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Abstract—Text classification is a fundamental problem in
information retrieval with many real-world applications, such
as predicting the topics of online articles and the categories
of e-commerce product descriptions. However, low-resource
text classification, with no or few labeled samples, presents
a serious concern for supervised learning. Meanwhile, many
text data are inherently grounded on a network structure,
such as a hyperlink/citation network for online articles, and
a user-item purchase network for e-commerce products. These
graph structures capture rich semantic relationships, which can
potentially augment low-resource text classification. In this paper,
we propose a novel model called Graph-Grounded Pre-training
and Prompting (G2P2) to address low-resource text classification
in a two-pronged approach. During pre-training, we propose
three graph interaction-based contrastive strategies to jointly
pre-train a graph-text model; during downstream classification,
we explore handcrafted discrete prompts and continuous prompt
tuning for the jointly pre-trained model to achieve zero- and
few-shot classification, respectively. Moreover, we explore the
possibility of employing continuous prompt tuning for zero-shot
inference. Specifically, we aim to generalize continuous prompts
to unseen classes while leveraging a set of base classes. To this
end, we extend G2P2 into G2P2∗, hinging on a new architecture
of conditional prompt tuning. Extensive experiments on four real-
world datasets demonstrate the strength of G2P2 in zero- and
few-shot low-resource text classification tasks, and illustrate the
advantage of G2P2∗ in dealing with unseen classes.

Index Terms—Text classification, graph, low-resource learning,
pre-training, prompt.

I. INTRODUCTION

Text classification is a fundamental research problem with
many important applications in information retrieval. For
example, predicting the topics of online articles can help readers
easily search and navigate within the website or portal [1], and
classifying the category of e-commerce product descriptions
enables businesses to structure their inventory efficiently and
improve users’ search experience [2]. Recent advances in
natural language processing (NLP) have achieved remarkable
success for text classification, especially when there are large-
scale and high-quality labeled data. However, data labeling
is often costly and time-consuming, making low-resource
classification, in which no or few labeled samples are available,
an appealing alternative.

To address low-resource text classification, one approach is
to utilize pre-trained language models (PLM) [3], [4], many
of which are based on the transformer architecture [5] due to
its powerful ability of encoding texts. A PLM can be adapted
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to different tasks by fine-tuning the model parameters to task-
specific objectives. While the “pre-train, fine-tune” paradigm
requires fewer labeled data than traditional supervised learning,
it suffers from two drawbacks. Firstly, state-of-the-art PLMs
typically have huge model size, e.g., GPT-3 has 175 billion
parameters [6], which makes fine-tuning prohibitively expensive
[7]. Secondly, fine-tuning still needs a reasonable amount of
labeled data due to the gap between pre-training and fine-tuning
objectives, and thus struggles with low-resource scenarios
including zero- and few-shot classification.

To overcome the problem of pre-training and fine-tuning,
prompting [6] has been proposed. It uses a natural language
instruction or “prompt” to give a hint of the downstream task,
whilst freezing the parameters of a large PLM. In other words,
no fine-tuning or additional training is required at all for a
new task. However, discrete natural language prompts can be
difficult to design and may result in suboptimal performance
compared to fine-tuning [8]. More recently, prompt tuning [8],
[9] formulates a continuous prompt as a learnable embedding,
which is optimized without updating the PLM.

Meanwhile, text data frequently rely on network structures,
such as hyperlink/citation networks for online articles or user-
item interaction graphs for e-commerce products. These graph
structures expose valuable relationships between content or
descriptions, aiding low-resource text classification. While
current PLMs and prompting do not leverage these relationships,
graph neural networks (GNNs) [10] excel in processing graph
data. GNNs typically leverage a message-passing architecture,
which allows for the integration of node features and topological
structures, resulting in impressive performance on graphs.
Nevertheless, traditional end-to-end training of GNNs heavily
relies on abundant task-specific labels, which motivates self-
supervised GNNs [11] using well-designed pretext tasks derived
from a label-free graph in a contrastive [12] or generative [13],
[14] manner. However, the treatment of text features in GNNs
remains rudimentary. A simple bag-of-words representation
[15] or aggregation of shallow word embeddings [16] is fed into
GNNs as the “initial message”, which are further propagated
along graph structures. Hence, the modeling of texts is coarse-
grained, unable to fully capture the subtle semantic differences
and similarities within texts.

Present work: G2P2. To overcome the limitations of existing
text- and graph-based solutions, we propose a novel approach
called Graph-Grounded Pre-training and Prompting (G2P2).
G2P2 attempts to address the following two open questions.

Firstly, how do we capture fine-grained textual semantics,
while leveraging graph structure information jointly? A naı̈ve
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approach is to use a language model to generate features from
raw texts as input, and then train a GNN. However, in this
way the texts and graph are only loosely coupled, lacking an
explicit pairing to complement each other. In this paper, we
propose graph-grounded contrastive pre-training, to maximize
the alignment between text and graph representations based
on three types of graph interaction, namely, text-node, text-
summary, and node-summary interactions.

Secondly, how do we augment low-resource text classification
given a jointly pre-trained graph-text model? Instead of
following the traditional fine-tuning paradigm, we try to
“prompt” our jointly pre-trained graph-text model, from which
the most relevant structural and semantic information can
be located to improve low-resource classification. Without
the need to update a large pre-trained model, prompting is
also more efficient than fine-tuning. Specifically, we employ
discrete prompts in zero-shot classification and continuous
prompts in few-shot settings. While discrete prompts are
manually crafted in the absence of class labels, continuous
prompts can be automatically learned from the few-shot
labels through a prompt-tuning process. On one hand, discrete
prompts (G2P2+d) often require intensive human labor, and
the performance of tuned prompts can be uneven across tasks.
On the other hand, continuous prompt leverages the inherent
differentiability of neural networks to tune the optimal prompts,
requiring minimal human input. Prompt-tuning is both data- and
computation-efficient owing to the much fewer parameters in a
continuous prompt than in the pre-trained model. Furthermore,
considering the graph structures between texts, we propose
a context-based initialization for prompt tuning, which could
provide a more informative starting point.

Extension: G2P2∗. While continuous prompt performs better
and requires less human effort than discrete prompts, tuning
continuous prompts still need some labeled data and thus
would not work for zero-shot inference. Thus, let us consider
an alternative zero-shot classification setting with both base
classes and unseen classes: Each base class includes a small
labeled set of instances for selecting discrete prompts (G2P2+d)
or tuning continuous prompts (G2P2), while each unseen class
has no labeled set.

Under this new zero-shot setting, continuous prompts can
be tuned on the base classes, but the tuned prompts tend to
overfit to the base classes and fall short in extending their reach
to broader, unseen classes. For example, in Fig. 1(a), while
G2P2 demonstrates strong performance on the base classes
like “ink” or “pencils”, its performance declines sharply when
applying the tuned prompts on the unseen classes like “oil paint”
or “canvas”. The significant drop in performance is primarily
attributed to the potential class shifts often present even within
the same domain, which hinders G2P2’s ability to generalize
effectively to unseen classes. Therefore, an important research
question emerges: How to generalize continuous prompts from
base classes to unseen classes?

To enhance the generalizability of G2P2, we propose an novel
alternative G2P2∗, which substitute the vanilla prompt tuning
with conditional prompt tuning on graphs. G2P2∗ expands
upon G2P2 by integrating a lightweight neural network that

Base classes

Class 1: “ ink ”

Class N: “ pencils ”

Unseen classes

Class 1: “ oil paint ”

Class N: “ canvas ”

…
…

G2P2 + d G2P2 G2P2*

G2P2 + d G2P2 G2P2*

[arts] [crafts] [of] [ink].

…

[arts] [crafts] [of] [pencils].

[arts] [crafts] [of] [oil paint].

…

[arts] [crafts] [of] [canvas].

[𝐡!] … [𝐡"] [ink].

…

[𝐡!] … [𝐡"] [pencils].

[𝐡!, $] … [𝐡", $] [ink].

…

[𝐡!, $] … [𝐡", $] [pencils].

[𝐡!] … [𝐡"] [oil paint].

…

[𝐡!] … [𝐡"] [canvas].

[𝐡!, $] … [𝐡", $] [oil paint].

…

[𝐡!, $] … [𝐡", $] [canvas].

Accuracy: 40.04 Accuracy: 43.47 Accuracy: 44.29 

Accuracy: 38.01 Accuracy: 31.97 Accuracy: 41.43 

(a) Both G2P2 and G2P2* perform well on the base classes and outperform G2P2+d significantly. 

(b) G2P2*  shows greater generalizability than G2P2 for the unseen classes. 

Fig. 1: From G2P2 to G2P2∗: Learning generalizable continu-
ous prompts. Illustrations are based on the Amazon Art dataset
(see Sect. VI-A).

generates an input-conditioned prompt token for each node. In
contrast to the static prompts of G2P2 that are overly specific
to the base classes, the conditional prompts of G2P2∗ are
dynamically responsive to individual nodes, thereby providing
greater robustness against class shifts in unseen classes [17].
As illustrated in Fig. 1, G2P2∗ not only aligns well with the
base classes, but also sustains a robust performance on the
unseen classes, thereby showcasing its enhanced generalization
capabilities. Meanwhile, we note that handcrafted discrete
prompts (G2P2+d) show a reasonable level of generalizability.
However, they demand extensive manual work and their overall
performance on both base and unseen classes is comparatively
modest.

Note that G2P2∗ is not exclusively designed for zero-shot
scenarios but serves as an enhancement to G2P2, aiming to
improve its handling of zero-shot conditions while preserving
its performance in few-shot situations. Essentially, our objective
is to maintain strong performance across both base and new
class scenarios.

Contributions. We make the following contributions. (1) This
is the first attempt to pre-train text and graph encoders jointly
for low-resource text classification. (2) We propose a novel
model called Graph-Grounded Pre-training and Prompting
(G2P2) with three graph interaction-based constrastive strate-
gies in pre-training, as well as discrete and continuous prompts
for downstream zero- and few-shot classification, respectively.
(3) We extend beyond G2P2 towards handling unseen classes,
and propose G2P2∗, a conditional prompt tuning approach
to generalize the continuous prompts to wider unseen classes
while leveraging the base classes. (4) We conduct extensive
experiments on four real-world datasets to demonstrate the
strength of G2P2 in zero- and few-shot text classification, and
the ability of G2P2∗ to generalize to unseen classes.

A preliminary version of this paper has been published in
SIGIR’23 [18]. We provide a summary of the major additions
in this version. (1) Problem: In Sect. I, we introduced a new
problem setting in which zero-shot inference on unseen classes
is performed while leveraging a set of base classes. Furthermore,
we restructured the introduction to emphasize the motivation,
challenges and insights of generalizing prompt tuning to broader
unseen classes. (2) Methodology: To tackle the limited gener-
alizability of G2P2, we extended G2P2 and introduced a novel
conditional prompt tuning approach, named G2P2∗, in Sect. V.
The conditional prompt tuning can be achieved by incorporating
an additional lightweight neural network trained on the base
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Fig. 2: Overall framework of G2P2. (a) During pre-training, it jointly trains a text and a graph encoder through three contrastive
strategies. (b) During testing, it performs prompt-assisted zero- or few-shot classification. Note that part (b) only shows
continuous prompt tuning for few-shot classification, while discrete prompts for zero-shot inference and conditional prompt
tuning for generalization to wider unseen classes are presented separately in Figs. 3 and 4, respectively.

classes. This network aims to generate an input-dependent
token for each input node, which is then fused with learnable
global prompt vectors to acquire a customized prompt for each
node. (3) Experiments: In Sect. VI-D, we conducted additional
experiments to evaluate the ability of G2P2∗ to generalize
from base classes to unseen classes. The results demonstrate
its excellent generalization capabilities, outperforming G2P2
by 3.5–29.6% for within-domain generalization and 8.8–29.8%
for cross-domain generalization.

II. RELATED WORK

Graph neural networks. Inspired by the success of CNN in
computer vision, GNNs have emerged to handle non-Euclidean
relational data [10], ranging from early semi-supervised models
such as GCN [19], GAT [20] and GIN [21], to the more
recent self-supervised pre-training paradigm [12]–[14], [22].
Besides their widespread success on graph tasks, they have also
been leveraged to improve text-based tasks through knowledge
graphs [23] and heterogeneous graphs [24], or multi-modality
learning [25]. However, these approaches either employ coarse-
grained text treatment, or have decoupled graph and text
encoders without fully exploiting the intrinsic relationship
between them. Although GLEM [26] integrating both the text
and graph structure information with large language models
and GNNs, it is not a good low-resource learner.
Language pre-training and prompting. Pre-trained language
models [27] have become the most popular backbone in NLP.
While earlier PLMs such as GPT [4], BERT [3], XLNet [28]
and RoBERTa [29] still have affordable model size, recent
introductions such as T5 [30] and GPT-3 [6] produce massive
models with billions of parameters. To avoid the high fine-
tuning cost on these large models, prompting [31] starts to
receive more attention. A prompt is a special template to pad
the task input, with a goal of extracting useful knowledge
from PLMs to flexibly adapt to downstream tasks. Fueled

by the success of GPT-3, numerous prompting methods
including discrete natural language prompt [32]–[34] and
continuous prompt [7]–[9], [35], [36] have emerged. The
strength of prompting has been validated in a wide range
of NLP applications, including text classification [37]–[41],
machine translation [42] and relation extraction [43], [44]. More
recently, prompting has also been applied to GNNs for graph-
centric tasks such as node classification [45], [46] and graph
classification [47], [48], but they cannot utilize fine-grained
text information.
Zero- or few-shot paradigms. Broadly speaking, our setting
is also related to other learning paradigms. For example, in
semi-supervised learning [49]–[51], each class may only have a
few examples, but all classes must be seen in training and they
cannot handle any novel class during testing. Meta-learning
[52]–[60] is another popular paradigm that supports few-shot
learning. However, large-scale labeled data are still required
in a so-called “meta-training” phase, to support the few-shot
learning of novel classes during “meta-testing”. In contrast, we
only need label-free data for pre-training, without requiring any
meta-training phase that would consume large-scale labeled
data. Separately, there also exists joint consideration of image
and text data using a contrastive pre-training strategy for zero-
or few-shot classification [17], [61], [62]. In our work, graph
data are significantly different from images, which provide
various types of interaction between texts. On graphs, zero-
shot node classification has also been done [63]. It relies heavily
on the availability of Wikipedia pages or other side information
to generate class prototype embeddings. However, it is very
labor-intensive to find and curate the right side information,
especially when there are a large number of classes and/or
novel classes emerge frequently.

III. PRELIMINARIES

In this section, we introduce relevant concepts and our low-
resource classification settings.
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Graph-grounded text corpus. Consider a set of documents D,
which is grounded on a graph G = (D, E ,X) such that each
document di ∈ D is a node vi in the graph. The documents
are linked via edges in E , which are formed based on the
application (e.g., if each document represents an article, the
edges could be citations between articles). Each node vi is also
associate with a feature vector xi, given by the input feature
matrix X. Finally, each document/node1 has a class label (e.g.,
the topic of the article).
Low-resource classification. A low-resource task consists of
a support set S and a query set Q. The support set S contains
N classes, and each class has K labeled examples where K
is a small number (e.g., 1 or 5), known as N -way K-shot
classification. The query set Q contains one or more unlabeled
instances belonging to the N classes in the support set. Our
goal is to classify the instances in the query set based on the
labeled examples in the support set. Unlike episodic few-shot
meta-learning [52] which has both training tasks and testing
tasks, we only have testing tasks; in the training stage, we
perform self-supervised pre-training on label-free data only.
As a special case, tasks with K = 0 are known as zero-shot
classification, which means there is no labeled example at all
and we can only rely on class metadata (e.g., class label text).

IV. PROPOSED APPROACH: G2P2

In this section, we introduce our novel model G2P2 for
low-resource text classification.

A. Overview of G2P2

As shown in Fig. 2, our model G2P2 consists of two stages:
(a) graph-grounded constrastive pre-training, and (b) prompt-
tuning for low-resource classification.

During pre-training as shown in Fig. 2(a), we learn a dual-
modal embedding space by jointly training a text encoder and
graph encoder in a self-supervised fashion, since a document
also exists as a node on the graph. More specifically, we
use a transformer-based text encoder and a GNN-based graph
encoder. The transformer takes the text on each node (i.e.,
document) as the input, and outputs a text embedding vector ti
for node vi. On the other hand, the GNN takes the graph and
node features as input, and generates a node embedding vector
zi for node vi. Subsequently, in the dual-modal embedding
space, we align the text and graph representations on the same
or related nodes through three contrastive strategies based on
different types of interaction on the graph.

In downstream testing, we use handcrafted discrete prompts
(Fig. 3) together with the label text for zero-shot classification.
For few-shot classification, we use continuous prompts to pad
the label text (Fig. 2(b)).

B. Graph-grounded contrastive pre-training

As shown in Fig. 2(a), the graph-grounded pre-training learns
a dual-modal embedding space by jointly training a text encoder

1We will use “node” and “document” interchangeably given their one-one
correspondence in our context.

and a graph encoder, based on three types of interaction on
the underlying graph.
Dual encoders. The text encoder is a transformer [5], which
we denote ΦT . Given a document di, the text encoder outputs
the d-dimensional embedding vector of di, denoted ti ∈ Rd:

ti = ΦT (di; θT ), (1)

where θT represents the parameter set of the transformer.
Correspondingly, let T ∈ R|D|×d represents the text embedding
matrix for all documents.

Meanwhile, a document di is also a node vi in the graph.
We choose a classic GNN called graph convolutional network
(GCN) [19] as the graph encoder, denoted ΦZ . It similarly
outputs an embedding vector zi ∈ Rd for a given node vi:

zi = ΦZ(vi; θG), (2)

where θG represents the parameter set of the GCN. Likewise,
let Z ∈ R|D|×d represents the graph embedding matrix for all
nodes.
Text-node interaction. Our graph-grounded texts naturally
implies a bijection between nodes and texts, where each
document di corresponds to the node vi in the graph. Inspired
by the pairing of image and its caption text [61] and the
mapping of content and node sequences [64], we design a
pre-training strategy to predict which text document matches
which node in the graph.

Specifically, given n documents and the corresponding n
nodes, there are n2 possible document-node pairs {(di, vj) |
i, j = 1, . . . , n}. Among them, only n pairs with i = j are
true matching, whereas the remaining n2 − n pairs are false
matching. As our first contrastive strategy, we exploit the
bijective interaction between texts and nodes on the graph, to
maximize the cosine similarity of the n matching pairs, while
minimizing the cosine similarity of the n2 − n unmatching
pairs. To compute the cosine similarity for the n2 pairs, we first
perform a row-wise L2 normalization on embedding matrices
T and Z to obtain T̃ and Z̃, respectively. We then compute a
node-text similarity matrix Λ1 ∈ Rn×n to capture the pairwise
cosine similarity, as follows.

Λ1 =
(
Z̃T̃⊤

)
· exp(τ), (3)

where τ ∈ R is a trainable temperature parameter to scale the
similarity values [61].

REMARK. Although Λ1 ∈ Rn×n is a dense matrix, it is con-
structed in a batch-wise manner for practical implementation.
That is, n is not the total number of documents but the relatively
small batch size, and thus the overhead is negligible. Λ2 and
Λ3 will be introduced later following the same treatment.

To formulate the contrastive loss based on the text-node
bijective interaction, we adapt the multi-class N-pair loss [65],
[66], by considering both the row-wise and column-wise cross
entropy loss w.r.t. the row or column index. For instance, the
i-th row of Λ1 represents the similarity scores between node
vi and every document, in which the row index i indicates the
ground truth document di that matches vi.

L1 = 1
2

(
CE(Λ1,y) + CE(Λ⊤

1 ,y)
)
, (4)
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where y = (1, 2, . . . , n)⊤ is the label vector for contrastive
training, and CE denotes the cross entropy loss applied to the
input matrix Λ1 or Λ⊤

1 in a row-wise manner.

Text-summary interaction. Apart from the bijective text-node
interaction, we further exploit higher-order interactions on the
graph. In particular, each document has a set of neighboring
documents defined by graph topology. The neighboring docu-
ments can be understood as a summary of the target document
given the semantic relatedness between them. For example,
on a e-commerce network, the products purchased by a user
naturally portray a summary of the user and vice versa. Without
loss of generality, we employ a simple mean pooling to generate
the summary embedding si ∈ Rd as follows.

si =
1

|Ni|
∑

j∈Ni
tj . (5)

For efficiency, we only sample a fixed number of neighboring
documents to generate the summary. Then, let S ∈ Rn×d

denote the summary text embedding matrix for all documents.
Hence, as our second contrastive strategy, we seek to align

the text embedding of each document and its correspond-
ing summary text embedding, based on the text-summary
interaction derived from graph neighborhood. In other words,
we maximize the cosine similarity of the n matching pairs
of document and its neighborhood-based summary, while
minimizing the cosine similarity of the n2−n unmatching pairs.
Specifically, we first follow Eq. (3) to construct a text-summary
similarity matrix Λ2 ∈ Rn×n:

Λ2 =
(
T̃S̃⊤

)
· exp(τ). (6)

Subsequently, we apply the same contrastive loss following
Eq. (4), as follows.

L2 = 1
2

(
CE(Λ2,y) + CE(Λ⊤

2 ,y)
)
, (7)

Node-summary interaction. The neighborhood-based sum-
mary for document di also serves as a semantic description of
node vi. Mirroring the text-summary interaction, as our third
contrastive strategy, we seek to align the node embedding and
its neighborhood-based summary text embedding. We similarly
compute a node-summary similarity matrix Λ3 ∈ Rn×n, and
formulate the corresponding contrastive loss L3.

Λ3 =
(
Z̃S̃⊤

)
· exp(τ), (8)

L3 = 1
2

(
CE(Λ3,y) + CE(Λ⊤

3 ,y)
)
. (9)

Overall pre-training objective. Finally, we integrate the three
contrastive losses based on the text-node, text-summary and
node-summary interactions. We obtain a pre-trained model
θ0 = (θ0T , θ

0
G) consisting of the parameters of the dual encoders,

given by

θ0 = arg min
θT ,θG

L1 + λ(L2 + L3), (10)

where λ ∈ R+ is a hyperparameter to balance the contribution
from summary-based interactions.

The pre-training procedure is outlined in Algorithm 1, which
has the following complexity per epoch. Let |D| be the number
of documents, η be the number of neighbors sampled to

Algorithm 1 PRE-TRAINING PROCEDURE OF G2P2
Require: A graph-grounded text corpus G = (D, E,X).
Ensure: Pre-trained weights of text encoder θ0T , graph encoder θ0G.
1: θ0T , θ0G ← parameters initialization;
2: while not converged do
3: sample batches of documents from D;
4: for each batch do
5: for each node vi/document di in the batch do
6: compute di’s text embedding ti; ▷ Eq. (1)
7: compute vi’s node embedding zi; ▷ Eq. (2)
8: compute vi’s summary embedding si; ▷ Eq. (5)
9: end for

10: compute similarity matrices Λ1,Λ2,Λ3; ▷ Eqs. (3), (6), (8)
11: compute contrastive losses L1, L2, L3; ▷ Eqs. (4), (7), (9)
12: update the overall loss L; ▷ Eq. (10)
13: θ0T , θ0G ← update via backpropagation
14: end for
15: end while
16: return θ0T , θ0G.

generate the summary embedding in Eq. (5), and β be the batch
size. First, the cost of generating the three types of embeddings
(lines 5–8) per epoch is O(|D|η), given that calculating the
summary embedding needs go through η neighbors. Second, the
cost of calculating the three similarity matrices in each batch is
O(β2), and the total cost per epoch is O

(
|D|
β β2

)
= O(|D|β)

given |D|
β batches in an epoch. Thus, the overall complexity is

O(|D|(η + β)), which is linear in the number of documents
given that η and β are small constants. In our implementation,
we set η = 3 and β = 64.
C. Prompting joint graph-text model

After pre-training our graph-text model, it is non-trivial
to apply it to low-resource classification. To narrow the gap
between pre-training and downstream tasks, the traditional “pre-
train, fine-tune” paradigm typically introduces a new projection
head for the downstream task, which will be fine-tuned together
with the whole pre-trained model. However, under the low-
resource setting, it is neither effective nor efficient to update
the entire model with a huge number of parameters. Without
updating massive PLMs, prompting has recently emerged as
a powerful alternative to fine-tuning in NLP [31], although
prompting has not been explored for graph-text models with
jointly pre-trained structural and textual information.

In this part, we elaborate zero-shot classification using
handcrafted discrete prompts, as the absence of labeled data
in zero-shot tasks cannot support directly learnable prompts.
We further discuss automated continuous prompt tuning for
few-shot classification.
Discrete prompts for zero-shot classification. In N -way zero-
shot classification, out of N classes, we predict the class which
has the highest similarity to the given node. As illustrated
by the diagram in Fig. 3, the classification weights can be
generated by the text encoder based on the class label texts [67],
without requiring any labeled sample for the classification task.
Specifically, the weight vector wy for class y ∈ {1, 2, . . . , N}
is the output from the pre-trained text encoder, i.e.,

wy = ϕT (“prompt [CLASS]”; θ0T ). (11)

Here “prompt [CLASS]” is a prompt template, where [CLASS]
refers to the label text of the target class y (e.g., “NLP” for paper
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Fig. 3: Schematic diagram for zero-shot classification. The
pre-trained models θ0G and θ0T are obtained from Fig. 2(a).

area classification), and prompt is a handcrafted sequence of
natural language tokens to signal the relevance of the label text
(e.g., “paper of NLP” helps focus on the topic of the paper).
In the simplest case, prompt can be an empty string so that
we only rely on the label text. Note that discrete tokens are
still converted to continuous word embeddings as input to the
text encoder; for brevity we omit this step in Eq. (11).

Then, the class distribution given node representation zi is
predicted as

p(y | zi) =
exp (⟨zi,wy⟩)∑N
y=1 exp (⟨zi,wy⟩)

, (12)

where ⟨·, ·⟩ is cosine similarity.
Continuous prompts for few-shot classification. The problem
with discrete prompts is that they are difficult to optimize, given
that PLMs are intrinsically continuous. Substituting discrete
natural language prompts with learnable continuous prompts,
prompt tuning [8], [9], [68] can automate the optimization
of prompts when some labeled data is available. Hence, in
the few-shot setting, we explore prompt tuning to cue in the
relevant structural and semantic information from our jointly
pre-trained graph-text model.

Specicifally, instead of a sequence of discrete tokens, we take
a sequence of continuous embeddings [h1, · · · ,hM ,hCLASS] as
the prompt, where M is a hyperparameter indicating the number
of prompt tokens, each hm (m ≤ M ) is a trainable vector,
and hCLASS is the word embedding sequence of the target class
label. The continuous prompt is fed as input to the text encoder
to generate the classification weights for each class y:

wy = ϕT ([h1, · · · ,hM ,hCLASS]; θ
0
T ), (13)

where each hm (m ≤ M ) has the same dimension as the input
word embeddings to the text encoder.

Using the same softmax layer in Eq. (12), we further update
the continuous prompt embeddings using the labeled support set
of the few-shot task by minimizing a cross entropy loss, whilst
freezing the parameters of the dual encoders. This prompt
tuning process is both data- and computation-efficient, given
the small number of learnable parameters in the prompt.

Furthermore, existing prompt tuning methods either initialize
the prompt embeddings randomly [8], [68] or using the
word embeddings of handcrafted discrete prompts [62]. While
random initialization is non-informative and more prone to

local optimum, it is still difficult to pick the right discrete
prompts for initialization. Therefore, we take the advantage of
graph structures to initialize the prompt embeddings.

Specifically, given a node vi, we define its graph contexts as
its neighbor set {vj | j ∈ Ni}. Due to the underlying semantic
relatedness, the graph contexts of the few-shot examples carry
strong signals about the task, which can be exploited to improve
the initialization. For each document/node vi in the task support
set, we sample η nodes from its graph contexts. For vi itself
and each context node sampled, we truncate its corresponding
document to M words, and convert it to a sequence of M
word embedding vectors, each having the same dimension as
the vector hm (m ≤ M ) in our continuous prompt. Hence, for
each support node, we would obtain η+1 such sequences; in an
N -way K-shot task, there is a total of NK(η + 1) sequences.
We take the average of these embedding sequences to initialize
the learnable prompt vectors h1, . . . ,hM , which is derived
from graph contexts and thus could provide a more informative
starting point than random initialization.

V. CONDITIONAL PROMPT TUNING: G2P2∗

In this section, we first review the limitations of G2P2 in
generalizing to unseen classes, and propose G2P2∗ to overcome
the limitation based on conditional prompt tuning.

A. Limitation of G2P2

The proposed continuous prompt tuning in Sect. IV-C aims
to learn a collection of trainable vectors in each few-shot task.
Compared to handcrafted discrete prompts, prompt tuning is
automated and tends to be more robust than manual engineering.
However, it still requires some labeled data, and thus has limited
capability in dealing with zero-shot inference, in which the
test set involves the so-called “unseen” classes without any
labeled instance. Due to class shift, directly using prompts
learned from a set of “base” classes with labeled data do not
generalize well to broader unseen classes without labeled data.

Specifically, consider a subset of classes in each dataset as
base classes and the rest as unseen classes. In a base class, only
a small number of labeled instances are available for selecting
discrete prompts or tuning continuous prompts, reserving the
majority for testing. In contrast, all instances of the unseen
classes are used solely for testing, without revealing any labeled
instance for prompt selection or tuning. In this setting, we
are essentially conducting zero-shot inferences on the unseen
classes, using the prompts learned from the base classes.

As illustrated in Fig. 1, we can observe a critical limitation
in G2P2. On one hand, in Fig. 1(a), G2P2 can learn effective
prompts to accurately identify base classes, such as “ink” and
“pencils”. On the other hand, in Fig. 1(b), when using the
same prompts optimized for the base classes, the accuracy
of G2P2 markedly diminishes when facing novel, unseen
classes like “oil paint” and “canvas”. The significant decrease
in performance occurs despite the consistent nature of the
task, which involves the classification of item categories in
the same Art domain. One potential reason is that the prompts
learned by G2P2 overfit to the base classes, resulting in poor
generalization to unseen classes. The issue originates from the
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Fig. 4: Schematic diagram for conditional prompt tuning in
G2P2∗. The pre-trained models θ0G and θ0T are obtained from
Fig. 2(a). The classes are base class during tuning, and unseen
classes during zero-shot inference.

static prompt design, where the prompts, once learned, are
tailored specifically to the base classes. Meanwhile, G2P2+d
with handcrafted discrete prompts demonstrates a comparatively
higher level of generalization with only a small performance
decrease on the unseen classes. However, handcrafted prompts
require significant manual labor and can give inconsistent
performance on different tasks or datasets.

B. Proposed extension: G2P2∗

To generalize prompt tuning to wider unseen classes, we
explore conditional prompt tuning [17]. The core principle is to
condition a prompt on each individual input instance (i.e., each
document/node in our context), rather than learning a static
prompt tailed to a specific task or a fixed set of base classes. At
the same time, to ensure parameter efficiency, we extend G2P2
by adding a lean neural network to generate an input-conditional
token (vector) for each node, which is then integrated with
the learnable prompt vectors. We refer the conditional variant
of our method as G2P2∗. Intuitively, the conditional token
is analogous to node captioning or document summarization,
which is equivalent to a description for each node or document.
Hence, conditional prompts are more generalizable: They are
optimized to depict each instance and thus more resilient to
class shift, rather than being confined to certain specific classes.

Recall that in the unconditional version, we learn M global
prompt tokens that can be used with all nodes in a task. In
contrast, in the conditional version, we need M prompt tokens
that are specific to each input node. A straightforward way is to
increase the parameters, whereby we associate each node with
M learnable vectors directly, or train M neural networks to
generate M distinct vectors for each node. In either design, the
model size is substantially larger than the global prompt vectors
in the original G2P2. Inspired by the Meta-net architecture [17],
[69], we advocate for a more parameter-efficient design that
has demonstrated impressive results in low-resource settings.
Instead, we introduce a light-weight neural network, known as
a Meta-net, on top of the M global prompt vectors to generates
one conditional token (vector) for each input node, which is
subsequently fused with the global prompt vectors.

A schematic diagram of the conditional prompt tuning in
G2P2∗ is sketched in Fig. 4. Specifically, our Meta-net ΦM

employs a dual-layer multi-layer perceptron (MLP) with a

bottleneck structure [70]. Given a node vi with its embedding
zi, the Meta-net generates a conditional token πi, i.e.,

πi = ΦM (zi; θM ). (14)

Then, the m-th prompt vector for node vi, denoted hm,i, is
obtained by

hm,i = hm + πi, (15)

where hm is the m-th global prompt vector in the original
G2P2. Note that the conditional token πi should have the same
dimension as the global prompt vector hm. The conditional
prompt for node vi is thus [h1,i, · · · ,hM,i,hCLASS], where
hCLASS is the word embedding sequence of the target class label
identical to that used in the continuous prompt. Subsequently,
the conditional prompt is fed as input to the text encoder to
output the classification weights, which means the weights
are also conditioned on the input node. Specifically, the
classification weight for node vi and class y is

wy,i = ϕT ([h1,i, · · · ,hM,i),hCLASS]; θ
0
T ). (16)

Thus, the prediction probability is computed as

p(y | zi) =
exp (⟨zi,wy,i⟩)∑N
y=1 exp (⟨zi,wy,i⟩)

. (17)

The training process is similar to G2P2’s prompt tuning: we
train the M global prompt vectors and Meta-net by minimizing
cross-entropy through few-shot node classification on the base
classes. Meta-net is just another way of prompt learning. It
extends the single global prompt to node-specific prompts.
Besides, meta-net is small, it is similar to other Parameter
Efficient Fine-Tuning methods [71] that also use a small
network to work with Large models.

VI. EXPERIMENTS

We conduct extensive experiments to evaluate G2P2 and
G2P2∗, with comparison to state-of-the-art baselines and
detailed model analyses.

A. Experimental setup

Datasets. Four public graph-grounded text corpora are used,
as summarized in Tab. 1. The first dataset is Cora [1]: known
as the “Cora Research Paper Classification” dataset, it is a
collection of research papers that are linked to each other
through citations. The abstract of a paper is deemed a text
document. The papers are classified into a topic hierarchy
with 70 leaves. Note that we are using a more comprehensive
version of Cora, which is larger and has more classes than
the version used elsewhere [19]. The other three datasets,
namely, Art, Industrial and Music Instruments (M.I.) , are
all Amazon review collections [72], respectively from three
broad areas, namely, arts, crafts and sewing (Art), industrial and
scientific (Industrial), and musical instruments (M.I.). Product
descriptions and aggregated user reviews are treated as text,
with reviews linking users to products and aiding in detailed
classification into many specific subcategories. User reviews
also enhance understanding of product-related text. For all
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Table 1: Statistics of datasets.
Dataset Cora Art Industrial M.I.

# Documents 25,120 1,615,902 1,260,053 905,453
# Links 182,280 4,898,218 3,101,670 2,692,734
# Avg. doc length 141.26 54.23 52.15 84.66
# Avg. node deg 7.26 3.03 2.46 2.97
# Total classes 70 3,347 2,462 1,191

datasets, we employ the word2vec algorithm [16] to obtain
the 128-dimensional word embeddings of each word in the
text documents. Then, for each node, we average the word
embedding vectors of all the words in its document, and the
averaged vector is used as the node’s input features for the
GNN-based methods.

Task construction. We perform zero- or few-shot text classifica-
tion. We adopt a 5-way setting, i.e., we sample five classes from
all the classes to construct a task. In each task, we construct
a K-shot support set by further sampling K examples from
each class for K ∈ {0, 1, . . . , 5}, and a validation set of the
same size as the support set. The remaining examples form
the query set. Note that the support set is labeled and serve as
the task training data, whereas the query set is unlabeled and
used for evaluation. Note that in our experiment all the classes
are used—it is only that each task involves 5 classes, and
we have multiple tasks during testing to cover all the classes.
This is a typical task setup [52], allowing for a comprehensive
evaluation under different class combinations. The reported
results are averaged over all the tasks on each dataset.

Baselines for few-shot classification. We consider competitive
baselines from four categories.

(1) End-to-end GNNs, which are graph neural networks
trained in a supervised, end-to-end manner from random
initialization, including: GCN [19]; SAGEsup, the supervised
version of GraphSAGE [73]; TextGCN [74], a GCN-based
model on a text graph constructed from word co-occurrence and
document-word relations, which jointly learns the embeddings
of both words and documents.

(2) Pre-trained/self-supervised GNNs, which are pre-trained
using pretext tasks without labeled data, followed by fine-
tuning or fitting a classification head while freezing the model
parameters, including: GPT-GNN [14], a GNN pre-training
approach by a self-supervised graph generation task; DGI
[12], a GNN pre-training approach that maximizes the mutual
information between local- and global-level representations;
SAGEself [73], the self-supervised version of GraphSAGE,
encouraging similar embeddings for neighboring nodes and
distinct embeddings for non-adjacent nodes. Both DGI and
SAGEself freeze the pre-trained weights, and fit a logistic
regression model for the downstream classification.

(3) Pre-trained transformers, which are pre-trained using
masked language modeling, and then are fine-tuned together
with a randomly initialized classification head (e.g., a fully
connected layer) for the downstream classification, including:
BERT [3]; RoBERTa [29]; BERT∗ and RoBERTa∗, variants
of BERT and RoBERTa, which are obtained by further pre-
training the pre-trained BERT and RoBERTa, respectively,
using masked language modeling on our datasets, to mitigate
the domain gap between our datasets and the corpus used for

pre-training BERT and RoBERTa.
(4) Prompt tuning: P-Tuning v2 [68], is a version of prefix-

tuning [7] optimized and adapted for natural language. It uses
deep prompt tuning, which applies continuous prompts for
every layer of the pre-trained language model.

Note that our setting is distinct from few-shot learning under
the meta-learning paradigm [52], as there is no few-shot tasks
for the meta-training phase. Hence, we cannot use state-of-the-
art meta-learning models for comparison. Besides, two of the
baselines we compared, DGI and SAGEself, have adopted a
form of linear probe which is known to be a strong few-shot
learner [75].

Baselines for zero-shot classification. We only compare with
decoder-based LLMs and encoder-based PLMs, as all the other
methods require at least one shot to work. Firstly, for LLMs
with fewer than 10 billion parameters, we used Qwen-7B [76],
BLOOMz-7B [77], and the most capable openly available LLM
to date, Llama-3-8B [78]. For models with more than 10 billion
parameters, we utilized Baichuan-13B [79], which is currently
the open-source model with the most training data at the 13
billion parameter scale. And we used Vicuna-13B [80], which
matches over 90% of the quality of OpenAI’s ChatGPT [81] and
Google Bard [82] while outperforming models like LLaMA
and Stanford Alpaca [83] in over 90% of cases. Secondly,
for each encoder-based PLM, we use the discrete prompt
[CLASS] (i.e., the label text alone). We also evaluate handcrafted
prompts “prompt [CLASS]”, where prompt is a sequence of
tokens found by prompt engineering, and annotate the model
name with “+d”. We compute the similarity between the target
document and the label text of each class (with or without
prompt), and predict the most similar class following Fig. 3.

Parameter settings. For G2P2, the text encoder is a transformer
[5]. Following CLIP [61], we use a 63M-parameter, 12-layer
512-wide model with 8 attention heads. It operates on a lower-
cased byte pair encoding (BPE) representation of the texts with
a 49,152 vocabulary size [84]. The max sequence length is
capped at 128. The graph encoder employs a GCN [19], using
two layers [73] with a LeakyReLU activation, each with 128
dimensions [85]. The pre-training of our model starts from
scratch without initializing the graph and text encoders with
previously pre-trained weights. λ in Eq. (10) is set to 0.1 on
Cora, and set to 10 on the three amazon review datasets, which
were chosen from {0.01, 0.1, 1, 10, 100} according to the
accuracy on validation data. The number of learnable prompt
tokens, M in Eq. (13), is set to 4, which was chosen from {2,
4, 8, 16, 32} according to the accuracy on validation data. We
use the Adam optimizer with the learning rate 2×10−5 with 2
training epochs, and a batch size of 64 in pre-training, referring
to Hugging Face’s [86] example settings. The text embedding
size is 128, same to the output from the graph encoder. To
generate the summary embedding and the context-based prompt
initialization, the number of neighboring nodes sampled is 3.
For prompt tuning, we set the learning rate as 0.01, which was
chosen from {0.0001,0.001,0.01,0.1} according to the accuracy
on validation data. Lastly, the Meta-net of G2P2∗ is built with
a two-layer bottleneck structure (Linear-ReLU-Linear), with
the hidden-layer dimension being 8.
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Table 2: Five-shot classification performance (percent) with 95% confidence intervals.
In each column, the best result among all methods is bolded and the best among the baselines is underlined. Improvement by G2P2 is calculated

relative to the best baseline. ∗ indicates that our model significantly outperforms the best baseline based on the two-tailed t-test (p < 0.05).

Cora Art Industrial M.I.

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

GCN 41.15±2.41 34.50±2.23 22.47±1.78 15.45±1.14 21.08±0.45 15.23±0.29 22.54±0.82 16.26±0.72
SAGEsup 41.42±2.90 35.14±2.14 22.60±0.56 16.01±0.28 20.74±0.91 15.31±0.37 22.14±0.80 16.69±0.62
TextGCN 59.78±1.88 55.85±1.50 43.47±1.02 32.20±1.30 53.60±0.70 45.97±0.49 46.26±0.91 38.75±0.78

GPT-GNN 76.72±2.02 72.23±1.17 65.15±1.37 52.79±0.83 62.13±0.65 54.47±0.67 67.97±2.49 59.89±2.51
DGI 78.42±1.39 74.58±1.24 65.41±0.86 53.57±0.75 52.29±0.66 45.26±0.51 68.06±0.73 60.64±0.61

SAGEself 77.59±1.71 73.47±1.53 76.13±0.94 65.25±0.31 71.87±0.61 65.09±0.47 77.70±0.48 70.87±0.59

BERT 37.86±5.31 32.78±5.01 46.39±1.05 37.07± 0.68 54.00±0.20 47.57±0.50 50.14±0.68 42.96±1.02
BERT∗ 27.22±1.22 23.34±1.11 45.31±0.96 36.28±0.71 49.60±0.27 43.36±0.27 40.19±0.74 33.69±0.72

RoBERTa 62.10±2.77 57.21±2.51 72.95±1.75 62.25±1.33 76.35±0.65 70.49±0.59 70.67±0.87 63.50±1.11
RoBERTa∗ 67.42±4.35 62.72±3.02 74.47±1.00 63.35±1.09 77.08±1.02 71.44±0.87 74.61±1.08 67.78±0.95

P-Tuning v2 71.00±2.03 66.76±1.95 76.86±0.59 66.89±1.14 79.65±0.38 74.33±0.37 72.08±0.51 65.44±0.63

G2P2-p 79.16±1.23 74.99±1.35 79.59±0.31 68.26±0.43 80.86±0.40 74.44±0.29 81.26±0.36 74.82±0.45
G2P2 80.08∗±1.33 75.91∗±1.39 81.03∗±0.43 69.86∗±0.67 82.46∗±0.29 76.36∗±0.25 82.77∗±0.32 76.48∗±0.52

(improv.) (+2.12%) (+1.78%) (+5.43%) (+4.44%) (+3.53%) (+2.7%) (+6.53%) (+7.92%)

B. Performance of G2P2

We evaluate the performance under various few-shot settings.

Five-shot setting. In Tab. 2, we first compare the performance
of G2P2 with baselines under the 5-shot setting. G2P2 emerges
as the winner consistently, outperforming the best baseline by
around 2–8% with statistical significance.

We also make a few more observations. Firstly, among
the GNNs, pre-trained/self-supervised models tend to perform
better than the end-to-end approaches, since the latter heavily
rely on labeled data. Among the former, DGI and SAGEself
perform better as they are a form of linear probe, known to
be a strong few-shot learner [75]. Note that, instead of using
word2vec embeddings [16] of raw texts as node features, we
also tired using the pre-trained RoBERTa [29] to generate the
node features for DGI and SAGEself. However, doing so does
not bring any improvement, showing that it is ineffective to
simply combine a language model and GNN in a decoupled
manner. In contrast, our proposed model jointly learns the text
and graph encoders through three graph-grounded contrastive
strategies. Secondly, PLMs are generally superior to GNNs,
illustrating the importance of leveraging texts in a fine-grained
way. Additionally, RoBERTa outperforms BERT owing to an
improved pre-training procedure [29]. However, further training
PLMs on our texts gives mixed results: RoBERTa∗ slightly
outperforms RoBERTa but BERT∗ is much worse than BERT.
That means it is not straightforward to mitigate the domain gap
by simply continuing training on the domain texts. Thirdly, the
continuous prompt approach P-Tuning v2 achieves competitive
results compared to fine-tuning, while having the advantage of
being much cheaper than fine-tuning. Nevertheless, it is still
significantly outperformed by our model G2P2. Furthermore,
G2P2-p without prompt tuning is inferior to G2P2, showing
the benefit of continuous prompts.

Settings with fewer shots. In addition to the 5-shot setting, in
Fig. 5 we also study the impact of fewer shots on G2P2 and
several representative baselines. G2P2 generally performs the
best across different shots. In general, the performances of all
approaches degrade as fewer shots become available. However,
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Fig. 5: Classification performance on different shots.

the baselines suffer significantly under extreme low-resource
(e.g., 1- or 2-shot) settings. In contrast, G2P2 remains robust,
reporting a relatively small decrease in performance even with
just 1 or 2 shots.

It demonstrates the practical value of our proposed model
especially when labeled data are difficult or costly to obtain in
time. On the other hand, traditional approaches constantly face
the challenge of the inability to keep up with the rapid growth
of emerging classes in dynamic and open environments [63].
For example, labeling a large volume of texts for novel topics
in online articles, or new product categories in open-ended
e-commerce platforms, can suffer a substantial time lag.

Zero-shot setting inference. Finally, we report the zero-shot
performance in Tab. 3, where our models G2P2 and G2P2+d
significantly outperforms both the decoder-based LLMs and
encoder-based PLMs baselines. The results particularly demon-
strate the effectiveness of our graph-grounded contrastive pre-
training in the absence of labeled data, which is crucial to
handling evolving classes without any labeled sample in many
real-world scenarios. We make several further observations.

Firstly, we specifically utilized five state-of-the-art decoder-



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

based LLMs. Empirically, those LLMs requires lots of computa-
tional resources and time, e.g., a 13B model requires more than
32GB of GPU memory for inference with a batch size of 1.
And it takes over two weeks for a single LLM to complete one
inference run on the Art test set. In contrast, an encoder-based
model like our G2P2 takes less than five hours to complete five
inference runs on the largest Art test set. As shown in Tab. 3:
(1) while decoder-based LLMs provide useful insights, their
computational requirements are significantly higher, making
them less efficient for the given task; (2) although decoder-
based LLMs are famous for zero-shot scenarios, our G2P2
model outperforms them in these settings, providing more
accurate results with lower computational overhead.

Secondly, for results about decoder-based PLMs, we can see
that handcrafted discrete prompts (i.e., BERT∗+d and G2P2+d)
can be superior to using label text only (i.e., BERT∗ and G2P2),
showing the effectiveness of additional prompt tokens.

However, finding the optimal discrete prompts often re-
quires significant engineering work. Specifically, for the three
approaches with discrete prompts, namely, RoBERTa∗+d,
BERT∗+d and G2P2+d, we have explored more than 10
handcrafted prompt templates on each dataset, which are
typically specific to the dataset and require some domain
knowledge to devise. While discrete prompts are generally
helpful, their effectiveness varies. For example, on the Cora
dataset, while “a model of [CLASS]” is the best prompt for
RoBERTa∗+d, it is a bad choice for G2P2+d. Sometimes,
generic prompts like “a [CLASS]” can be the best choice. Note
that in Tab. 3, we simply report the performance of the best
template for each approach and dataset. Hence, using the label
text only is still a reasonably good choice.

Zero-shot case study. To better understand the motivation
and strength of G2P2, we conduct an zero-shot case study, as
illustrated in Tab. 4. We randomly selected a testing sample
from a 5-way task in the Cora test set, and both the original
document and label text are presented in the table.

Decoder-based LLMs cannot provide accurate classification
results when only given the original document and label text.
Therefore, after experimenting with various prompts, we crafted
the instructions shown in blue in the table. It’s evident that zero-
shot classification tasks remain challenging for popular decoder-
based LLMs. In this example, four of the five label texts are
semantically similar, making them difficult to differentiate. Only
BLOOMz provided the correct answer, while the other four
models produced various errors. Qwen generated irrelevant
content, Llama-3 repeated the question without providing
reasons, and Vicuna entered a repetitive loop—a common
issue with decoder-based LLMs.

In contrast, our encoder-based models are more accurate
and reliable due to directly using embeddings containing fine-
grained information and computing cosine similarity. They
are also more time- and computationally efficient due to
having fewer parameters than decoder-based LLMs. Among
these encoder-based models, G2P2 not only selected the
correct answer but also showed a clear distinction between the
similarities of the correct and incorrect answers. This is because
using GNNs to encode graph structures expands the usable

Table 3: Zero-shot classification accuracy (percent).
Models # Params. Cora Art Industrial M.I.

Decoder

Qwen 7B 21.67 18.65 19.13 19.00
BLOOMz 7B 48.89 23.60 24.07 20.06
Llama-3 8B 25.32 18.94 19.70 19.47
Baichuan 13B 21.67 16.68 19.22 18.68
Vicuna 13B 16.65 15.36 16.81 15.85

Encoder

RoBERTa 123M 30.46 42.80 42.89 36.40
RoBERTa∗ 123M 39.58 34.77 37.78 32.17

RoBERTa∗+d 123M 45.53 36.11 39.40 37.65
BERT 110M 23.58 35.88 37.32 37.42

BERT∗ 110M 23.38 54.27 56.02 50.19
BERT∗+d 110M 26.65 56.61 55.93 52.13

G2P2 66M 64.75 76.62 76.43 74.44
G2P2+d 66M 66.43∗ 76.95∗ 77.31∗ 75.94∗
(improv.) - (+35.88%) (+35.93%) (+38.00%) (+45.67%)
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Fig. 6: Hyperparameter study for G2P2.

information from just text to both text and graph structures.
Our model effectively leverages these dual modalities to tackle
the zero-shot text classification challenge.

C. Model analyses of G2P2

We conduct more in-depth studies on G2P2. By default, we
report the classification accuracy under the 5-shot setting.

Ablation study. We first evaluate the contribution from each of
the three interaction-based contrastive strategies, by employing
different combinations of the proposed loss terms L1,L2 and
L3. As shown in Tab. 5, strategies without L1 have performed
quite poorly, demonstrating that the bijective text-node interac-
tion is the fundamental component of our pre-training. That
being said, when further adding L2 or L3 to L1, we still
observe a noticeable performance improvement, showing the
benefit of incorporating additional graph-based interactions for
text data. Lastly, G2P2 with all three loss terms outperforms
all 1- or 2-combinations of the losses, demonstrating that the
three contrastive strategies are all useful and they are well
integrated. Overall, the results reveal that graph information is
vital to low-resource text classification, since graph structures
reveal rich relationships between documents.

Next, we evaluate the contribution from our prompt-tuning.
Specifically, we compare G2P2 with two ablated variants: using
label text only without trainable prompt vectors, and randomly
initializing the prompt vectors. As reported in Tab. 5, only
using label text clearly degrades the classification performance,
implying the importance of learning continuous prompts via
prompt tuning. Furthermore, our approach G2P2 with context-
based initialization for prompt vectors shows a small but
consistent advantage over random initialization, implying the
usefulness of considering graph structures in prompt tuning.
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Table 4: Zero-shot case study. An example from Cora, with the ground-truth answer B. For encoder-based PLMs, the cosine
similarity here is softmax normalised. Italic text is the instruction crafted by us for decoder-based LLMs.

Document

this paper develops a new and natural parallel vector model, and shows that for
all k 1, the languages recognizable in o(log k n) time and polynomial work in
the model are exactly those in nc k . some improvements to other simulations in
the literature of parallel models and reversal complexity are given.

Label text

(A) data structures algorithms and theory, computational geometry
(B) data structures algorithms and theory, computational complexity
(C) data structures algorithms and theory, parallel
(D) data structures algorithms and theory, logic
(E) artificial intelligence, nlp

Decoder-based LLMs

Prompt for

This is a paper abstraction:

decoder-based

this paper develops a new and natural parallel vector model, and shows that for
all k 1, the languages recognizable in o(log k n) time and polynomial work in
the model are exactly those in nc k . some improvements to other simulations in
the literature of parallel models and reversal complexity are given.

LLMs

Classify it into one of the five categories: (A) data structures algorithms
and theory, computational geometry (B) data structures algorithms and theory,
computational complexity (C) data structures algorithms and theory, parallel
(D) data structures algorithms and theory, logic (E) artificial intelligence,
nlp. The answer can only be (A), (B), (C), (D), or (E).
### Answer Choice:

Qwen (7B) A, B, C, D, or E. for example in examples: if example in lines: ans = example

BLOOMz (7B) (B) data structures algorithms and theory, computational complexity</s>

Llama-3 (8B)

A ### Explanation:
This is a paper abstraction:
this paper develops a new and natural parallel vector model, and shows that for
all k 1, the languages recognizable in o(log k n) time and polynomial work in
the model are exactly those in nc k . some improvements to other simulations in
the literature of parallel models and reversal complexity are given.

Baichuan (13B) The correct choice would be category A): Data Structures & Algorithms Theory

Vicuna (13B)

# (A) data structures algorithms and theory
# (B) data structures algorithms and theory
# (C) data structures algorithms and theory
# (D) data structures algorithms and theory
# (E) data structures algorithms and theory

Encoder-based PLMs

RoBERTa∗+d (123M)

<Document embedding, embedding of Label A with discrete prompt> = 0.1953
<Document embedding, embedding of Label B with discrete prompt> = 0.2074
<Document embedding, embedding of Label C with discrete prompt> = 0.2068
<Document embedding, embedding of Label D with discrete prompt> = 0.1986
<Document embedding, embedding of Label E with discrete prompt> = 0.1919

BERT∗+d (110M)

<Document embedding, embedding of Label A with discrete prompt> = 0.1936
<Document embedding, embedding of Label B with discrete prompt> = 0.2040
<Document embedding, embedding of Label C with discrete prompt> = 0.2068
<Document embedding, embedding of Label D with discrete prompt> = 0.2036
<Document embedding, embedding of Label E with discrete prompt> = 0.1919

G2P2+d (63M)

<Node embedding, embedding of Label A with discrete prompt> = 0.2021
<Node embedding, embedding of Label B with discrete prompt> = 0.2245
<Node embedding, embedding of Label C with discrete prompt> = 0.2100
<Node embedding, embedding of Label D with discrete prompt> = 0.2002
<Node embedding, embedding of Label E with discrete prompt> = 0.1633

Table 5: Ablation study with variants of G2P2.
Cora Art Industrial M.I.

Only L3 74.66±1.80 52.56±1.09 45.97±0.81 49.05±0.54
Only L2 77.01±1.30 58.90±0.55 52.99±0.46 59.41±0.85
Only L1 79.50±1.19 77.37±0.72 78.10±0.34 79.70±0.56
L2+L3 70.04±2.89 49.91±1.57 50.07±0.50 56.14±1.01
L1+L3 79.73±0.89 78.60±0.40 79.97±0.43 80.42±0.45
L1+L2 79.42±1.04 80.55±0.52 81.06±0.33 82.39±0.41

Only label text 79.16±1.23 79.59±0.31 80.86±0.40 81.26±0.36
Random init. 80.03±0.99 80.85±0.43 82.43±0.33 82.64±0.21

G2P2 80.08±1.33 81.03±0.43 82.46±0.35 82.77±0.32

Hyperparameter study. We first investigate the impact of
the interaction coefficient λ in Fig. 6(a), which balances the
high-order contrastive losses (L2,L3). The performance is
generally better and stable when λ is slightly bigger (e.g., ≥ 10),
indicating the significance of the high-order text-summary and
node-summary interactions. Next, we study the prompt length

Table 6: Analysis of tuning time and parameter size.
Tuning time per task (in seconds) Param.

Cora Art Industrial M.I. size

RoBERTa 45.47±2.38 64.22±3.62 43.46±2.99 44.99±2.58 123M
RoBERTa∗ 39.38±2.01 59.56±3.55 35.10±2.75 38.84±2.39 123M

BERT 32.23±1.71 51.77±2.00 31.72±1.77 33.55±2.39 110M
BERT∗ 34.82±1.68 55.16±2.32 31.11±1.74 29.00±2.23 110M

G2P2 2.42±0.41 22.03±1.39 14.63±1.26 12.72±1.17 2048

Table 7: Inductive performance on text classification.
Art Industrial M.I.

BERT∗ 43.66±0.90 48.35±0.25 39.24±0.88
RoBERTa∗ 69.55±1.14 73.65±0.86 71.96±1.44

G2P2 79.81±0.22 81.29±0.32 81.85±0.33

M in Fig. 6(b), which refers to the number of trainable prompt
vectors in Sect. IV-C. The performance is relatively unaffected
by the prompt length, and thus it is robust to choose a small
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Table 8: Performance on base and unseen classes within the same domain.
Prompts are selected or tuned on the labeled set of the base classes, and tested on the test set of the base classes, or the unseen classes. HM denotes the

harmonic mean of the testing performance on the base and unseen classes, enabling the assessment of the generalization trade-off between them [87].

(a) Overall

Base Unseen HM

G2P2+d 39.3 38.0 38.4
G2P2 49.7 33.5 39.5
G2P2∗ 48.7 41.0 43.9

(b) Cora

Base Unseen HM

G2P2+d 28.81±3.35 22.51±1.41 25.14±1.42
G2P2 52.50±1.38 24.83±2.71 33.65±2.72
G2P2∗ 48.60±1.68 25.70±1.25 33.62±1.46

(c) Art

Base Unseen HM

G2P2+d 40.04±2.35 38.01±0.74 38.95±1.05
G2P2 43.47±2.59 31.97±4.69 36.71±3.73
G2P2∗ 44.29±2.30 41.43±1.28 42.80±1.61

(d) Industrial

Base Unseen HM

G2P2+d 47.24±2.71 51.80±1.66 49.36±1.64
G2P2 52.84±1.72 39.71±1.66 45.29±0.98
G2P2∗ 52.44±2.48 50.77±1.74 51.59±2.09

(e) M.I.

Base Unseen HM

G2P2+d 41.12±3.63 39.64±3.88 40.03±0.78
G2P2 49.89±4.76 37.49±3.95 42.43±1.64
G2P2∗ 49.29±4.25 45.95±1.92 47.47±2.42

Table 9: Continual learning within the same domain.
Prompts are selected or tuned on the labeled data from base classes, and

tested on the combined base classes (test set only) and unseen classes.

Cora Art Industrial M.I.

G2P2+d 18.02±1.70 29.69±1.27 39.27±0.28 27.57±0.61
G2P2 23.53±1.19 27.45±2.33 35.85±1.06 32.17±0.74
G2P2∗ 28.93±1.42 31.09±0.61 41.00±1.69 34.66±2.03

M (e.g., 4) for efficiency.

Efficiency of prompt tuning. In this experiment, we investigate
the prompt tuning efficiency of G2P2 in comparison to the
efficiency of traditional fine-tuning. As G2P2 has a transformer
component, we compare it with four transformer based models,
all of which follow the classical “pre-train, fine-tune” paradigm.

As shown in Tab. 6, prompt tuning in G2P2 is much more
efficient than fine-tuning in the baselines, achieving 2.1∼18.8x
speedups. The reason is that prompt tuning updates far fewer
parameters. In G2P2, we used 4 trainable 512-dimensional
prompt vectors, totalling to 2048 parameters only, while fine-
tuning in the baselines needs to update the whole pre-trained
model with more than 100M parameters. Note that the speedup
is not linear w.r.t. the parameter size, due to overheads in the
data loader and the optimizer. Overall, our prompt tuning is not
only effective under low-resource settings, but also parameter-
and computation-efficient.

Inductive ability. Our previous experiments can be deemed
transductive as both the pre-training and downstream text
classification are conducted on the whole corpus. To further
evaluate the generalization ability of G2P2, we adopt an
“inductive” setting, whereby we pre-train the text encoder only
on a subset of the corpus and perform downstream classification
on a disjoint subset. Particularly, in the three Amazon datasets,
since user texts have no labels and item texts have labels, it
is natural for us to pre-train with only user texts and classify
only item texts downstream. We also employ masked language
modeling on only the user texts for BERT and RoBERTa, to
get BERT∗ and RoBERTa∗. As shown in Tab. 7, G2P2 still
performs very well in the inductive setting, illustrating the
strong generalization ability of our pre-trained model.

D. Performance and model analyses of G2P2∗

Finally, we conduct additional experiments to investigate
the performance of G2P2∗, in particular the generalization

ability of conditional prompt tuning to handle wider unseen
classes. In these experiments, on each dataset we randomly
sample some (35 for Cora, 66 for Art, 41 for Industrial, and
35 for M.I.) classes as the base classes, and the same number
of classes as unseen classes. Each base class has five labeled
instances (5-shot) for selecting or tuning the optimal prompts,
and reserves the remaining instances for testing. In contrast,
all instances of each unseen class are used for testing, without
any labeled data for learning. We compare the three variants of
our proposed model: (1) G2P2+d, the zero-shot method with
handcrafted discrete prompts chosen based on the base classes;
(2) G2P2, which learns continuous and static prompts from
the base classes; (3) G2P2∗, which learns conditional prompts
on the base classes.

In the following, we first conduct experiments to evaluate
the within- and cross-domain generalization capability. Then,
we investigate the impact of hidden dimension of Meta-net,
and the effect of increasing the parameters of G2P2.
Within-domain generalization. Within the same domain, we
consider two scenarios of generalization: from base classes to
unseen classes, and a continual learning setting where base
classes are still included during testing.

Firstly, we report the results on the testing sets of both the
base classes and unseen classes in Tab. 8. Note that the base
and unseen classes come from the same domain, i.e., the same
dataset in our context. Specifically, on the base classes, G2P2+d
performs the worst in all cases, showing that the discrete
prompts are difficult to select for intrinsically continuous PLMs.
In contrast, G2P2 generally obtains the best performance on
the base classes, showing that continuous prompt tuning can
find better prompts if some labeled data are available for tuning.
However, the learned static prompts do not generalize well to
the unseen classes, showing a significant class shift between
base and unseen classes. Interestingly, G2P2+d performs better
on unseen classes than G2P2, showing that the handcrafted
prompts are robust to class shifts to some extent. G2P2*, does
not achieve the best performance on the base class of the
Cora dataset but is still the second best, outperforming the
third-place G2P2+d by 68.7%. Moreover, we achieve the best
results on the new classes. As a result, the harmonic mean of
our performance and that of the best-performing G2P2 shows
no difference. On the Industrial dataset, G2P2* is not the best
performer on either the base class or the new class. However,
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Table 10: Cross-domain generalization from Amazon to Cora.
No generalization: Prompts are tuned and tested on the labeled data and test set, respectively, of the base classes from the same domain.

Cross-domain generalization: Prompts are tuned in the same way on the source domain, but tested on the unseen classes of the target domain.

No generalization (base classes) Cross-domain generalization (unseen classes)

Source (Tuning) Art Industrial M.I. Art Industrial M.I.

Target (Testing) Art Industrial M.I. Cora Cora Cora

G2P2 43.47±2.59 52.84±1.72 49.89±4.76 22.83±4.63 20.88±3.99 19.51±5.08
G2P2∗ 44.29±2.30 52.44±2.48 49.29±4.25 27.68±3.67 21.01±3.94 27.05±3.25

it demonstrates balanced performance, ranking just below the
best in both categories. Consequently, its overall performance,
represented by the harmonic mean, is the highest, surpassing
the second-best by 4.5%. Overall, in comparison to G2P2+d
and G2P2, G2P2∗ demonstrates competitive performance on the
base classes and excellent performance on the unseen classes,
implying that conditional prompt tuning not only fits well to
the base classes, but also generalizes to the unseen classes.

Secondly, we address a more pragmatic “continual learning”
scenario [88], in which we combine the test sets of both the base
and unseen classes during inference. This scenario is designed
to evaluate the undesirable effect of catastrophic forgetting
of the base classes while adapting to the unseen classes. The
results are presented in Tab. 9. It becomes evident that G2P2
loses its competitive edge over G2P2+d, but G2P2∗ remains
superior, implying that G2P2∗ is robust to continual learning
with less “forgetting” of the base classes.

Cross-domain generalization. In the preceding part, we have
investigated the ability to generalize to unseen classes within
the same domain. In the following, we aim to examine the
generalization to unseen classes across different domains. The
ability to generalize to out-of-distribution data is a crucial
feature in real-world scenarios, and it is intriguing to see
whether the handcrafted or learned prompts can withstand shifts
across domains. More specifically, we consider cross-domain
scenarios within the Amazon ecosystem, and the scenarios
with a more challenging shift from Amazon to Cora.

Firstly, we conduct cross-domain experiments within the
Amazon ecosystem. Each Amazon dataset (Art, Industrial
and M.I.) represents a different domain. As illustrated in
Fig. 7, among the three variants, the discrete prompts in
G2P2+d exhibit a suboptimal fit on the source domains, yet
they demonstrate a reasonable level of generalization across
other domains. Conversely, the learnable static prompts in
G2P2 fit optimally on the source domains but show minimal
generalization ability across other domains. On the other hand,
the conditional prompts in G2P2∗ has performed well on
both the source and target domains, showing their excellent
performance and generalization capabilities.

Secondly, we consider a more challenging cross-domain
scenario, where the source and target domains are from
completely different ecosystems. Specifically, we employ the
Amazon datasets as the source domains, and aim to generalize
to the target domain on Cora. Firstly, the left half of Tab. 10,
does not involve cross-domain generalization. In other words,
both the source domain and the target domain are from the same
domain. Specifically, the source domain is the training set of the
dataset, and the target domain is its testing set. The results of
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Fig. 7: Cross-domain generalization within Amazon. For each
method, prompts are selected or tuned on the labeled data
of the base classes from a source domain, and tested on the
unseen classes from each target domain.

this part are the few-shot classification results, demonstrating
that G2P2∗’s few-shot classification capabilities are on par
with G2P2. Secondly, the right half of Tab. 10, involves cross-
domain generalization. This means that the source and target
domains are from different datasets. For instance, the source
domain might be the training set of the Art, where we fine-
tune G2P2’s continuous prompts, or fine-tune both G2P2∗’s
continuous prompts and the Meta-net component. We then test
on the target domain, which is the testing set of another dataset,
Cora. This is an extreme test of the model’s generalization
ability since the training and testing sets are from entirely
different datasets. Indeed, such tests also fall under the category
of zero-shot classification. From the results in the right half
of Tab. 10, we can see that G2P2∗ performs much better than
G2P2 on cross-dataset testing sets, demonstrating the strong
generalization capability of G2P2∗’s conditional prompts.

Hidden dimension of Meta-net. Recall that our proposed
G2P2∗ incorporates a Meta-net with a hidden layer. We further
study the impact of the hidden dimension of the Meta-net, by
varying it between 2 and 512. Observations from Fig. 8 indicate
that augmenting the hidden dimension, despite expanding
the model capacity, does not yield significantly enhanced
performance on both base and unseen classes. Generally, a
larger model with more parameters performs better, but there’s
an often overlooked assumption: sufficient training data.
However, the meta-net of G2P2∗ was trained under a few-
shot setting for the base class, i.e., training samples being
extremely scarce. Given this significant lack of training data,
simply increasing the model size and parameters can lead to
overfitting on base classes. Consequently, the performance on
unseen classes declines as the hidden dimension of the meta-net
increases. Besides, a larger hidden dimension naturally leads to
an increase in computational costs. Consequently, a relatively
small value, such as 8, is sufficient yet efficient.

Comparing G2P2∗ with a bigger G2P2 model. Given that
G2P2∗ incorporates a larger number of parameters than G2P2,
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Fig. 8: Impact of hidden dimension of Meta-net.

Table 11: G2P2∗ vs. a bigger G2P2 model on Art.
Param. size Base Unseen HM

Model Parameters Metric 1 Metric 2 Metric 3

G2P2 (M = 4) 2,048 43.47±2.59 31.97±4.69 36.71±3.73
G2P2 (M = 16) 8,192 40.74±3.31 28.67±2.70 33.64±2.93
G2P2∗ (M = 4) 7,688 44.29±2.30 41.43±1.28 42.80±1.61

specifically through the addition of the Meta-net, it is important
to investigate if the observed improvements by G2P2∗ are
merely a consequence of parameter size. Hence, we use more
prompt tokens in G2P2 so that its number of parameters
becomes comparable to that of G2P2∗. Specifically, the number
of prompt tokens (M ) is increased to 16 from 4 in G2P2, as
shown in Tab. 11. The results indicate that merely increasing
the parameter size does not lead to performance improvement.
On the contrary, compared to M = 4, M = 16 gives worse
performance on both base and unseen classes possibly due to
overfitting in low-resource settings. Thus, conditional prompt
tuning is a crucial design responsible for the improvements.

VII. CONCLUSION

In this paper, we studied the problem of low-resource text
classification. Given that many text documents are related
through an underlying network, we proposed a novel model
called Graph-Grounded Pre-training and Prompting (G2P2). It
consists of three graph interaction-based contrastive strategies
in pre-training, and a prompting mechanism for the jointly
pre-trained graph-text model in downstream classification. We
further extended our model to G2P2∗ in order to deal with wider
unseen classes. Finally, we conducted extensive experiments
and showed the advantages of G2P2 and G2P2∗ in low-resource
text classification. We will investigate its application in other
text classification scenarios in future work.
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