial fairness discriminators that are either explicit (c1) or implicit (c2). On one hand,
the explicit discriminators aim to tackle bias from a local perspective, targeting each user or item directly. On the
other hand, the implicit discriminator aims to tackle bias from a global perspective, targeting the overall rating scale.
Together, the fairness filters and discriminators are trained adversarially, i.e., the filters act as a set of generators and
the discriminators play the role of adversary.

Lastly, in Fig. 5(d), we utilize a base recommendation model to predict user ratings toward items. Given a pair of
user-item (𝑢, 𝑖) with embeddings x𝑢 , x𝑖 ∈ R𝑑 , the fairness filters first generate their debiased embeddings x′𝑢 , x′𝑖 ∈ R

𝑑 ,
respectively. The base model then operates on the debiased embeddings to generate fair recommendation outcomes.
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Fig. 5. Framework of the FAiR model. The input embeddings are first filtered by adaptive fairness filters (b) to produce debiased
embeddings, based on which the base recommendation model (d) would make predictions on user-item pairs. Explicit and implicit
discriminators (c1 & c2) are used in model training to detect any residual unfairness after applying the filters. Note that the diagram
is focused on the view of user-side fairness only, and the view of item-side fairness is omitted as it is similar to user-side fairness with
an adaptive fairness filter and explicit fairness discriminator.

In the following, we will elaborate on each component as well as the process of model training.

4.2 Adaptive Fairness Filters

A fairness filter is a nonlinear transformation F : R𝑑 → R𝑑 on the original user or item embedding (x𝑢 or x𝑖 ), to
reduce the popularity bias from them and generate a debiased embedding (x′𝑢 or x′

𝑖
). A straightforward solution is to

materialize F with a neural network, as follows.

x′𝑢 = F (x𝑢 ;ΘU
F ), (9)

x′𝑖 = F (x𝑖 ;ΘI
F), (10)

where F is a multi-layer perceptron (MLP), and ΘU
F ,Θ

I
F denote the parameters of the MLP for user and item fairness

filter, respectively.
However, as motivated in Sect. 3, different users (or items) often have varying distributions in popularity. Thus, it is

inflexible and ineffective to mitigate the popularity bias for all users (or items) using a single shared model ΘU
F (or ΘI

F ).
We propose to make the filters adaptive, in which the parameters ΘU

F or ΘI
F can adapt to different input user or item,

respectively. In contrast, in conventional neural networks, the model is frozen once training completes, which means
the same parameters are used in testing regardless of the input. Specifically, we achieve the adaptability with FiLM [34].
The basic idea of FiLM is to generate a set of scaling and shifting operators conditioned on the input feature, which
are then used to modulate the original parameters of a model. As a result, the modulated parameters would better
adapt to different input. In our context, the FiLM is conditioned on the original user (or item) embedding, and generates
the scaling and shifting operators for the user (or item) fairness filter. Taking the user side as an example as shown in
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Fig. 5(b), the FiLM layers output

𝛼𝑢 = FiLM(x𝑢 ;ΘU
𝛼 ), (11)

𝛽𝑢 = FiLM(x𝑢 ;ΘU
𝛽
), (12)

where 𝛼𝑢 ∈ R𝑑×𝑑 and 𝛽𝑢 ∈ R𝑑 are respectively the scaling and shifting operators for user 𝑢, and ΘU
𝛼 and ΘU

𝛽
are the

trainable parameters of the corresponding FiLM layers. The FiLM layers can be simply implemented as another MLP.
Similar FiLM layers can also be employed for items, with trainable parameters ΘI

𝛼 and ΘI
𝛽
.

The scaling and shifting operators are used to adapt the shared parameters of the adaptive fairness filters in Eq. (9)-
(10). Again, we take the user side as an example. Since the filter F is an MLP, its parameters are given by the set of
weights and biases in each layer, i.e., ΘU

F = {WU,ℓ , bU,ℓ }ℓ=1,2,... where ℓ is the layer number in the MLP. Subsequently,
scaling and shifting operations are performed to adapt the above shared parameters into user-specific parameters for 𝑢,
as follows.

WU,ℓ
𝑢 = WU,ℓ𝛼𝑢 , (13)

bU,ℓ𝑢 = bU,ℓ + 𝛽𝑢 . (14)

Collectively, ΘU
F,𝑢 = {WU,ℓ

𝑢 , bU,ℓ𝑢 }ℓ=1,2,... denotes the set of parameters of the user fairness filter adapted specifically to
𝑢. Adapting the item parameters in the same manner, we obtain ΘI

F,𝑖 specific to item 𝑖 . Hence, the fairness filters in
Eq. (9)-(10) are reformulated as

x′𝑢 = F (x𝑢 ;ΘU
F,𝑢 ), (15)

x′𝑖 = F (x𝑖 ;ΘI
F,𝑖 ), (16)

which are adaptive to different input users and items.
Note that the user- (or item-) specific parameters are adapted from the shared parameters ΘU

F (or ΘI
F ). Here the

shared parameters capture a common debiasing prior shared among all users (or items), while the FiLM layers further
modulate the common prior to adapt to individual variations beyond their commonality. In contrast, training one
separate model for every user (or item) could be more flexible, but it can easily overfit due to the blown-up parameter
space, and cannot leverage the common prior among users (or items).

To sum up, ΘF = (ΘU
F ,Θ

U
𝛼 ,Θ

U
𝛽
,ΘI

F,Θ
I
𝛼 ,Θ

I
𝛽
) represents all learnable parameters of the adaptive fairness filters,

including the common priors and FiLM parameters for both users and items.

4.3 Fairness Discriminators

The fairness filters above attempt to mitigate the popularity bias by debiasing user and item embeddings. To judge if
the fairness filters are effective, we introduce a set of fairness discriminators to detect the presence of any residual
popularity bias in the debiased embeddings. In particular, the filters and discriminators are trained adversarially.
Intuitively, adversarial learning plays a minimax game between a generator and a discriminator [45]. In our case, the
filters act as generators that generate fair samples, and the discriminators attempt to distill potential residual biases
from the generated samples.

More concretely, we design explicit and implicit fairness discriminators. The explicit discriminators pursue fairness
from a local perspective, dealing with each user or item directly. On the other hand, the implicit discriminator pursues
fairness from a global perspective, dealing with the overall rating scale.
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4.3.1 Explicit fairness discriminators. The general idea of explicit discriminators is to directly detect the popularity
bias in each local user or item. We employ two explicit discriminators, one for the user side, and the other for the
item side. Taking the user side as an example, consider a user 𝑢 with debiased embedding x′𝑢 , which is generated by
the user fairness filter. We deem that there is still residual bias in the debiased embedding x′𝑢 if the user-side explicit
discriminator is able to classify 𝑢 into the correct user group based on x′𝑢 . Note that the ability to recover the user
group is a natural indicator of the presence of popularity bias, as the goal of user-side fairness is to reduce differential
treatment of user groups with varying popularity. The mechanism of item explicit discriminator is similar.

Formally, the explicit discriminators DU : R𝑑 → R𝑚 for users and DI : R𝑑 → R𝑛 for items are essentially
multi-class classifiers, defined as follows.

ĝ𝑢 = DU (x′𝑢 ;ΘU
D ), (17)

ĝ𝑖 = DI (x′𝑖 ;Θ
I
D ), (18)

where DU or DI is implemented as an MLP parameterized by ΘU
𝐷

for users or ΘI
𝐷
for items. Their output layers

employ a softmax activation, such that ĝ𝑢 ∈ R𝑚 and ĝ𝑖 ∈ R𝑛 are the predicted group probabilities for user 𝑢 and item 𝑖 ,
respectively. More specifically, let ĝ𝑢 [ 𝑗] (or ĝ𝑖 [ 𝑗]) denote the probability of user 𝑢 (or item 𝑖) belongs to the 𝑗-th user
group 𝐺U

𝑗
(or item group 𝐺I

𝑗
). The goal of the discriminators is to predict the group correctly, which can be achieved

by maximizing the following log-likelihood.

𝐿D (g𝑢 , ĝ𝑢 ) =
∑𝑚
𝑗=1 g𝑢 [ 𝑗] log ĝ𝑢 [ 𝑗], (19)

where g𝑢 ∈ R𝑚 is the one-hot encoding of 𝑢’s ground-truth group such that g𝑢 [ 𝑗] = 1 iff 𝑢 belongs to the 𝑗-th user
group 𝐺U

𝑗
. The log-likelihood for item groups, 𝐿D (g𝑖 , ĝ𝑖 ), can be defined in the same way.

4.3.2 Implicit fairness discriminator. While the explicit discriminators target each user or item locally, the recommen-
dation outcomes may still manifest unfairness globally. The key reason is that different users have different rating
scales [54]. This would particularly impact item-side fairness in terms of exposure, as an item predicted with a high
rating might still be ranked relatively low for a user who habitually gives high ratings to all observed items, thus
not being recommended to the user (i.e., non-exposure). Conversely, an item predicted with a low rating might still
be recommended to a user (i.e., exposure) who habitually gives low ratings to all observed items. That means, even
though item ratings in different popularity groups have been homogenized by the fairness filters, the recommendation
outcomes might still result in unfairness in item exposure to users of different rating scales.

To address this problem, we design the implicit discriminator. The key idea is to normalize users’ predicted ratings
toward a global scale, so that all users have similar rating scales on items, thereby reducing the popularity bias due
to different scales. Given a reference rating scale r0 ∈ R | I | on items, fairness is achieved when the predicted rating
scales of users become indistinguishable from the reference scale. In this context, the fairness filters and the base
recommendation model jointly act as the generator, which aims to predict user ratings and subsequently generate a
rating sample similar to the reference scale. At the same time, the implicit discriminator plays the role of adversary, to
distinguish if a rating sample is drawn from a user’s scale or the reference scale.

Specifically, the reference scale can be estimated from the training data, in which item 𝑖’s reference rating, r0 [𝑖], is
defined as the average rating among users who rated 𝑖 in training data. On the other hand, the rating scale of user 𝑢,
r𝑢 ∈ R | I | , consists of predicted item ratings from our model, i.e., r𝑢 [𝑖] = 𝑦𝑢,𝑖 , the predicted rating of user 𝑢 on item 𝑖 .
The implicit discriminator Δ is essentially a binary classifier, trying to tell if a rating sample is drawn from the reference
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scale or the user’s scale. Let 𝜙 be a rating sample consisting of 𝐾 ratings uniformly sampled from either the reference
scale r0 or user scale r𝑢 for some user 𝑢. Then,

𝛿𝜙 = Δ(𝜙 ;ΘΔ), (20)

where Δ is implemented as an MLP parameterized by ΘΔ, and 𝛿𝜙 is the predicted probability of 𝜙 sampled from the
reference scale r0. As an MLP can only take in fixed-length input, the sample size 𝐾 is fixed as 128 in our experiments.

The goal of the implicit discriminator is to tell apart user and reference scales correctly, which can be achieved by
maximizing the log-likelihood below.

𝐿Δ (𝛿𝜙 , 𝛿𝜙 ) = 𝛿𝜙 log𝛿𝜙 + (1 − 𝛿𝜙 ) log(1 − 𝛿𝜙 ), (21)

where 𝛿𝜙 = 1 if 𝜙 is sampled from r0, or 0 otherwise.
Collectively, the implicit and explicit discriminators have learnable parameters given by ΘD,Δ = (ΘU

D ,Θ
I
D ,ΘΔ).

4.4 Model Training

Our model optimizes not only the conventional recommendation loss, but also the generators’ and discriminators’ loss.

4.4.1 Base recommendation model. As shown in Fig. 5(d), the base model R : R𝑑 × R𝑑 → R predicts a rating score 𝑦𝑢,𝑖
that user 𝑢 will rate on item 𝑖 . It operates on the debiased user and item embeddings, x′𝑢 and x′

𝑖
, i.e.,

𝑦𝑢,𝑖 = R(x′𝑢 , x′𝑖 ;ΘR ), (22)

where R is implemented as an MLP parameterized by ΘR . Similar to the filters, the base recommendation can also
benefit from an adaptive model, since user-item preferences also vary among users or items. Hence, we can also employ
a FiLM layer in the base recommendation model, by scaling and shifting the MLP parametersΘR of the recommendation
model R. The base recommendation model is trained by minimizing the mean squared error w.r.t. the ground-truth 𝑦𝑢,𝑖 ,
i.e.,

𝐿R (𝑦𝑢,𝑖 , 𝑦𝑢,𝑖 ) = (𝑦𝑢,𝑖 − 𝑦𝑢,𝑖 )2 . (23)

4.4.2 Adversarial training. Finally, we train the fairness filters, discriminators and base model jointly. As in a typical
adversarial training, we alternate the optimization between the discriminators and generators.

For the discriminators, we attempt to beat the generators by (1) recovering user and item groups with the explicit
discriminators; (2) distinguishing user and reference rating scales with the implicit discriminators, as follows.

max
ΘD,Δ

explicit discriminators︷                                         ︸︸                                         ︷
E𝑢∼U𝐿D (g𝑢 , ĝ𝑢 ) + E𝑖∼I𝐿D (g𝑖 , ĝ𝑖 ) +

implicit discriminator︷                                             ︸︸                                             ︷
E𝑢∼U,𝜙∼r𝑢𝐿Δ (0, 𝛿𝜙 ) + E𝜙∼r0𝐿Δ (1, 𝛿𝜙 ) . (24)

For the generators, the goal of the filters and base model is three-fold: (1) fooling the explicit discriminators so that
the debiased user/item embeddings carry no group information and any associated popularity signals; (2) fooling the
implicit discriminator so that the predicted user rating scales are indistinguishable from the reference scale; (3) the
debiased embeddings still enable the base model to learn user-item preferences accurately, as follows.

min
ΘR ,ΘF

E𝑢∼U,𝑖∼I
[ generator for explicit discriminators︷                                ︸︸                                ︷
𝜆1𝐿D (g𝑢 , ĝ𝑢 ) + 𝜆2𝐿D (g𝑖 , ĝ𝑖 ) +

generator for
implicit discriminator︷                ︸︸                ︷
𝜆3E𝜙∼r𝑢𝐿Δ (0, 𝛿𝜙 ) +

base model︷          ︸︸          ︷
𝐿R (𝑦𝑢,𝑖 , 𝑦𝑢,𝑖 )

]
, (25)
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Algorithm 1: Training pipeline of FAiR
Input: U: user set, I: item set, 𝑛𝑔 : number of updates for base model and generators per iteration, 𝑛𝑑 : number

of updates for discriminators per iteration.
Output: Optimized parameters ΘR ,ΘF and ΘD,Δ;

1 Initialize all parameters;
2 while not converged do
3 /* train discriminators */

4 for 𝑛 = 0;𝑛 < 𝑛𝑑 ;𝑛++ do
5 Sample a batch of users {𝑢} ∼ U;
6 Sample a batch of items {𝑖} ∼ I;
7 Sample a batch of ratings {𝜙𝑢 } ∼ r𝑢 , 𝑢 ∼ U;
8 Sample a batch of ratings {𝜙0} ∼ r0;
9 Update ΘD,Δ according to Eq. (24);

10 end
11 /* train base model & generators */

12 for 𝑛 = 0;𝑛 < 𝑛𝑔 ;𝑛++ do
13 Sample a batch of user-item pairs {𝑢, 𝑖} ∼ U × I;
14 Sample ratings 𝜙 ∼ r𝑢 for each sampled user 𝑢;
15 Update ΘR ,ΘF according to Eq. (25);
16 end
17 end
18 return updated parameters ΘR ,ΘF and ΘD,Δ.

where 𝜆1, 𝜆2 and 𝜆3 are hyper-parameters to control the trade-off of different goals.
During the training of FAiR, we first update the discriminators (ΘD,Δ) by Eq. (24), while keeping the generators

including base model and filters (ΘR ,ΘF ) fixed. Next, we update the generators by Eq. (25), while keeping the discrimi-
nators fixed. We alternate between the two steps repeatedly, until the convergence of all parameters. The pseudocode
of the training pipeline is sketched in Algorithm 1.

5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the fairness and effectiveness of the proposed model
FAiR.5 We also conduct ablation studies and other analyses to further investigate the proposed model.

5.1 Experimental Setup

5.1.1 Dataset. To comprehensively evaluate FAiR for its effectiveness and fairness in different scenarios of recom-
mendation, we employ three datasets in various domain, namely, Amazon6 for e-commerce recommendation, Twitter7

for friends recommendation and MovieLens8 for movie recommendation. Essentially, these datasets all boil down to
the prediction of interaction between entities, e.g., user-product interaction on Amazon, user-movie interaction on
MovieLens, and user-user interaction on Twitter. These datasets are widely used by previous recommendation models

5We have released the code at https://github.com/mediumboat/FAiR
6https://jmcauley.ucsd.edu/data/amazon/
7https://recsys-twitter.com
8http://files.grouplens.org/datasets/movielens/

https://github.com/mediumboat/FAiR
https://jmcauley.ucsd.edu/data/amazon/
https://recsys-twitter.com
http://files.grouplens.org/datasets/movielens/
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Table 2. Statistics of the datasets. “Pairs” denotes the user-item interaction pairs; “%Users/%Items” is the proportion of total
users/items in the group; “%Pairs” is the proportion of interaction pairs involving users or items in the group.

Dataset #Users #Items #Pairs User group 1 Item group 1
%Users %Pairs %Items %Pairs

Amazon 768,438 166,048 1,297,156 5% 27% 5% 53%
Twitter 290,049 - 3,492,386 5% 46% - -
MovieLens 943 1,682 100,000 71% 74% 5% 26%

including fairness-based models. In particular, the Twitter dataset is from RecSys Challenge 20219 on recommendation
fairness. To construct user groups, we split MovieLens users into two groups by gender. For Amazon and Twitter, we
choose the top 5% most frequent users as group 1, and the remaining as group 2. To construct item groups, for all
datasets we choose the top 5% most frequent items as group 1 and the remaining as group 2.

For all datasets, we use the five-scale rating data for training and prediction. For Amazon, we use the “Grocery and
Gourmet Food” category. For Twitter, we take the average number of engagements (capped at 5) in each observed
user-user interaction as the rating. As the original Twitter dataset contains about 41M users and 291M interactions,
to focus on the study of recommendation fairness rather than computational efficiency, we use breadth-first search
(BFS) to sample a subset of about 290K users that can be fit into our memory and trained within a reasonable time
period. Specifically, we start with a random user, and expands to its neighbors; and for each neighbor, we expand
to their respective neighbors. The expansion is repeated until we reach a pre-determined threshold on the number
of users. For MovieLens, we use the 100K version, where the number of user-movie pairs is 100,000. Note that on
Amazon/MovieLens, the products/movies are items; while there are no items in Twitter dataset, we can still evaluate
item-side fairness by treating the recommended friends as items.

The statistics of the datasets are summarized in Table 2.

5.1.2 Baselines. We compare FAiR with various state-of-the-art models in three broad categories, as follows.

• Conventional recommendation methods:
(1) CFI [21]: A matrix factorization-based method for collaborative filtering on implicit feedback, which can be
applied to explicit feedback as well. CFI has two commonly used implementations as follows. We denote the
implementation with alternating least squares (ALS) algorithm as CFIALS and the other implementation with
Bayesian personalized ranking (BPR) algorithm as CFIBPR.
(2) NCF [20]: A popular neural network-based collaborative filtering algorithm.
(3) LightGCN [19]: A powerful graph convolution network-based recommendation algorithm.

• General fairness and diversity models:
(4)CFC [5]: An adversarial frameworkwith compositional fairness constraints to generate fair graph embeddings
for users with sensitive attributes.
(5) FULTR [41]: An optimization-based ranking framework to learn a fair ranking policy for users.
(6) FR (FairRec) [32]: A post-processing multi-phrase model for two-sided fairness (i.e., not end-to-end), aiming
to achieve envy-freeness for the user side and maximin share for the item side, which is not specifically designed
to deal with the popularity bias.

9http://www.recsyschallenge.com/2021/

http://www.recsyschallenge.com/2021/
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(7) FaX [10]: A determinantal point process-based algorithm for diversified recommendation, which helps
item-side fairness to some extent by diversifying the exposure of different item groups, but it does not strive for
equal exposure.

• Fairness models for popularity bias:
(8) DPR [54]: An adversarial Bayesian model for item-side fairness.
(9) ADB [8]: A meta-learning based method that automatically mitigates multiple kinds of bias for users
including the popularity bias.
(10) UOF [24]: An user-oriented fairness recommendation model which solves the popularity bias issue from
the user perspective.
(11) MACR [46]: The model-agnostic counterfactual reasoning framework to reduce popularity bias for items.

We implement the proposed FAiR using Tensorflow 2.2 in Python 3.6. All experiments were conducted on a Linux
workstation with a 6-core 3.6GHz CPU, 128GB DDR4 memory and two RTX 2080Ti GPUs. For the baseline CFI, we
used a third-party implementation10. For NCF11, CFC12, LightGCN13, DPR14, FULTR15, FaX16, FR17, ADB18, UOF19

and MACR20, we used their respective authors’ implementations.

5.1.3 Metrics. We perform top-10 recommendation for each user, and evaluate the effectiveness, user-side fairness and
item-side fairness of the top-10 recommendation list.

For effectiveness, we evaluate its precision and recall, denoted as prec@10 and rec@10, respectively. For both effective
metrics, higher values indicate more effective recommendations.

For user-side fairness, we employ UGF𝑀 defined in Eq. (4). We adopt the same effectiveness metric for𝑀 as in the
effectiveness evaluation, i.e., prec@10 and rec@10. We denote the two options as UGFprec and UGFrec. For item-side
fairness, we use RSP and REO defined in Eq. (7) and (8), with 𝐾 = 10 (i.e., top-10 recommendations), and denote the two
metrics as RSP@10 and REO@10, respectively. For all fairness metrics, lower values indicate better fairness.

5.1.4 Data splitting, hyper-parameters and features. We split the user-item interaction pairs into training/validation/test
sets with the ratio of 0.8/0.1/0.1. To construct the validation/test candidates for a user 𝑢, we first add all items in the
validation/test set that have interacted with𝑢 as positive examples, and then sample 10 non-interacting items as negative
examples.

We determine the hyper-parameter and settings by tuning our model on validation set and following the guidance
from literature. For FAiR, the trade-off hyper-parameters 𝜆1, 𝜆2 and 𝜆3 are set based on the validation set. They are set
to 0.7/0.1/0.3 for Amazon, 0.4/-/0.2 for Twitter (𝜆2 is not applicable as there is no item), and 0.4/0.3/0.8 for MovieLens.
(An sensitivity analysis of 𝜆1, 𝜆2 and 𝜆3 is also presented in Sect. 5.7.) We set the embedding dimensions 𝑑 to 128 for all
datasets. For training, we use the Adam optimizer, and set the learning rate to 1e-3 and the batch size to 1,600. In each

10https://implicit.readthedocs.io/en/latest/
11https://github.com/hexiangnan/neural_collaborative_filtering
12https://github.com/joeybose/Flexible-Fairness-Constraints
13https://github.com/kuandeng/LightGCN
14https://github.com/Zziwei/Item-Underrecommendation-Bias
15https://github.com/him229/fultr
16https://github.com/laming-chen/fast-map-dpp
17https://github.com/gourabkumarpatro/FairRec_www_2020
18https://github.com/DongHande/AutoDebias
19https://github.com/rutgerswiselab/user-fairness
20https://github.com/weitianxin/MACR

https://implicit.readthedocs.io/en/latest/
https://github.com/hexiangnan/neural_collaborative_filtering
https://github.com/joeybose/Flexible-Fairness-Constraints
https://github.com/kuandeng/LightGCN
https://github.com/Zziwei/Item-Underrecommendation-Bias
https://github.com/him229/fultr
https://github.com/laming-chen/fast-map-dpp
https://github.com/gourabkumarpatro/FairRec_www_2020
https://github.com/DongHande/AutoDebias
https://github.com/rutgerswiselab/user-fairness
https://github.com/weitianxin/MACR


18 Zhongzhou Liu, et al.

iteration of training, we set the number of updates on discriminators and generators, 𝑛𝑑 and 𝑛𝑔 , to 5 and 1, respectively.
For baselines, we set their hyper-parameters based on the validation set, following guidance from the literature.

For all methods (including FAiR) requiring user/item features as input, we generate the input user embeddings (x𝑢 )
and item embeddings (x𝑖 ) for each dataset using a collaborative filtering model21 implemented in TensorFlow 2. For the
baseline method CFC that requires a graph as input, we construct a bipartite graph based on the user-item interaction
pairs. For the baselines CFI and CFC, we predict the rating 𝑦𝑢,𝑖 with the inner product of the corresponding output
user/item embeddings.

5.2 Performance Comparison

Table 3 shows the performance of all models on the three datasets, where each model is repeated for five runs and
we report their mean ± std-dev. Note that, as ADB runs out of memory on Amazon and Twitter, we only report its
performance on the MovieLens dataset. From the results we draw three main conclusions.

Firstly, we observe that FAiR performs consistently well in fairness for both users and items compared to other
methods. Among the three datasets, FAiR beats the best conventional baseline in each of the four fairness metrics by
up to 44.3%, 38.0%, 97.5% and 60.9%, respectively, while outperforming the best fairness baseline in each metric by
up to 11.1%, 5.3%, 15.6% and 17.1%, respectively. The results can be attributed to two reasons. On one hand, in our
model design, we integrate both user- and item-side fairness in an end-to-end framework. The end-to-end two-sided
fairness learning can mitigate the popularity bias while better preserving the intrinsic relationships between users and
items. Hence, FAiR generally outperforms multi-phrase models such as FR. Besides, other fairness-aware baselines only
focus on either user-side fairness (e.g., CFC and UOF) or item-side fairness (e.g., FULTR and DPR), which means their
fairness performance on the other side is limited. For instance, while DPR and FULTR have a slight edge over FAiR in
the item-side metric REO on Amazon or RSP on Twitter, they trail behind FAiR significantly on the user side metrics
UGFprec and UGFrec. On the other hand, we design the adaptive fairness filters that are able to adapt to each user and
item and effectively mitigate the popularity bias of different extents.

Secondly, there is a clear trade-off between effectiveness and fairness. Conventional methods do not pay any attention
to fairness; not surprisingly, they often achieve high effectiveness at the expense of very poor fairness relative to
fairness models as discussed in the first observation. Conversely, fairness models achieve much better fairness by
compromising effectiveness to some extent. In particular, in our model, the trade-off between accuracy and fairness can
be adjusted by tuning the hyperparameters in Eq. 25 (also see Sect. 5.7 on the influence of hyperparameters). Thus, to
make meaningful fairness comparisons to other fairness models, our general principle is to maintain a similar level
of effectiveness as other fairness models, while the effectiveness of conventional models merely provides a reference
line for all the fairness-aware models. Intuitively, the effectiveness of conventional methods represents an “empirical
upper bound” for the fairness models. In short, the effectiveness of our model FAiR remains competitive among the
fairness methods, especially considering that we only implement a simple MLP as the base recommendation model.
That implies FAiR is able to obtain a better trade-off given its superior fairness metrics.

Finally, we also observe that general fairness learning methods which are not specially designed for popularity bias
(i.e., CFC, FULTR, FR and FaX) also achieve better performance on at least one fairness metric toward popularity bias
compared to conventional methods. This finding reveals that there exist some relationships between the objectives

21https://github.com/keras-team/keras-io/blob/master/examples/structured_data/collaborative_filtering_movielens.py

https://github.com/keras-team/keras-io/blob/master/examples/structured_data/collaborative_filtering_movielens.py
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Table 3. Comparison between FAiR and baselines. Each result (mean ± std-dev) is obtained by averaging five runs. In each column,
the best is bolded, and the next best is underlined.

↑Prec@10 ↑Rec@10 ↓UGFprec ↓UGFrec ↓RSP@10 ↓REO@10

Amazon

CFIALS .013±.002 .885±.006 .068±.005 .461±.016 .099±.003 .020±.008
CFIBPR .019±.001 .921±.003 .069±.004 .470±.015 .107±.001 .036±.005
NCF .017±.003 .907±.043 .069±.014 .460±.022 .109±.004 .023±.001
LightGCN .019±.002 .906±.015 .061±.008 .451±.011 .091±.004 .026±.005
CFC .013±.002 .880±.039 .036±.006 .301±.025 .089±.014 .032±.009
FULTR .011±.002 .892±.035 .054±.013 .363±.015 .077±.008 .010±.002
FR .012±.004 .872±.002 .061±.001 .459±.010 .104±.002 .030±.001
FaX .009±.002 .875±.004 .052±.003 .359±.004 .079±.002 .016±.003
DPR .013±.001 .901±.021 .158±.012 .338±.013 .064±.004 .010±.002
UOF .010±.003 .884±.013 .041±.008 .316±.009 .096±.006 .021±.003
MACR .011±.002 .896±.019 .163±.007 .342±.011 .071±.012 .015±.004
FAiR .012±.003 .887±.028 .034±.011 .285±.023 .054±.016 .012±.005

Twitter

CFIALS .047±.002 .668±.022 .554±.011 .352±.013 .437±.010 .160±.006
CFIBPR .079±.005 .737±.029 .595±.004 .363±.011 .441±.004 .168±.009
NCF 0̇64±.010 .710±.026 .564±.027 .349±.012 .436±.007 .164±.007
LightGCN .082±.011 .739±.030 .522±.031 .330±.019 .448±.014 .165±.013
CFC .057±.013 .704±.026 .451±.018 .314±.008 .053±.004 .133±.006
FULTR .056±.010 .708±.019 .463±.012 .337±.011 .102±.008 .144±.008
FR .033±.006 .515±.009 .603±.010 .350±.011 .424±.006 .151±.009
FaX .049±.004 .698±.004 .461±.003 .325±.002 .133±.003 .149±.004
DPR .065±.018 .712±.031 .459±.039 .310±.014 .003±.001 .098±.014
UOF .054±.013 .698±.007 .455±.005 .318±.006 .379±.026 .161±.005
MACR .045±.008 .616±.013 .471±.022 .329±.018 .080±.009 .142±.013
FAiR .054±.016 .686±.027 .443±.012 .308±.014 .011±.005 .087±.011

MovieLens

CFIALS .527±.005 .498±.005 .040±.005 .225±.002 .202±.015 .240±.024
CFIBPR .501±.014 .472±.013 .047±.006 .217±.005 .196±.038 .188±.048
NCF .529±.011 .495±.011 .054±.004 .230±.006 .166±.046 .174±.063
LightGCN .536±.006 .501±.002 .042±.002 .208±.006 .230±.013 .217±.014
CFC .476±.011 .449±.001 .036±.003 .203±.003 .181±.029 .166±.040
FULTR .474±.008 .445±.002 .039±.002 .208±.004 .145±.013 .157±.021
FR .516±.003 .485±.002 .042±.009 .210±.004 .143±.006 .154±.010
FaX .452±.009 .441±.003 .040±.004 .208±.003 .198±.011 .163±.014
DPR .509±.006 .474±.006 .046±.013 .226±.005 .108±.001 .082±.009
ADB .496±.012 .452±.007 .051±.007 .225±.006 .141±.010 .144±.007
UOF .478±.005 .463±.009 .044±.008 .212±.004 .183±.011 .171±.013
MACR .518±.015 .487±.010 .044±.008 .206±.015 .126±.012 .159±.008
FAiR .527±.019 .497±.018 .032±.006 .198±.009 .096±.010 .068±.014
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Fig. 6. Ablation study on the two-sided fairness.

of different debiasing methods toward different kinds of bias. Investigating such relationships could be a potential
direction for future study.

5.3 Ablation Study

We conduct several ablations to examine the following three research questions (RQs).

5.3.1 RQ1: How does the two-sided fairness impact the performance? We derive two variants by implementing only the
user-side fairness component or the item-side fairness component, and name them FAiRuser and FAiRitem, respectively.
We plot their performance in comparison to the full model FAiR in Fig. 6 (no results on Twitter as it only consists of
users). The results show that FAiRuser (or FAiRitem) fares well in user (or item) fairness metrics, but performs poorly
in the fairness of the other side. It is also expected that, by filtering less information, the variants are able to produce
slightly higher effectiveness metrics than the full model. In contrast, the full model is able to exploit the best of both
worlds, with similar user-side fairness as FAiRuser, and simultaneously with similar item-side fairness as FAiRitem, with
only marginal decrease in effectiveness. It shows that the full model integrates both sides well.

5.3.2 RQ2: How do the explicit and implicit discriminators contribute to FAiR model? We derive two variants of FAiR by
implementing only the explicit or implicit discriminator(s), namely FAiRexplicit and FAiRimplicit respectively. We compare
their performance with the full model FAiR in Fig. 7 on the three datasets. From the results we observe that both
variants have slightly better effectiveness than FAiR, as less information is filtered by virtue of weaker adversarial
training. However, FAiR significantly outperforms FAiRimplicit in both user- and item-side fairness, implying that explicit
discriminators are able to enhance the fairness of both sides. Comparing to FAiRexplicit, FAiR is much better in item-side
fairness while achieving similar user-side fairness, implying that the implicit discriminator mainly improves item-side
fairness. This is consistent with the motivation of implicit discriminator in Sect. 4.3, which is designed to mitigate the
popularity bias w.r.t. item exposure across groups due to different user rating scales. In summary, both implicit and
explicit discriminators are useful for their purposes.
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Fig. 7. Ablation study on the discriminators.

Table 4. Ablation study on FiLMs. Numbers reported are the absolute changes of FAiR when FiLMs are removed.

↑Prec@10 ↑Rec@10 ↓UGFprec ↓UGFrec ↓RSP@10 ↓REO@10

Amazon 0 -0.012 +0.013 +0.021 +0.013 +0.006
Twitter -0.003 -0.039 +0.010 +0.017 +0.004 +0.004
MovieLens -0.008 -0.010 +0.007 +0.004 +0.007 +0.013

5.3.3 RQ3: How important is it to make the filters adaptive? To answer this question, we remove all FiLM layers from
our model FAiR, and report the absolute performance changes in Table 4. Results show that the removal of FiLMs
consistently lead to worse effectiveness and fairness metrics. Therefore, it can be concluded that the adaptive filters are
useful, which can enable FAiR to effectively adapt to different input users and items.

5.4 Adversarial Training

To validate the effectiveness of adversarial training in Algorithm 1, we plot the changes in the adversarial losses and
evaluation metrics during training, on the MovieLens dataset, in Fig. 8.

We first examine Fig. 8(a), which shows the training loss curves of the discriminator (the negative of Eq. 24) and
generator (Eq. 25). It can be observed that the generator loss is very large at the initial stage, as the popularity bias is
significant in the original user and item embeddings (i.e., x𝑢 and x𝑖 ). After some updates, the generators (i.e., fairness
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Fig. 8. Curves of training loss and evaluation metrics on MovieLens.

filters) begin to learn how to debias user/item embeddings and its loss decreases quickly. Then after about 30 epochs, it
gradually becomes difficult for the discriminators to identify the bias. In short, the generators and discriminators play a
minimax game to compete with each other, resulting in fluctuations in their losses while the overall loss is still trending
down. Finally, after about 60 epochs both generators and discriminators become well trained and converge.

Next, we examine Fig. 8(b), which shows the changes in effectiveness metrics (Prec@10 and Rec@10) during training
on validation data. At the beginning, we observe strong effectiveness metrics as we have initialized user/item features
using effectiveness-oriented embeddings from a conventional collaborative filtering model. Subsequently, when the
generator is trained to become better in mitigating bias as seen in (a), the effectiveness metrics begin to drop due to the
trade-off between effectiveness and fairness. Finally, the effectiveness metrics increase again after about 50 epochs when
the adversarial losses become near-optimal, which implies that the model can promptly refocus on the effectiveness of
recommendation after the fairness filters have been well trained.

Lastly, we examine Fig. 8(c) and (d), which respectively show the changes in user-side and item-side fairness during
training on validation data. In the initial stage, the fairness metrics for both sides have high values (i.e., worse fairness),
revealing significant popularity bias which is also consistent with the high generator loss illustrated in (a). Later on, as
the generator loss gradually decreases with better trained fairness filters, the values of the fairness metrics gradually
decrease too (i.e., fairness improves). Finally, when the generator is sufficiently trained after about 60 epochs, the
fairness metrics become more stable too with less fluctuations.

5.5 Visualization of Embeddings

To intuitively understand how the proposed fairness filters mitigate popularity bias, we visualize the user and item
embeddings on the Amazon dataset using t-SNE [44]. Specifically, we show their distributions before and after the
filters in Fig. 9. In Fig. 9(a), we observe that users in group 1 and group 2 are quite well separated in the embedding
space before the fairness filter (i.e., x𝑢 ), which means bias can exist leading to differential treatment to the two groups.
In contrast, in Fig. 9(b), users in the two groups become mixed in the embedding space after the fairness filter (i.e., x′𝑢 ),
which are now harder to distinguish and more likely to get equitable outcomes. Similarly, the item embeddings before
and after fairness filters (i.e., x𝑖 and x′

𝑖
) as shown in Fig. 9(c) and (d), respectively, demonstrate a similar pattern. Thus,

the adaptive fairness filters can mitigate the popularity bias from both sides as expected.
Moreover, the visualizations also shed light on why there exists a trade-off between effectiveness and fairness. In

essence, the filters have altered the original distributions of users and items in different groups, by forcing them to be
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Red cross (X): user/Item instances in group 1        Blue cross (X): user/item instances in group 2

Fig. 9. The visualization of user and item embeddings before and after adaptive fairness filters on Amazon with t-SNE. The red
and blue points indicate different user or item groups. To improve the readability of the figure, we uniformly randomly select 1000
instances for each group to show on each subplot after performing t-SNE.

similar across groups. The change in the distributions potentially harm the effectiveness of recommendation, while
improving the fairness aspect.

5.6 Model Generalizability

To further evaluate the generalizability of the trained model, we re-evaluate its performance under alternative user/item
groups, with different popularity across groups. Comparing to the group construction in the main experiment, here on
the MovieLens dataset we construct three user (or item) groups by choosing the top 5%, the next 35% and the remaining
60% users (or items) according to their frequency of interaction. On the test data using the alternative groups, we
compare the performance of FAiR with two other competitive baselines (CFC and DPR according to their performance
in the main experiment) in Table 5. Results show that FAiR still maintains superior user- and item-side fairness when
facing a different setting of user/item groups with different popularity.
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Table 5. Generalizability evaluation on alternative popularity group construction. UGFprec and UGFrec are computed as the mean of
corresponding UGF𝑀 on all pairs of groups. The best result is bolded.

↑Prec@10 ↑Rec@10 ↓UGFprec ↓UGFrec ↓RSP@10 ↓REO@10

FAiR 0.527 0.498 0.352 0.131 0.158 0.362
CFC 0.476 0.449 0.392 0.127 0.178 0.402
DPR 0.509 0.474 0.388 0.169 0.159 0.391

Fig. 10. Impact of 𝜆1, 𝜆2 and 𝜆3 on MovieLens. Each row shares the same 𝜆3 (as shown on the left), and each column shares the same
metric (as shown at the top). In each plot, 𝑥-axis is 𝜆1, 𝑦-axis is 𝜆2 and 𝑧-axis is the corresponding metric (𝑥, 𝑦, 𝑧 as shown in the first
column).

5.7 Parameter Sensitivity

We investigate the impact of trade-off hyper-parameters 𝜆1, 𝜆2 and 𝜆3 in Eq. (25) to understand how they jointly influence
the overall effectiveness and fairness of the proposed FAiR. In Fig. 10, we evaluate the Prec@10 and fairness metrics
w.r.t. to different sets of the hyper-parameters on the MovieLens data, by performing a grid search over {10−2, . . . , 101}3.

We first examine the fairness metrics in the right four columns of Fig. 10. Generally the curve surfaces of the
fairness metrics are convex, with their lowest points (i.e., best fairness) in the central regions. It means that extreme
hyper-parameter values would hurt the fairness. On one hand, larger values would make the generators stronger than
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the discriminators, making the latter unable to catch up to advance the minimax game. On the other hand, smaller
values would make the generators weaker and become inadequate to tackle the bias.

Next, we examine the effectiveness metric Prec@10 in the first column of Fig. 10, where a trade-off with fairness is
observed under varying hyper-parameter values. In general, for hyperparameter values that result in good fairness
metrics (i.e., with low values), Prec@10 scores tend to be poor. The changes in Rec@10 follow a similar pattern.

Overall, to obtain optimal and stable performance in both effectiveness and fairness, we recommend tuning each
hyper-parameter in the range (0.1, 1), i.e., the central regions shown in the figure.

6 CONCLUSION

In this paper, we proposed an end-to-end fairness-centric model that adaptively mitigates the popularity bias in both
users and items for recommendation (FAiR). Given the advantage of an end-to-end adversarial framework with both
explicit and implicit discriminators, FAiR is able to integrate fairness for both users and items at a local as well as
global level. Given the advantage of FiLM layers, FAiR is able to customize the model to the changing input, and
adaptively mitigate the popularity bias in a manner specific to each user and item. Finally, we conducted comprehensive
experiments on three real-world datasets with pressing fairness issues in different application domains. The results show
that FAiR significantly outperforms state-of-the-art baselines in fairness metrics especially in a two-sided setting, whilst
obtaining competitive effectiveness w.r.t. other fairness models. In future work, we intend to study the relationship
between the popularity bias and other kinds of bias, and extend our model to mitigate those biases.
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