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I. PROOF FOR LEMMA 1

Proof. First, we show the relationship between the graph’s
adjacency matrix and the motif-based adjacency matrix. Then,
using this relationship, we finish the proof of the lemma.

On the directed graph G with self-loops, the subgraph
composed of any node linked to any two of its neighbors is
always an instance of open motif (M8–M13). That is, in the
adjacency matrix A of the graph with self-loops, if (A)ij > 0,
(A)uv > 0 where (i, j) and (u, v) are adjacent edges in
G, then there always exist k′ ∈ {8, 9, ..., 13} such that Ak′

satisfies (Ak′)ij > 0, (Ak′)uv > 0. It immediately follows
that, on a graph with self-loops, if (A)ij > 0, then we also
have (Ak′)ij > 0. Without loss of generality, we assume
k′ = 13 for ease of discussion later. That is, ∀(i, j) ∈ E ,
(A13)ij > 0.

Next, we use the construction method to complete
the proof of this lemma. Based on Table I, an in-
stance of standard GNN is in the form of h̃
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). We will use the fol-
lowing steps to find a special case of MGNN which have the
same representational capacity as standard GNN.

First, this special case of MGNN must satisfy the following
equation.∥∥13
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where 0k is a dl-dimensional zero vector, W(l)
m and W

(l)
s ∈

Rdl×dl−1 , h(l−1)
i and h̃

(l−1)
i ∈ Rdl−1 , so that the dimensions

on both sides of Eq. (S1) are the same. That is, the output
dimensions of the special case of MGNN and standard GNN
are the same, both being 13dl.

Next, with W
(l)
m and α(l)

k,vi as variables, our goal is to prove
that there will always be solutions to W

(l)
m and α(l)

k,vi such that
Eq. (S1) holds.

For simplicity, in Eq. (S1), we use symbol ϕ, a aggregation
function with activation, to represent σ ◦ ω, that is,∥∥13
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In the left hand side (LHS) of Eq. (S2), the result will not
change if the order of concatenation operation and aggregation
ϕ is exchanged. This is because the result value for each
dimension in the LHS is only aggregated from the values
of the same dimension in different feature vectors, and each
feature vector is completely preserved after concatenation is
performed. Thus, the LHS of Eq. (S2) becomes
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By combining Eq. (S2)–(S3), we get the equivalent form of
Eq. (S1):
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Therefore, our goal now is to prove that there will always
be solutions such that Eq. (S4) holds. We can solve for the
following Eqs. (S5)–(S6) to ensure that Eq. (S4) holds. For
k ∈ {1, ..., 12},
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and for k = 13,
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Then we will demonstrate that ∀l ≥ 1, there will always
be solutions to W

(l)
m and α

(l)
k,vi, such that Eqs. (S5)–(S6)

holds. Specifically, when l = 1, h
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ing Eqs. (S5)–(S6) to hold for W
(l)
m = (A)vi

α
(l)
13,vi·(A13)vi

W
(l)
s ,

α
(l)
13,vi 6= 0 and α

(l)
k,vi = 0 (k ∈ {1, ..., 12}), that is, 1-th

special case of MGNN layer can generate the same vector
representation as 1-th standard GNN layer since both models
have the same output in the previous layer (i.e., h(0)

i = h̃
(0)
i ).

Similarly, when l > 1, Eqs. (S5)–(S6) holds. This finishes the
proof of the lemma.

II. PERFORMANCE EVALUATION OF ENSEMBLE GNNS

We evaluate the empirical performance of MGNN against
ensemble GNNs and standard GNNs in Table S1 and Table S2.

As shown in Table S1, MGNN significantly and consistently
outperforms all the baselines on different datasets. In particu-
lar, ESAGE achieves the second best performance on Pubmed,
while EGAT+SAGE achieves the second best performance on
Cora and Chem2Bio2RDF. On Citeseer, GAT achieves the
second best performance. MGNN is able to achieve further
improvements against ESAGE by 2.12% on Pubmed, against
GAT by 1.22% on Citeseer, as well as against EGAT+SAGE
by 3.05% and 2.14% on Cora and Chem2Bio2RDF respec-
tively.

In Table S2, similarly, MGNN regularly surpasses all
baselines. In particular, ESAGE achieves the second best
performance on ENZYMES, while GraphSAGE achieves the
second best performance on MUTAG and GCN achieves the
second best performance on AIDS. Our MGNN is capable of
achieving further improvements against ESAGE by 14.98%
on ENZYMES, as well as against GraphSAGE and GCN by
5.96% on MUTAG and by 0.76% on AIDS, respectively.
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TABLE S1
PERFORMANCE COMPARISON ON THE NODE CLASSIFICATION TASK, MEASURED IN ACCURACY. STANDARD DEVIATION ERRORS ARE GIVEN.

Cora Citeseer Pubmed Chem2Bio2RDF

GCN 0.8595 ± 0.0207 0.7764 ± 0.0045 0.8865 ± 0.0048 0.9371 ± 0.0017
GraphSAGE 0.8610 ± 0.0101 0.7744 ± 0.0061 0.8980 ± 0.0049 0.9630 ± 0.0010
GAT 0.8775 ± 0.0127 0.7852 ± 0.0052 0.8840 ± 0.0079 0.9628 ± 0.0017
GIN 0.8107 ± 0.0188 0.7255 ± 0.0160 0.8810 ± 0.0156 0.9205 ± 0.0129

BGNN 0.8470 ± 0.0143 0.7750 ± 0.0112 0.8380 ± 0.0119 0.8746 ± 0.0115
EGAT 0.8720 ± 0.0040 0.7220 ± 0.0060 0.8970 ± 0.0010 0.9658 ± 0.0040
ESAGE 0.8612 ± 0.0135 0.7604 ± 0.0171 0.9040 ± 0.0102 0.9633 ± 0.0019
EGAT+SAGE 0.8792 ± 0.0102 0.7632 ± 0.0141 0.8992 ± 0.0109 0.9663 ± 0.0010

MGNN 0.9060 ± 0.0049 0.7948 ± 0.0050 0.9232 ± 0.0084 0.9870 ± 0.0021

TABLE S2
PERFORMANCE COMPARISON ON THE GRAPH CLASSIFICATION TASK,

MEASURED IN ACCURACY. STANDARD DEVIATION ERRORS ARE GIVEN.

MUTAG ENZYMES AIDS

GCN 0.7555 ± 0.0651 0.2100 ± 0.0285 0.9895 ± 0.0091
GAT 0.7391 ± 0.0315 0.1667 ± 0.0000 0.8740 ± 0.1013
GraphSAGE 0.7984 ± 0.0526 0.2333 ± 0.0586 0.9855 ± 0.0091
GIN 0.7780 ± 0.0940 0.2630 ± 0.0330 0.9870 ± 0.0090

EGAT 0.7820 ± 0.0610 0.2420 ± 0.0450 0.9850 ± 0.0050
ESAGE 0.7350 ± 0.0650 0.2670 ± 0.0560 0.9850 ± 0.0060
EGAT+SAGE 0.7340 ± 0.0320 0.2500 ± 0.0480 0.9840 ± 0.0070

MGNN 0.8460 ± 0.0230 0.3070 ± 0.0300 0.9970 ± 0.0030

TABLE S3
THE EFFICIENCY ANALYSIS OF THREE METHODS FOR CONSTRUCTING
MOTIF-BASED ADJACENCY MATRIX, IN TERMS OF THE RUNNING TIME
(SECONDS). ‘MATMUL’ DENOTES MATRIX MULTIPLICATION METHOD.

# Nodes
Closed Motif: M1 Open Motif: M13

MatMul [10] Enumerate Non-
enumerate

Cora 2,708 0.003 73.322 1.534
Pubmed 19,717 0.027 4249.435 18.852
Chem2-

Bio2RDF 295,911 0.228 1226K 69.353

III. EFFICIENCY ANALYSIS OF MOTIF-BASED ADJACENCY
MATRIX CONSTRUCTION

We evaluate the efficiency of MatMul [1] for closed motifs
and our proposed non-enumeration method for open motifs, in
terms of the running time, in Table S3 below. For open motifs,
we would compare the running time of both enumeration and
non-enumeration methods.

As shown in Table S3, it can be observed that MatMul
can run very fast for closed motifs even for large-scale
graphs, such as Chem2Bio2RDF. Meanwhile, compared to the
standard enumeration method, our proposed non-enumeration
method performs much better for open motifs. Even for
Chem2Bio2RDF dataset, our non-enumeration can still run
quite fast, taking about 69 seconds to construct the adjacency
matrix for the open motif M13. These results demonstrate that
our preprocessing for both closed and open motifs is efficient.

TABLE S4
PERFORMANCE AND EFFICIENCY ANALYSIS OF MGNN USING ALL

MOTIFS OR NOT, MEASURED IN ACCURACY AND OVERALL TRAINING TIME
(MINUTES). ‘(M7, M8, M9)’ DENOTES THAT MGNN USES ONLY M7 , M8

AND M9 MOTIFS.

ACC Overall/min

# Nodes (M7, M8, M9) ALL (M7, M8, M9) ALL

Cora 2,708 0.8732 0.9060 0.87 1.37
CiteSeer 3,327 0.7224 0.7948 0.80 1.29
PubMed 19,717 0.4220 0.9232 5.73 10.00
Chem2-

Bio2RDF 295,911 0.9741 0.9870 14.26 27.26

IV. PERFORMANCE AND EFFICIENCY ANALYSIS OF MGNN
USING ALL MOTIFS

We compare the performance and efficiency of MGNN
using all motifs or not, in terms of accuracy and overall
training time. Specifically, we select motifs M7, M8 and M9

which are commonly important in Cora, CiteSeer, PubMed
and Chem2Bio2RDF, and make MGNN utilize just the above
three motifs to conduct node classification on the four datasets.
For simplicity, we denote this variant of MGNN as (M7, M8,
M9).

As shown in Table S4, MGNN using all the motifs achieves
better accuracy, while (M7, M8, M9) method can clearly save
the training time. However, (M7, M8, M9) method achieves
lower accuracy than MGNN using all the motifs on all four
datasets, showing that these three motifs are not sufficient to
capture all the important high-order structures for these four
datasets. In addition, we would think the efficiency when using
all the motifs is still satisfactory. Even on the largest dataset
(i.e., Chem2Bio2RDF), the overall training time for MGNN
using all the motifs is just 13 minutes longer than (M7, M8,
M9) method, while on other datasets the differences are much
smaller.
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