
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Dual-View Preference Learning for Adaptive
Recommendation

Zhongzhou Liu, Yuan Fang Member, IEEE and Min Wu Senior Member, IEEE

Abstract—While recommendation systems have been widely deployed, most existing approaches only capture user preferences in the
macro-view, i.e., the user’s general interest across all kinds of items. However, in real-world scenarios, user preferences could vary
with items of different natures, which we call the micro-view. Both views are crucial for fully personalized recommendation, where an
underpinning macro-view governs a multitude of finer-grained preferences in the micro-view. To model the dual views, in this paper, we
propose a novel model called Dual-View Adaptive Recommendation (DVAR). In DVAR, we formulate the micro-view based on item
categories, and further integrate it with the macro-view. Moreover, DVAR is designed to be adaptive, which is capable of automatically
adapting to the dual-view preferences in response to different input users and item categories. To the best of our knowledge, this is the
first attempt to integrate user preferences in macro- and micro- views in an adaptive way, without relying on additional side information
such as text reviews. Finally, we conducted extensive quantitative and qualitative evaluations on several real-world datasets. Empirical
results not only show that DVAR can significantly outperform other state-of-the-art recommendation systems, but also demonstrate the
benefit and interpretability of the dual views.

Index Terms—personalized recommendation systems, dual-view user preferences, adaptive models

✦

1 INTRODUCTION

P ERSONALIZED recommendation systems are playing an
important role in a wide range of modern businesses,

such as e-commerce [1], streaming services [2] and social
media [3]. These businesses often offer thousands if not
millions of items, causing a severe information overload—
an average user is often interested in and able to consume
only a handful of items within a short period of time.
An effective recommendation system is thus expected to
alleviate the information overload, not only enhancing the
user experience but also increasing the conversion rate.

Due to their widespread applications, many recommen-
dation techniques have been proposed, ranging from matrix
factorization [4] and factorization machines [5], to more
recent deep neural network-based methods [6], [7]. More
recently, graph-based recommendation models [8], [9], [10]
have been proposed and extensively studied, as the user-
item interaction data for recommendation systems can be
easily transformed into a graph structure, whereby graph
learning methods can learn more complex relations than
traditional recommendation models [11]. In particular, het-
erogeneous information networks (HIN) emerge as a repre-
sentative form of graph for recommendation, and have been
attracting increasing attention in the community [12], [13].
Compared to traditional graphs, HINs contain additional
types of node (e.g., category) and edge (e.g., user-user
similarity, item-item similarity, item-category association),

• Zhongzhou Liu and Yuan Fang are with the School of Computing
and Information Systems, Singapore Management University, Singapore,
188065.
E-mail: zzliu.2020@phdcs.smu.edu.sg and yfang@smu.edu.sg

• Min Wu is with the Institute for Infocomm Research, A*STAR, Singpaore,
138632.
Email: wumin@i2r.a-star.edu.sg

Corresponding authors: Yuan Fang and Min Wu.
Manuscript received xxx; revised xxx.

beyond the standard user-item interaction. Thus, HINs can
be regarded as a form of data augmentation capturing much
richer semantic information, to overcome data sparsity and
noises for more robust recommendations [14].

While existing recommendation approaches capture
some form of user preferences in a macro-view, an obvious
drawback is that they often fail to zoom into the micro-
view. The macro-view describes a user’s general preference
across all kinds of items. For example, on a streaming
platform featuring movies of different categories (e.g., action
and comedy), a user likes Hollywood movies in general
across both actions and comedies as shown in Fig. 1(a). In
contrast, the micro-view describes and differentiates a user’s
preference for items of different nature. Beyond a general
preference such as Hollywood movies, a user may prefer
movies starred by Ford when coming to the action cate-
gory, while prefers those starred by Pollak in the comedy
category. However, a conventional macro-view-only system
may only recommend the user popular Hollywood movies
while ignoring his/her micro-view preference in cast for
different categories.

In particular, the micro view enables finer-grained and
differential user preferences in different item categories. For
instance, some preferences are only important to certain
categories (e.g., cast is important to actions but not docu-
mentaries). In other cases, the preference of the same user
may disagree in different categories (e.g., while a user may
enjoy Ford’s action movies, he/she may not like Ford’s
comedy movies).

To materialize the micro-view w.r.t. different item cat-
egories, a naı̈ve solution is to train one model for each
category separately. However, this would not only lose some
macro-view information, but also ignore the relationships
between items in different categories [15], [16] that may
mutually benefit each other. Alternatively, some approaches

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

Fig. 1: A toy example on the macro- and micro-views, and the key differences between conventional and our models.

offer a limited micro-view, where the preference of a user
toward an item can be drilled down to different aspects
extracted from review data [17], [18], [19], or variable influ-
ences from other users who also purchased the same item
[20]. As a result, for different items, the same user may
prefer different aspects or become influenced by different
users. However, they heavily rely on the quality of review
data or co-purchase users, which may be missing or noisy
in many applications, limiting their generalizability.

Toward personalized recommendation with both macro-
and micro-views, we need to deal with two major chal-
lenges: (1) How to formulate the micro-view and integrate it
with the macro-view? A micro-view to differentiate individual
items can be overly specific and difficult to fit. Furthermore,
the two views are fundamentally dependent—the macro-
view describes the general preference of a user, which gov-
erns the micro-view to specialize into different preferences
based on the nature of the item. Thus, a straightforward
integration such as a linear combination of the two views,
which disregards the dependence, would not perform well.
(2) How to design a model that is adaptive to the dual views? In
conventional approaches, the model is frozen once training
is finished as shown in Fig. 1(b). In other words, the same
model is applied to all users and items. Typically, users and
items are only differentiated via their latent embeddings,
but ideally the model itself should be adaptive for personal-
ized preferences in the dual views.

To address the above two challenges, in this paper, we
propose a novel model called Dual-View Adaptive Recom-
mendation (DVAR) to learn user preferences in both macro-
and micro-views. For the first challenge, we formulate the
micro-view in terms of item categories (e.g., book, fashion,
etc. for e-commerce, and genres for streaming services). Item
categories are often more widely available and less noisy
than review data or other side information, and strike a
balance between the item-wise preferences that are complex
and difficult to fit, and the overall macro-view preference
that is too coarse. We further integrate the two views in a
dependence-aware manner, where the micro-view preference
is conditioned on both the item category and the general
macro-view preference. For the second challenge, unlike

the conventional recommendation systems, our model is
equipped with a dual-view adaptive module as shown in
Fig. 1(c), which is able to adaptively self-adjust to suit user
preferences in the dual views. This can be achieved through
a form of hypernetwork [21], [22], where the parameters of
our prediction layer are generated by our adaptive module,
a secondary neural network that adjusts a set of meta-
parameters to adapt the prediction layer to the changing
input (i.e., different users or items). Unlike previous adap-
tive models, we account for two levels of input conditioning,
such that the macro-view is conditioned on the target user,
and the micro-view is conditioned on both the macro-view
and the item’s categories. More concretely, we construct
a HIN [14] consisting of users, items and categories, and
further implement a base embedding model for the HIN,
upon which the dual-view preferences and adaptive module
are materialized. Compared to traditional models that only
utilized user-item interactions, a HIN-based model can cap-
ture richer semantics and thus attain better recommendation
performance [12], [13].

In summary, this work makes the following contribu-
tions.

• To the best of our knowledge, this is the first attempt
to integrate user preferences in macro- and micro-
views without relying on review data or other side
information.

• We propose DVAR, a novel model that integrate the
two views in a dependence-aware manner and is
adaptive to the input users and item categories.

• We conduct extensive experiments on four real-
world datasets. Both quantitative and qualitative
results demonstrate that our dual-view formulation
is beneficial to personalized recommendation and
achieves state-of-the-art performance.

2 RELATED WORK

In this section, we introduce and discuss related work in
three categories: traditional recommendation, micro-view
aware recommendation, and adaptive learning.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

2.1 Traditional Recommendation Models
Recent years have witnessed numerous recommendation
systems following the success of collaborative filtering tech-
niques. Their applications span not only traditional scenar-
ios like e-commerce [23] and social media [24], but also
novel domains such as Internet of things [25], [26]. Classical
techniques for collaborative filtering, such as matrix factor-
ization [4], factorization machines [5] and Bayesian models
[27], aim to learn user preferences based on historical inter-
actions. These methods can also be combined with artificial
neural networks to increase the model capacity [6], [7].
Different learning paradigms such as reinforcement learning
[28] and active learning [29] also play an important role
in the community of preference learning. Besides historical
interactions, side information often exists on users or items
such as social connections [3] or item categories [30], which
has been integrated into a heterogeneous information net-
work (HIN) to exploit its inherent structural and semantic
properties [12], [31]. Sometimes, recommendation systems
can also act as an auxiliary model to be incorporated into
other tasks (e.g., personalized image tag prediction [32]) to
improve the personalization of the main model. However,
these methods only learn a general preference for each user
in the macro view, without adapting to finer-grained micro-
view preferences for different categories of items.

2.2 Micro-View Aware Recommendation
Several recent studies have attempted a limited form of the
micro-view, which leverage item aspects mined from review
texts [17], [33] or influences from users who have inter-
acted with the same item [20]. However, their performance
heavily depends on the availability and quality of review
or co-interaction user data which can be sparse and noisy
especially for less popular items. Item category information
has also been used [30], [34], [35], but they merely combine
category features as additional side information (e.g., simply
adding category features to complement original user/item
features [35]) and do not directly tailor user preferences
w.r.t. item categories. The name “micro” also coincidentally
appears in some other works [36], [37], [38]. However, they
refer to the different granularities of interactions such as
clicking pictures or chatting with customer service. Hence,
their research objective and model design are fundamentally
different from our work. Besides, all these methods train a
fixed model for all users and items, and thus are not truly
adaptive to changing user or item input.

2.3 Adaptive Learning
Our work achieves adaptive dual-view learning through
hypernetworks [21], which belong to the paradigm of meta-
learning. Different from conventional supervised learning,
meta-learning is adaptive in nature by learning a prior that
can be easily generalized to similar task. In recommenda-
tion, model-agnostic meta-learning (MAML) [39] has been
applied to quickly adapt to new users and items in cold-start
scenarios [40], [41], [42]. On graph data, hypernetworks such
as Feature-wise Linear Modulations (FiLM) [22] have been
used in graph neural networks in order to adapt to different
nodes and edges [43], [44] or new graphs [45]. These meth-
ods do not address the adaptation based on our dual-view

preferences. Additionally, MAML-based approaches require
additional fine-tuning data for each item or user during
testing, which are not needed in our approach.

3 PRELIMINARIES

In this section, we formalize the input data and the rec-
ommendation problem, and introduce related concepts. The
main notations used are shown in Table 1.

3.1 Input Data

A typical recommendation system works with a set of users
U and items I . Our model also assumes a set of categories
C, such that each item is associated with one or more
categories. The users, items and categories form a graph
G = {V, E}, where V = U ∪ I ∪ C denotes the set of
nodes, and E denotes the set of edges between nodes. The
graph is an instance of heterogeneous information networks
(HIN) [14], as shown in Fig. 2(a). Specifically, there are three
types of nodes in V , namely user, item and category, as
well as four types edges in E , namely user-item interaction,
item-category association, user-user similarity and item-
item similarity. Given a user u ∈ U and an item i ∈ I , if
there is a historical interaction between them (e.g., purchase
in e-commerce, and click in streaming services), we have
(u, i) ∈ E . More succinctly, let yu,i denote the ground-truth
interaction status between u and i such that yu,i = 1 if
(u, i) ∈ E , and 0 if (u, i) /∈ E .

3.2 Recommendation Problem

To incorporate the micro view, our model depends on not
only the target user and item, but also the categories of the
item. Formally, our goal is to learn a prediction function

ŷu,i = F(u, i, Ci; Θ), (1)

such that ŷu,i denotes the probability that user u will interact
with item i, Ci = {c ∈ C|(i, c) ∈ E} denotes the set of
categories of item i, and Θ denotes the model parameters.
Given a set of user-item pairs Dtr as training data, the
model can be learned by minimizing the cross entropy loss
between the predictions {ŷu,i} and the ground truths {yu,i},
as follows.

min
Θ

−
∑

(u,i)∈Dtr

yu,i log ŷu,i + (1− yu,i) log(1− ŷu,i). (2)

TABLE 1: Summary of common notations used.

Symbol Definition

U , u Set of users and a user instance
I, i Set of items and an item instance
Ci Set of categories for item i
V, E Set of nodes and set of edges in a HIN
M,m Set of meta-paths and a specific meta-path
p,Pm A meta-path instance and a set of instances of meta-path m

yu,i, ŷu,i Ground truth and predicted interaction between u and i
hm,hp Embeddings of meta-path m and instance p
Φ(·), ϕ(·) Macro- and micro-view layers

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

3.3 Meta-paths

Meta-paths [46] have been widely used on HINs for
their ability to preserve structural and semantic properties.
Specifically, a meta-path is a sequence of node/edge types
that captures a particular relationship between the start
and end node types. For example, given users (U), items
(I) and categories (C) in our graph, U–I–C–I is a meta-
path describing that the start user has interacted with an
item in the same category as the end item. To model the
relationship between users and items, we only consider
meta-paths starting from U and ending with I.

Subsequently, between a specific user and item such as
u1 and i4 in Fig. 2(a), the path (u1, i3, c2, i4) is an instance of
the meta-path U–I–C–I, which acts as a bridge between u1

and i4 and offers an interpretation on how they are related.
In general, given any meta-path m with length ℓ, we can
sample a subset of its instances, denoted Pm, by performing
ℓ-step random walks on the graph.

4 PROPOSED APPROACH

In this section, we introduce our model DVAR. The overall
framework is illustrated in Fig. 2, consisting of three main
modules: (1) the base embedding model, which captures the
structural and semantic properties of the input HIN; (2)
the dual-view adaptive module, which is capable of adaptively
self-adjusting w.r.t. changing users or items to suit user pref-
erences in both macro- and micro-views; (3) the prediction
layer, which predicts the probability of interaction between
a user and an item using the adapted parameters. In the
following, we elaborate each of the three modules.

4.1 Base Embedding Model

Our base embedding model attempts to learn a set of
embeddings to represent the relationships between users
and items based on the input HIN, as illustrated in Fig. 2(b).

As HIN representation learning is not a main contri-
bution of this paper, we mainly follow a previous meta-
path-based recommendation model [13]. Given a meta-path
m, we can construct an embedding hm ∈ Rd to represent
the relationship based on m using a mean pooling over
the instances of m. That is, hm = MEAN({hp : p ∈ Pm}),
where hp ∈ Rd is the embedding of the meta-path instance
p. Thus, the meta-path embedding hm can represent the
overall relationship pattern between users and items in a
more robust manner than an individual path, which is sub-
sequently leveraged to predict the probability of interactions
between the users and items.

To learn hp for an instance p = (v1, v2, . . . , vℓ), we first
construct a feature matrix Xp = [xv1 ,xv2 , · · · ,xvℓ] ∈ Rd×ℓ,
where xvi ∈ Rd indicates the feature vector of node vi in
the instance p. We adopt a self-attention mechanism [13] on
path p to encode the pairwise relevance between the nodes
in p via an ℓ× ℓ similarity matrix

Sp = SELF-ATTN(Xp; Θattn), (3)

where Θattn contains the learnable parameters. The high-
level steps of the self-attention are outlined as follows.
A typical attention technique computes the compatibility

between two sequences, namely, keys and queries. In self-
attention, keys and queries are referring to the same se-
quence. In our scenario, both keys Kp and queries Qp are
derived from the feature matrix Xp of the same path p.
Essentially, we are learning the pair-wise attention weights
between different nodes in path p, in the form of a similarity
matrix Sp, to see which nodes are more important to a target
node in the same path. The attention weights are then used
to aggregate the values to obtain the overall embedding of
path p, where the values are also derived from the path
feature matrix Xp.

Specifically, given a path p of length ℓ, the keys, values
and queries are computed as follows.

Kp = WKXp, (4)
Qp = WQXp, (5)
Vp = WV Xp, (6)

where WK , WQ and WV ∈ Rd×d are trainable parameters.
Subsequently, the attention weights, Sp ∈ Rℓ×ℓ, are given
by

Sp = SOFTMAX

(
K⊤

p Qp√
s

)
, (7)

where
√
s is a scaling factor to avoid the negative effects of

very small gradients when the input data are large. Follow-
ing previous work [13], we set s = 128. The above process
of computing the attention weights Sp is absorbed into
the SELF-ATTN(Xp; Θattn) function in Eq. (3). The learnable
attention parameters are thus Θattn = {WK ,WQ}.

Based on the attention weights, hp can be obtained by
aggregating the values as follows.

hp = TANH
(
W (ℓ)FLATTEN(VpSp) + b(ℓ)

)
, (8)

where TANH(·) is the activation function, FLATTEN(·) vec-
torizes a matrix into a vector by stacking its columns,
W (ℓ) ∈ Rd×dℓ is a weight matrix with d-rows and (d × ℓ)-
columns, and b(ℓ) ∈ Rd is a bias vector. Note that for each
value of the path length ℓ, there is a corresponding W (ℓ) and
b(ℓ). In practice, meta-paths are often short (e.g., ℓ < 5) to
prune noises from distant nodes. The learnable aggregation
parameters are thus Θaggr = {WV ,W

(ℓ), b(ℓ)}.
Overall, Θbase = (Θattn,Θaggr) forms the collection of all

learnable parameters in the base model.

4.2 Dual-View Adaptive Module
Our proposed model DVAR is adaptive to user preferences
in the macro- and micro-views. That is, the prediction model
can self-adjust its parameters to adapt to different users and
items in the two views, unlike conventional models whose
parameters are frozen after training.

4.2.1 Dual-view Formulation
On one hand, we formulate the macro view w.r.t. each
user, to capture the general preferences of the target user
across all items. On the other hand, we formulate the micro
view of a user w.r.t. each item’s categories. As motivated
in Sect. 1, using categories achieves a balance between the
coarse-grained macro-view preferences, and the difficult-to-
fit item-wise preferences.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

Fig. 2: Overall framework of DVAR.

Moreover, the two views are fundamentally dependent,
where the macro view sketches the general preference of a
user that governs the finer-grained micro view w.r.t. dif-
ferent categories. As shown in Fig. 2(c), Φ(xu) denotes
the macro-view preference of user u, which is a function
of u’s input features xu. In contrast, the micro-view pref-
erence of u toward item i is denoted by ϕ(Φ(xu),xCi),
which is a function of not only the macro-view prefer-
ence of u, but also the feature vector of i’s category set,
xCi . Specifically, let xCi = MEAN({xc : c ∈ Ci}) where
xc = MEAN({xi : (i, c) ∈ E}). That is, xc is the feature
vector of a single category c pooled over all items in c,
whereas xCi is further pooled over the categories of i as an
item may be associated with multiple categories. With the
help of mean-pooled category embedding, we are able to
comprehensively describe the overall category information
of an item, in order to facilitate the modeling of micro-view
preference toward each item.

4.2.2 Dual Adaptive Layers

Conventionally, Φ(·) or ϕ(·) is realized as one model that
can be applied to all users or item categories to generate the
preferences. At the other extreme, we can realize Φ(·) or ϕ(·)
as a collection of models, one for each user or category. The
former tends to be less adaptive to the changing input, and
the latter tends to suffer from overfitting and cannot easily
extend to a new user or category.

To address the two problems, we realize the two views
as a learnable function to generate a transformation procedure
specific to the input user or item. The transformations are
ultimately used to adapt a set of meta-parameters Θmeta for
the prediction w.r.t. any input user or item, while the meta-
parameters encode the general pattern of the domain, a form
of prior shared across all users and items. Given the ability
to adapt the meta-parameters, we call Φ(·) and ϕ(·) the
macro-view and micro-view adaptive layers, respectively.
Each adaptive layer represents neither a single model nor
a collection of models. Instead, it outputs different transfor-

mations to adjust the meta-parameters in response to the
changing input, i.e., different input users or items. In other
words, we do not learn any prediction parameter directly,
but we learn (1) the meta-parameters Θmeta, and (2) how
to transform them into adapted parameters for predicting the
interaction between the target user and item.

Formally, let Θu,i denote the adapted parameters used to
predict the probability that user u will interact with item i.
Specifically, the adapted parameter Θu,i is derived from the
shared meta-parameters Θmeta by the dual adaptive layers
in a dependence-aware manner, i.e.,

Θu,i = T (Θmeta, ϕ(Φ(xu; ΘΦ),xCi
; Θϕ)), (9)

where T transforms Θmeta in accordance with the transfor-
mation procedure generated by the dual adaptive layers,
and ΘΦ,Θϕ are the parameters of the two layers, respec-
tively. This is an instance of hypernetwork [21], as the
adaptive layers can be deemed a secondary neural network
that predicts the adapted parameters Θu,i for the primary
network responsible for predicting the final recommenda-
tions. In the following, we elaborate each layer.

Macro-view Adaptive Layer. We employ scaling and
shifting transformations in a form of hypernetwork known
as Feature-wise Linear Modulation (FiLM) [22]. The general
idea of FiLM is to generate scaling and shifting vectors
conditioned on the input feature, which are used to trans-
form the model parameters in order to adapt to different
input. In our scenario, given user u, Φ(xu; ΘΦ) outputs a
transformation procedure given by

αu = AΦxu, (10)
βu = BΦxu, (11)

where αu, βu ∈ Rd respectively denote scaling and shifting
vectors specific to user u, and AΦ, BΦ ∈ Rd×d are the
learnable parameters of the macro-view adaptive layer, i.e.,
ΘΦ = (AΦ, BΦ). Subsequently, αu and βu will be leveraged
in the micro-view adaptive layer to transform the micro-
view parameters. In other words, αu and βu, which are

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

generated from the general preference of u in the macro
view, govern the micro-view preferences of u.

Micro-view Adaptive Layer. Given an user u and an
item i with a category set Ci, ϕ(Φ(xu; ΘΦ),xCi

; ΘΦ) also
outputs a transformation procedure given by

αu,i = (Aϕαu + βu)⊙ xCi , (12)
βu,i = (Bϕαu + βu)⊙ xCi , (13)

where αu,i, βu,i ∈ Rd respectively denote scaling and shift-
ing vectors specific to user u and item i’s categories, αu and
βu are output from the macro-view layer Φ(xu; ΘΦ), and
Aϕ, Bϕ ∈ Rd×d are the learnable parameters of the micro-
view layer, i.e., Θϕ = (Aϕ, Bϕ). Here ⊙ denotes Hadamard
product. Note that αu and βu transform the micro-view
parameters through scaling and shifting, respectively.

Finally, the output from the micro-view layer will be
used to scale and shift the meta-parameters to generate the
adapted parameters for the prediction layer in Sect. 4.3. For
any user u and item i, the adapted parameters are

Θu,i = Θmeta ⊙ αu,i + βu,i. (14)

Algorithm 1: Training of DVAR

Input: Input HIN G = {V, E}, training data Dtr,
meta-paths M;

Output: Optimized model parameters Θ;
Initialize DVAR parameters Θ = (Θbase,Θmeta,
ΘΦ,Θϕ);

Initialize xu, xi with pre-trained features and
compute xc;

Compute xCi
= MEAN({xc : c ∈ Ci});

while not converged do
Compute hm for each m ∈ M;
Compute the macro-view scaling and shifting
vectors with Eqs. (10)–(11);

Compute the micro-view scaling and shifting
vectors with Eqs. (12)–(13);

Compute dual adapted parameters Θu,i with
Eq. (14);

Predict ŷ(m)
u,i with Eq. (16) for each (u, i) ∈ Dtr

and m ∈ M;
Compute the loss given by Eq. (17);
Update trainable parameters Θ;

end
return updated parameters Θ∗.

4.3 Prediction Layer

Consider a set of user-item pairs Dtr as training data, and
a set of meta-paths M. For any training sample (u, i) ∈
Dtr, we predict a probability of interaction ŷ

(m)
u,i based on

each meta-path (i.e., relationship) m ∈ M. Specifically, we
model a triplet (u, i,m) based on the idea of translation [47].
The concept of translation was originally used in knowledge
graphs to model relation triplets. A relation triplet (h, r, t)
captures the fact that a head entity h is related to a tail entity
t via the relationship r. The translation mechanism models
the embedding of relation r as the translation from head h

to tail t: h + r ≈ t. In the context of recommendation, we
regard a meta-path m that connects user u and item i as a
relation [13], [48], which captures different user preferences
in items as discussed in Sect. 3.3. To imitate the translation
on the triplet (u,m, i), we define a joint embedding

h
(m)
u,i = xu + hm − xi. (15)

which captures the “transition error” of the triplet. During
model training, the joint embedding of positive triplets
would gradually converge to a certain distribution that is
distinguishable from that of negative triplets. Thus, given
the joint embedding, we can further predict the probability
of interaction between user u and item i, based on only the
relationship m, as

ŷ
(m)
u,i = MLP(h(m)

u,i ; Θu,i), (16)

where MLP is a multi-layer perceptron (MLP) parameter-
ized by Θu,i. Note that the parameters Θu,i are not directly
learnable; they are generated by the dual adaptive layers
conditioned on user u and item i, as shown in Eq. (14).

4.3.1 Training
Overall, our proposed DVAR has a set of learnable parame-
ters Θ = (Θbase,Θmeta,ΘΦ,Θϕ) that can be optimized based
on the cross entropy loss. Given a set of user-item pairs as
training data Dtr, we minimize the following.

min
Θ

−
∑

(u,i)∈Dtr

∑
m∈M

yu,i log ŷ
(m)
u,i + (1− yu,i) log(1− ŷ

(m)
u,i)

+ λ(∥αu,i − 1∥22 + ∥βu,i∥22), (17)

where the last term λ(∥αu,i−1∥22+∥βu,i∥22) is a constraint on
the transformations generated by the dual adaptive layers,
to ensure that the adapted parameters would not be too
far away from the prior meta-parameters. Without this
constraint the model tends to overfit. Here λ ≥ 0 is a scalar
hyperparameter to balance the constraint, and 1 denotes a
vector of all one’s.

The pseudocode of the training process is outlined in Al-
gorithm 1. it mainly involves (1) using the base embedding
model to obtain embeddings for users, items, meta-paths
and categories, (2) computing dual-view adaptations and
the adapted parameters, and (3) computing and backpropa-
gating the recommendation loss.

4.3.2 Testing
During testing, we predict ŷu,i, the overall probability that u
will interact with i, by pooling the probability w.r.t. different
meta-paths. Letting POOL(·) be a pooling function such as
max or mean, we have

ŷu,i = POOL({ŷ(m)
u,i : m ∈ M}). (18)

5 EXPERIMENT

We conduct extensive experiments to evaluate and analyze
our proposed model DVAR1. We further present a case
study to provide some insights into the dual views.

1We release the code at https://github.com/mediumboat/DVAR

 https://github.com/mediumboat/DVAR

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

TABLE 2: Statistics of the datasets.

Dataset #Users #Items #Interactions #Categories Density

MovieLens 943 1,682 100,000 19 106.0
Last.fm 1,889 10,150 83,763 100 44.3
Serendipity 104,661 49,151 9,997,850 19 95.5
Ali 416,538 256,857 852,346 100 2.0

5.1 Experiment Setup

5.1.1 Datasets

We employ four public datasets, namely, MovieLens 2 and
Serendipity 3 for movies, Last.fm 4 for music, and Alibaba
(Ali) 5 for e-commerce. Their statistics are shown in Table 2.
Note that for Last.fm and Ali, we only retain the top 100
most frequent categories.

On the original datasets, we perform the following pre-
processing steps. First, we construct a HIN for each dataset
using users, items and categories. The categories of an item
is also known as genres on the Movielens and Serendipity
datasets, and tags on the Last.fm dataset. An item-category
edge exists if the item is in that category, and an item
may belong to multiple categories. We also construct user-
user and item-item edges based on their similarity. Specif-
ically, we apply Singular Value Decomposition (SVD) on
the user-item interaction matrix to generate user and item
embeddings. For each user/item, we form links to top 10
users/items ranked by their cosine similarity of the SVD-
based embeddings. Second, on the constructed HIN, we
obtain the embedding vector xv for each node v ∈ V using
the mp2vec algorithm [49]. For a user or item node, i.e.,
v ∈ U or v ∈ I , its embedding xv is used as the user/item
feature vector shown in Fig. 2(a). For a category node, i.e.,
v ∈ C, we compute its feature vector by pooling over the
feature vectors of all items in the category. Finally, for each
meta-path (the choice of meta-paths will be elaborated in
Sect. 5.1.5), we sample its instances by performing n random
walks starting from each user node as described in Sect. 3.3,
and remove repeated path samples. In our case, we set
n = 10, 000. For each sampled path p, we construct a feature
matrix Xp by stacking the feature vectors of the nodes in p,
as described in Section 4.1.

5.1.2 Data Splitting

We split the users into training/validation/test sets with the
ratio of 0.7/0.15/0.15. All user-item interactions of training
users are added to Dtr as training data. For the valida-
tion/test users, we add 50% of their interactions to Dtr in
order to learn their representations, whereas the remaining
50% are held out for validation/testing. During evaluation,
for each test user u, we construct a ground truth list D+

u

by adding the held-out interacted items of u. The ground
truth list (i.e., the positive examples) is further mixed with
a sample of 20 non-interacting items of u (i.e., the negative
examples) as the candidate list for recommendation to u.

2https://grouplens.org/datasets/movielens/100k/
3https://grouplens.org/datasets/serendipity-2018/
4https://grouplens.org/datasets/hetrec-2011/
5https://tianchi.aliyun.com/dataset/dataDetail?dataId=649

5.1.3 Evaluation Metrics
We choose three widely adopted evaluation metrics, namely,
precision, recall and normalized discounted cumulative
gain (NDCG), applied to top 10 items recommended to each
test user u. Henceforth, we abbreviate them as prec@10,
rec@10 and NDCG@10, respectively. Let us denote the
ranked list of top 10 items recommended to user u as Drl

u.
Then, these metrics on a given test user u are defined below.

prec@10 =
|D+

u ∩ Drl
u|

10
, (19)

rec@10 =
|D+

u ∩ Drl
u|

|D+
u|

, (20)

NDCG@10 =
DCG@10
iDCG@10

. (21)

Note that NDCG is defined in terms of DCG and iDCG.
Specifically, DCG@10 =

∑10
k=1

relk
log(k+1) , where relk repre-

sents the relevance of Drl
u(k), the k-th item in the ranked

list, i.e., relk = 1 if Drl
u(k) ∈ D+

u, and relk = 0 otherwise.
Furthermore, iDCG is the ideal DCG which is computed
as the DCG of the ranked list Drl

u where the items in the
list are re-sorted by their relevance relk in descending order.
After computing the metrics for each test user, we report the
average prec@10, rec@10 and NDCG@10 over all test users.

5.1.4 Baselines
We consider the following methods as our baselines for
comparison.

• SVD: The classical singular value decomposition
technique for matrix factorization.

• NeuCF [7]: a neural collaborative filtering model for
recommendation.

• mp2vec [49]: a meta-path-based skip-gram model for
HIN embedding.

• HERec [12]: a HIN-based recommendation model,
integrating matrix factorization with fused HIN em-
bedding.

• MTRec [13]: a HIN-based recommendation model
with a self-attention mechanism on meta-paths.

• CMN [20]: a collaborative memory network recom-
mendation model with an attention mechanism to
adjust the influences from users who interacted with
the same item.

• BiANE [50]: a bipartite attributed network embed-
ding model.

5.1.5 Parameters and Settings
We chose the hyper-parameters and settings based on the
validation set and guidance from the literature. In particular,
we set the embedding dimension for all methods to 128,
which is also a common setting in many previous graph
representation learning works [13], [49], [50]. For methods
requiring meta-paths, we use meta-paths of length 3 or 4
and restrict the two end nodes to user and item, which
include U-I-U-I, U-I-C-I, U-U-U-I, U-I-I-I, U-U-I and U-I-I
(U: user, I: item, C: category). For HIN-based methods, the
input HIN is the same as that for DVAR; for other methods,
the input data are user-item interactions (i.e., a biparatite
graph). For BiANE and DVAR, we use mp2vec to gener-
ate the initial feature vectors as the default setting. Note

https://grouplens.org/datasets/movielens/100k/
https://grouplens.org/datasets/serendipity-2018/
https://grouplens.org/datasets/hetrec-2011/
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

TABLE 3: Comparison between the proposed DVAR and the baselines. The overall best result is bolded, and the best
baseline result is underlined.

MovieLens Last.fm Serendipity Ali

Prec@10 Rec@10 NDCG@10 Prec@10 Rec@10 NDCG@10 Prec@10 Rec@10 NDCG@10 Prec@10 Rec@10 NDCG@10

SVD .639±.011 .149±.008 .806±.004 .448±.013 .220±.001 .701±.010 .402±.014 .258±.015 .698±.019 .072±.038 .482±.213 .456±.042
NeuCF .795±.010 .212±.026 .914±.013 .721±.020 .354±.007 .870±.004 .602±.034 .426±.032 .811±.028 .077±.014 .539±.104 .455±.012
mp2vec .752±.013 .177±.013 .882±.008 .671±.014 .301±.022 .821±.017 .561±.042 .382±.039 .767±.023 .059±.032 .433±.176 .424±.018
HERec .812±.017 .214±.021 .917±.015 .703±.021 .338±.009 .874±.015 .587±.021 .389±.017 .781±.019 .051±.013 .411±.119 .419±.022
MTRec .773±.008 .189±.016 .912±.006 .719±.022 .345±.016 .873±.011 .591±.030 .406±.015 .813±.027 .057±.021 .445±.253 .411±.054
CMN .771±.019 .152±.006 .834±.015 .599±.028 .246±.036 .740±.026 .545±.031 .361±.024 .721±.010 .041±.004 .522±.103 .390±.044
BiANE .780±.012 .183±.016 .904±.009 .697±.013 .335±.010 .869±.014 .583±.016 .386±.017 .781±.008 .085±.027 .497±.104 .455±.011

DVAR .892±.010 .228±.037 .968±.011 .782±.022 .388±.019 .897±.015 .644±.035 .448±.037 .853±.031 .095±.024 .623±.072 .451±.036

that other methods do not require external node features
as input. For DVAR, the default pooling function in the
prediction layer in Eq. (18) is max pooling, and the MLP
therein has one hidden layer with 128 neurons. For SVD,
mp2vec and BiANE, the prediction ŷu,i is computed with
cosine similarity on the trained embeddings. Other methods
use their respectively proposed prediction function. The
effect of other feature initialization methods and pooling
functions will be examined in Sect. 5.4. For other standard
parameters such as the learning rate and batch size, the
main principle is to balance both validation performance
and training efficiency. Particularly, for DVAR, we use the
Adam optimizer, set the learning rate to 1e-3 and training
batch size to 5,000. The constraint scalar λ in Eq. (17) is
set to 1e-3 for Movielens and 1e-2 for other datasets, and
we further analyze its impact on the model performance in
Sect. 5.4.

We implement the proposed DVAR using Tensorflow 2.2
in Python 3.6. All experiments were conducted on a Linux
workstation with a 6-core 3.6 GHz CPU, 128 GB DDR4
memory and two RTX 2080 Ti GPUs. For the baseline SVD,
we use the SciPy implementations6. For mp2vec, we use the
DGL port version7. For CMN, we use a PyTorch port8 as
reference and port it to TensorFlow. For NeuCF9, HERec10

and BiANE11, we used their respective authors’ implemen-
tations. For MTRec, we implement the recommendation
component as described in its paper with TensorFlow.

5.2 Performance Comparison

Table 3 shows the performance of various models on all the
four datasets. To show the robustness the results, for each
dataset we run the experiment five times, and each time
we split the train/validation/test sets according to the ratio
described in Sect. 5.1.2. Finally, we report the corresponding
mean and standard deviation for each metric over the five
runs. From the reported results, we can make two main
observations.

First, DVAR performs consistently well on all datasets,
registering an average improvement of about 0.052, 0.039

6https://scikit-learn.org/stable/modules/generated/sklearn.
decomposition.TruncatedSVD.html

7https://github.com/dmlc/dgl/tree/master/examples/pytorch/
metapath2vec

8https://github.com/IamAdiSri/cmn4recosys
9https://github.com/hexiangnan/neural collaborative filtering

10https://github.com/librahu/HERec
11https://github.com/fukien/BiANE

and 0.027 over the best baselines in terms of the three met-
rics, respectively. There are two reasons why DVAR brings
such improvements. On the one hand, DVAR integrates
both macro- and micro-views for adaptive recommendation
while other models only focus on the macro-view. As a
result, compared to the baseline models, DVAR can learn the
user’s micro-view preference in a more adaptive way while
still preserving the macro-view preference. Although there
are some approaches also utilizing some form of micro-view
preferences as described in Sect. 2.2, they are not compared
here as they require additional side information such as
text reviews. We will further evaluate the contribution of
our dual-view adaptive module through an ablation study
in Sect. 5.3. On the other hand, DVAR utilizes a HIN for
recommendation. Previous studies have demonstrated that
HIN is an effective means of incorporating the structural
and semantic properties to improve the performance of a
recommendation system [14]. It can also be observed that
among the baselines, HERec and MTRec are HIN-based and
generally achieve competitive results.

Second, on the Ali dataset, many deep or complex
models fail to outperform shallow models (i.e., SVD and
NeuCF) in NDCG. This outcome is influenced by two
factors. For one, among the three evaluation metrics, only
NDCG depends on the item ranking. Hence, NDCG is
harder to optimize than the other two metrics, especially
when the recommendation model employs a user-item pre-
diction loss instead of a ranking loss [51]. Moreover, the Ali
dataset is very sparse, which makes deep or complex models
more likely to overfit [52], [53]. Considering the difficulty
of NDCG and the sparsity issue, in terms of NDCG our
approach cannot easily outperform shallower models like
SVD and NeuCF, as well as models employing a pair-wise
ranking loss like BiANE. Nevertheless, our design can still
achieve a comparable NDCG@10 score, whilst outperform-
ing in Prec@10 and Rec@10.

5.3 Ablation study

We perform model ablation to examine how our dual-view
adaptive module contributes to the recommendation. First,
we derive two variants with only the base embedding model
and prediction layer, without the adaptive module. One of
the variants adopts multiple prediction layers, one for each
category (named Multi). The other uses a single prediction
layer for all categories (named Single). Next, we combine
the micro- and macro-view adaptive layers linearly instead

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
https://github.com/dmlc/dgl/tree/master/examples/pytorch/metapath2vec
https://github.com/dmlc/dgl/tree/master/examples/pytorch/metapath2vec
https://github.com/IamAdiSri/cmn4recosys
https://github.com/hexiangnan/neural_collaborative_filtering
https://github.com/librahu/HERec
https://github.com/fukien/BiANE

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

Prec@10 Rec@10 NDGC@10

MovieLens

0.6

0.7

0.8

0.9

1

P
re

c
@

1
0

 &
 N

D
C

G
@

1
0

0.15

0.2

0.25

R
e

c
@

1
0

Prec@10 Rec@10 NDGC@10

Last.fm

0.6

0.7

0.8

0.9

1

P
re

c
@

1
0

 &
 N

D
C

G
@

1
0

0.3

0.32

0.34

0.36

0.38

0.4

R
e

c
@

1
0

Prec@10 Rec@10 NDGC@10

Serendipity

0.5

0.6

0.7

0.8

0.9

P
re

c
@

1
0

 &
 N

D
C

G
@

1
0

0.35

0.4

0.45

0.5

R
e

c
@

1
0

Prec@10 Rec@10 NDGC@10

Ali

0

0.05

0.1

0.15

P
re

c
@

1
0

0.3

0.4

0.5

0.6

0.7

R
e

c
@

1
0

 &
 N

D
C

G
@

1
0

Multi Single Micro Macro Average DVAR

Fig. 3: Ablation study on the dual-view adaptive module.

of our dependence-aware manner. Specifically, we replace
Eqs. (10)–(13) with the following formulae:

αu,i = q(AΦxu) + (1− q)(AϕxCi
), (22)

βu,i = q(BΦxu) + (1− q)(BϕxCi
), (23)

where q is a scalar to balance the two views. We obtain three
different variants when q = 0, 0.5, 1. In particular, q = 0 is
equivalent to a micro-view only model (named Micro), q = 1
is equivalent to a macro-view only model (named Macro),
and q = 0.5 is equivalent to a simple averaging of the two
views (named Averaging). Note that other q values do not
achieve better results.

The comparison between DVAR and its five variants is
shown in Fig. 3. The absence of dual-view adaptive module
in Multi and Single leads to huge performance decrease
in most cases. Furthermore, Multi is generally worse than
Single as it is hard for category-specific prediction layers
to capture the whole picture of macro-view preferences.
In contrast, by incorporating some adaptive capability, the
three variants Micro, Macro and Averaging can achieve much
better results. While the Averaging method combines both
micro- and macro-views, it employs a linear combination
that ignores the hierarchical relationship between the two
views, limiting its performance to be similar to that of Micro
or Macro only. Lastly, the full model DVAR outperforms all
the variants, showing the importance of dual-view adaptive
module with a dependence-aware integration.

5.4 Model analyses

We conduct further experiments to analyze our model per-
formance from several aspects.

5.4.1 Impact of Parameters
We investigate the impact of the constraint scalar λ in
Eq. (17). The performance of DVAR against λ is plotted
in Fig. 4. All four datasets show consistent performance
patterns w.r.t. varying λ values. In particular, DVAR is quite
robust to different λ values in the range [1e-4, 1e-2]. Nev-
ertheless, we should avoid extreme values which can still

0 1e-4 1e-3 1e-2 1e-1 1

� (MovieLens)

0.6

0.7

0.8

0.9

1

P
re

c
@

1
0
 &

 N
D

C
G

@
1
0

0

0.1

0.2

0.3

0.4

R
e
c
@

1
0

Precision@10 Recall@10 NDCG@10

0 1e-4 1e-3 1e-2 1e-1 1

� (Last.fm)

0.6

0.7

0.8

0.9

1

P
re

c
@

1
0
 &

 N
D

C
G

@
1
0

0.2

0.25

0.3

0.35

0.4

R
e
c
@

1
0

0 1e-4 1e-3 1e-2 1e-1 1

� (Serendipity)

0.5

0.6

0.7

0.8

0.9

P
re

c
@

1
0
 &

 N
D

C
G

@
1
0

0.3

0.35

0.4

0.45

0.5

R
e
c
@

1
0

0 1e-4 1e-3 1e-2 1e-1 1

� (Ali)

0.3

0.4

0.5

0.6

0.7

0.8

R
e
c
@

1
0
 &

 N
D

C
G

@
1
0

0.02

0.04

0.06

0.08

0.1

P
re

c
@

1
0

Fig. 4: Impact of λ.

Prec@10 Rec@10 NDGC@10

MovieLens

0.6

0.7

0.8

0.9

1

P
re

c
@

1
0
 &

 N
D

C
G

@
1
0

0.15

0.2

0.25

R
e
c
@

1
0

Prec@10 Rec@10 NDGC@10

Last.fm

0.6

0.7

0.8

0.9

1

P
re

c
@

1
0
 &

 N
D

C
G

@
1
0

0.6

0.7

0.8

0.9

1

0.6

R
e
c
@

1
0

Prec@10 Rec@10 NDGC@10

Serendipity

0.5

0.6

0.7

0.8

0.9

P
re

c
@

1
0
 &

 N
D

C
G

@
1
0

0.35

0.4

0.45

0.5

R
e
c
@

1
0

Prec@10 Rec@10 NDGC@10

Ali

0

0.05

0.1

0.15

P
re

c
@

1
0

0.3

0.4

0.5

0.6

0.7

R
e
c
@

1
0
 &

 N
D

C
G

@
1
0

BiANE
mp

BiANE
svd

DVAR
mp

DVAR
svd

Fig. 5: Impact of feature initialization.

hurt the performance significantly. On one hand, λ < 1e-4
is a bad choice as it is equivalent to removing the constraint
on the adapted parameters, which can be too different from
the prior meta-parameters. On the other hand, λ > 1e-2
is not ideal either as it forces the adapted parameters to
become too similar to the prior meta-parameters, effectively
removing the adaptive module.

5.4.2 Feature Initialization
To show how different feature initializations can influence
the recommendation performance, we compare two initial-
ization methods. The first is mp2vec, which is also the
default setting in our experiments. The other is SVD, which
is a traditional matrix factorization method widely used in
recommendation systems. We apply the two initialization
methods to the baseline BiANE and our proposed DVAR.
We label the variants of BiANE and DVAR with mp2vec-
based initializations as BiANEmp and DVARmp, respectively,
and those with SVD-based initializations as BiANEsvd and
DVARsvd, respectively. The performance is reported in Fig. 5.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

TABLE 4: Case study on user 251, with sample movies in training and testing data, and the respective ranking positions
of the testing movies in the recommendation lists predicted by two models. The movies matching the user’s micro-view
preference (i.e., actions starred by Ford and comedies starred by Pollak) appear in bold.

Sample of Interacted Movies in Training Data Sample of Interacted Movies in Testing Data

Title Category Actor/Actress Title Category Actor/Actress Rank by DVAR Rank by Macro

Empire Strikes Back Action Harrison Ford The Fugtive Action Harrison Ford 2 5
Return of the Jedi Action Harrison Ford Indiana Jones 3 Action Harrison Ford 7 14

Star Wars Action Harrison Ford That Thing You Do! Comedy Kevin Pollak 10 45
Dragonheart Action Harrison Ford The Rock Action Sean Connery 3 2

Grumpier Old Men Comedy Kevin Pollak Twister Action Helen Hunt 4 3
Mission: Impossible Action Tom Cruise Men in Black Action Tommy L. Jones 8 8

Die Hard Action Bruce Willis Willy Wonka Comedy Gene Wilder 5 4
Michael Comedy John Travolta The Birdcage Comedy Robin Williams 14 17

Prec@10 Rec@10 NDGC@10

MovieLens

0.6

0.7

0.8

0.9

1

P
re

c
@

1
0

 &
 N

D
C

G
@

1
0

0.15

0.2

0.25

R
e

c
@

1
0

Prec@10 Rec@10 NDGC@10

Last.fm

0.6

0.7

0.8

0.9

1

P
re

c
@

1
0

 &
 N

D
C

G
@

1
0

0.3

0.32

0.34

0.36

0.38

0.4

R
e

c
@

1
0

Prec@10 Rec@10 NDGC@10

Serendipity

0.5

0.6

0.7

0.8

0.9

P
re

c
@

1
0

 &
 N

D
C

G
@

1
0

0.35

0.4

0.45

0.5

R
e

c
@

1
0

Prec@10 Rec@10 NDGC@10

Ali

0

0.05

0.1

0.15

P
re

c
@

1
0

0.3

0.4

0.5

0.6

0.7

R
e

c
@

1
0

 &
 N

D
C

G
@

1
0

DVAR
max

DVAR
mean

Fig. 6: Impact of pooling in the prediction layer.

As the results show, on both BiANE and DVAR, mp2vec-
based initialization can generally outperform SVD-based
initialization. The reason of such improvement is mp2vec
can effectively model the rich semantics embodied in the
input HIN by way of the meta-paths, whereas SVD only
leverages the user-item bipartite graph. This experiment
also shows that having a good feature initialization is im-
portant to the final model performance.

5.4.3 Prediction Layer

To examine the effect of the pooling function used in the
prediction layer in Eq. (18), we compare the performance
of DVAR with max and mean pooling. The corresponding
variants are labeled DVARmax and DVARmean, respectively.
The results are shown in Fig. 6. From the results we observe
that mean pooling usually fares better than max pooling,
since the mean pooling can mitigate the impact of outliers
in the predictions given by individual meta-paths. However,
the Ali dataset presents an exception, in which the max
pooling performs better. The reason is that Ali is much
sparser than the other datasets, which means a pair of user-
item typically only has one or two meta-paths. In this sce-
nario, mean pooling would be significantly affected by the
low prediction scores from infrequent meta-paths, and max
pooling would prevail by focusing on the most frequent and
meaningful meta-paths. Therefore, adopting mean pooling

1600 1800 2000 2200 2400 2600

nodes (MovieLens)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

tr
a
in

in
g
 t
im

e
 p

e
r

e
p
o
c
h
 (

s
)

4 6 8 10 12 14

nodes (Serendipity)
�10

4

0

50

100

150

200

250

tr
a
in

in
g
 t
im

e
 p

e
r

e
p
o
c
h
 (

s
)

Fig. 7: Training time w.r.t. graph size.

on denser data and max pooling on sparser data might be a
good strategy.

5.4.4 Model Scalability
To evaluate the scalability of DVAR, we investigate the
training time per epoch w.r.t. different input graph size. To
be more specific, we sample a proportion of users along with
their interacted items to construct the input HIN. In total,
we obtain five samples consisting of 10%, 30%, 50%, 70%
and 100% of the users, respectively. We then train a model
on each HIN constructed from the samples, and record the
training time per epoch on the MovieLens and Serendipity
datasets in Fig. 7, where the x-axis is the total number of
nodes in each sampled HIN. As shown, the training time
increases linearly with the increased proportion of users on
both datasets. The linear growths implies that DVAR is able
to scale up to large-scale recommendation scenarios.

5.4.5 Model efficiency
To evaluate the efficiency of DVAR, we investigate the com-
putational overhead of DVAR in comparison to a few rep-
resentative baselines. Specifically, we compare DVAR with
a popular baseline NeuCF, and two competitive baseline
BiANE and HERec. We train these models on the two largest
datasets, namely, Serendipity and Ali, and report the overall
time and training time. The overall time also includes the
data pre-processing and I/O time, in addition to the model
training time. Note that the running time is also influenced
by the implementation (e.g., using TensorFlow or PyTorch),
but this experiment can still shed some light on the broad
differences in the order of magnitude of the time costs.

We present the experimental results in Fig. 8. On the
one hand, compared to the competitive baselines (BiANE

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

NeuCF BiANE HERec DVAR

Serendipity

10
0

10
1

10
2

10
3

10
4

10
5

T
im

e
 (

s
)

NeuCF BiANE HERec DVAR

Ali

10
0

10
1

10
2

10
3

10
4

10
5

T
im

e
 (

s
)

Overall Training

Fig. 8: Efficiency study on Serendipity and Ali dataset.

and HERec), our model DVAR maintains a similar order
of magnitude in both the overall and training time cost,
without incurring a significant overhead. That being said,
the computational overhead of DVAR is somewhat greater
than that of HERec on the Ali dataset, while on Serendipity
the situation is opposite. A possible reason might be that
the sparse and potentially noisy Ali data would make our
FiLM-based model more difficult to converge [54], resulting
in a longer training time. Nevertheless, BiANE, HERec and
DVAR achieve generally similar time efficiency. On the other
hand, while the popular baseline NeuCF can be much faster
than the others, its recommendation performance can be
significantly worse than DVAR in many instances.

5.5 Case Study
We present a case study to demonstrate how the macro-
and micro-views interplay and influence the user behavior.
The study also sheds light on a fine-grained understanding
of the recommendation results. In Table 4, we examine an
anonymous user with ID 251 in the MovieLens dataset, who
is a 28-year-old male doctor.

5.5.1 Macro-view Preference
User 251 has interacted with a total of 71 movies in the
dataset, where 44 of them are Hollywood actions or come-
dies. A sample of these movies are shown in Table 4.
This suggests that his macro-view preference is Hollywood
actions or comedies.

5.5.2 Micro-view Preference
As the majority of the user’s interacted movies are in the
action or comedy category, we focus on analyzing his micro-
view preference in the two categories. We notice that among
the action movies he has interacted with, 6 are starred by
the same actor—Harrison Ford, as shown in bold in Table 4.
Among the comedies, it can be observed that the movies
“Grumpier Old Men” and “That Thing you Do!” are both
starred by Kevin Pollak, which are also shown in bold. Such
observations indicate that user 251’s micro-view preferences
in the two categories are different, i.e., for actions he likes
Ford, and for comedies he likes Pollak. Meanwhile, he
does not interact with any comedy starred by Ford (e.g.,
“Sabrina”).

5.5.3 Prediction Results
In the testing data, three movies, namely, “The Fugtive”,
“Indiana Jones 3” in the action category and “That Thing

You Do!” in the comedy category match the micro-view
preferences of the user 251 identified above based on his pre-
ferred cast in each category. Our model DVAR recommends
to the user all of the three movies in top 10 (average rank:
6.3), among other action or comedy movies matching his
macro-view preference. In contrast, the macro-view model
(labeled “Macro”) only recommends “The Fugitive” but not
the other two in top 10 (average rank: 21.3), and thus does
not effectively capture the user’s micro-view preferences.
Nevertheless, it can still recommend other action or comedy
movies generally well based on the user’s macro-view pref-
erence. Overall, this case study shows preliminary evidence
that DVAR can provide finer-grained and more interpretable
recommendations, which are consistent with the dual-view
assumption.

6 CONCLUSION

In this paper, we proposed a novel Dual-View Adaptive
Recommendation (DVAR) model to fuse both the macro-
and micro-views for user preferences learning. Equipped
with a dual-view adaptive module, DVAR integrates both
dual views in a dependence-aware manner, and becomes
fully adaptive—the prediction parameters can flexibly adapt
to different input users and item categories. To evaluate the
merit of our model, we conducted comprehensive experi-
ments on four real-world datasets in different application
domains. The results show that DVAR significantly outper-
forms a range of state-of-the-art baselines.

ACKNOWLEDGEMENT

This research / project is supported by the Ministry of
Education, Singapore, under its Academic Research Fund
Tier 2 (MOE-T2EP20122-0041). Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the author(s) and do not reflect the views of the
Ministry of Education, Singapore.

REFERENCES

[1] G. Linden, B. Smith, and J. York, “Amazon.com recommendations:
item-to-item collaborative filtering,” IEEE Internet Comput., vol. 7,
no. 1, pp. 76–80, 2003.

[2] A. van den Oord, S. Dieleman, and B. Schrauwen, “Deep content-
based music recommendation,” in NeurIPS, 2013, pp. 2643–2651.

[3] H. Ma, H. Yang, M. R. Lyu, and I. King, “SoRec: Social recommen-
dation using probabilistic matrix factorization,” in CIKM, 2008, pp.
931–940.

[4] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques
for recommender systems,” Computer, vol. 42, no. 8, pp. 30–37,
2009.

[5] S. Rendle, “Factorization machines,” in ICDM, 2010, pp. 995–1000.
[6] Z.-H. Deng, L. Huang, C.-D. Wang, J.-H. Lai, and P. S. Yu,

“DeepCF: A unified framework of representation learning and
matching function learning in recommender system,” in AAAI,
2019, pp. 61–68.

[7] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
collaborative filtering,” in WWW, 2017, pp. 173–182.

[8] R. van den Berg, T. N. Kipf, and M. Welling, “Graph convolutional
matrix completion,” arXiv preprint arXiv:1706.02263, 2017.

[9] A. N. Nikolakopoulos and G. Karypis, “Recwalk: Nearly uncou-
pled random walks for top-n recommendation,” in WSDM, 2019,
p. 150–158.

[10] C.-M. Chen, C.-J. Wang, M.-F. Tsai, and Y.-H. Yang, “Collaborative
similarity embedding for recommender systems,” in WWW, 2019,
pp. 2637–2643.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

[11] S. Wang, L. Hu, Y. Wang, X. He, Q. Z. Sheng, M. A. Orgun,
L. Cao, F. Ricci, and P. S. Yu, “Graph learning based recommender
systems: A review,” in IJCAI, 8 2021, pp. 4644–4652.

[12] C. Shi, B. Hu, W. X. Zhao, and P. S. Yu, “Heterogeneous infor-
mation network embedding for recommendation,” IEEE TKDE,
vol. 31, no. 2, pp. 357–370, 2018.

[13] H. Li, Y. Wang, Z. Lyu, and J. Shi, “Multi-task learning for
recommendation over heterogeneous information network,” IEEE
TKDE, 2020.

[14] C. Shi, Y. Li, J. Zhang, Y. Sun, and P. S. Yu, “A survey of heteroge-
neous information network analysis,” IEEE TKDE, vol. 29, no. 1,
pp. 17–37, 2017.

[15] L. Zhao, S. J. Pan, and Q. Yang, “A unified framework of active
transfer learning for cross-system recommendation,” Artificial In-
telligence, vol. 245, pp. 38–55, 2017.

[16] P. Li and A. Tuzhilin, “DDTCDR: Deep dual transfer cross domain
recommendation,” in WSDM, 2020, pp. 331–339.

[17] Z. Cheng, Y. Ding, L. Zhu, and M. Kankanhalli, “Aspect-aware
latent factor model: Rating prediction with ratings and reviews,”
in WWW, 2018, pp. 639–648.

[18] K. Bauman, B. Liu, and A. Tuzhilin, “Aspect based recommenda-
tions: Recommending items with the most valuable aspects based
on user reviews,” in KDD, 2017, pp. 717–725.

[19] J. Y. Chin, K. Zhao, S. Joty, and G. Cong, “ANR: Aspect-based
neural recommender,” in CIKM, 2018, pp. 147–156.

[20] T. Ebesu, B. Shen, and Y. Fang, “Collaborative memory network
for recommendation systems,” in SIGIR, 2018, pp. 515–524.

[21] D. Ha, A. Dai, and Q. V. Le, “Hypernetworks,” in ICLR, 2017.
[22] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville,

“FiLM: Visual reasoning with a general conditioning layer,” in
AAAI, 2018.

[23] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Analysis of
recommendation algorithms for e-commerce,” in ACM EC, 2000,
pp. 158–167.

[24] S. Chen, S. Owusu, and L. Zhou, “Social network based recom-
mendation systems: A short survey,” in IEEE SocialCom, 2013, pp.
882–885.

[25] X. Zhang, X. Chen, J. K. Liu, and Y. Xiang, “Deeppar and deepdpa:
Privacy preserving and asynchronous deep learning for industrial
iot,” IEEE Trans. Industr Inform, vol. 16, no. 3, pp. 2081–2090, 2020.

[26] Y. Xiao, L. Xiao, X. Lu, H. Zhang, S. Yu, and H. V. Poor,
“Deep-reinforcement-learning-based user profile perturbation for
privacy-aware recommendation,” IEEE Internet Things J., vol. 8,
no. 6, pp. 4560–4568, 2020.

[27] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme,
“BPR: Bayesian personalized ranking from implicit feedback,” in
UAI, 2009, pp. 452–461.

[28] R. Akrour, M. Schoenauer, and M. Sebag, “April: Active preference
learning-based reinforcement learning,” ser. ECMLPKDD, 2012, p.
116–131.

[29] N. Houlsby, F. Huszár, Z. Ghahramani, and M. Lengyel, “Bayesian
active learning for classification and preference learning,” 2011.

[30] N. Koenigstein, G. Dror, and Y. Koren, “Yahoo! music recommen-
dations: modeling music ratings with temporal dynamics and item
taxonomy,” in RecSys, 2011, pp. 165–172.

[31] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua, “KGAT: Knowl-
edge graph attention network for recommendation,” in KDD,
2019, pp. 950–958.

[32] E. Quintanilla, Y. Rawat, A. Sakryukin, M. Shah, and M. Kankan-
halli, “Adversarial learning for personalized tag recommenda-
tion,” IEEE Trans. Multimedia, vol. 23, pp. 1083–1094, 2020.

[33] Z. Cheng, Y. Ding, X. He, L. Zhu, X. Song, and M. Kankanhalli,
“A3NCF: An adaptive aspect attention model for rating predic-
tion,” in IJCAI, 2018, pp. 3748–3754.

[34] Z. Sun, G. Guo, and J. Zhang, “Effective recommendation with
category hierarchy,” in UMAP, 2016, pp. 299–300.

[35] Y. Jhamb and Y. Fang, “A dual-perspective latent factor model for
group-aware social event recommendation,” Information Processing
& Management, vol. 53, no. 3, pp. 559–576, 2017.

[36] M. Zhou, Z. Ding, J. Tang, and D. Yin, “Micro behaviors: A new
perspective in e-commerce recommender systems,” in WSDM,
2018, p. 727–735.

[37] Y. Gu, Z. Ding, S. Wang, and D. Yin, “Hierarchical user profil-
ing for e-commerce recommender systems,” in WSDM, 2020, p.
223–231.

[38] W. Bao, H. Wen, S. Li, X.-Y. Liu, Q. Lin, and K. Yang, “Gmcm:
Graph-based micro-behavior conversion model for post-click con-
version rate estimation,” in SIGIR, 2020, p. 2201–2210.

[39] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in ICML, 2017, p. 1126–1135.

[40] F. Pan, S. Li, X. Ao, P. Tang, and Q. He, “Warm up cold-start
advertisements: Improving CTR predictions via learning to learn
ID embeddings,” in SIGIR, 2019, pp. 695–704.

[41] Y. Lu, Y. Fang, and C. Shi, “Meta-learning on heterogeneous
information networks for cold-start recommendation,” in KDD,
2020, pp. 1563–1573.

[42] H. Lee, J. Im, S. Jang, H. Cho, and S. Chung, “MeLU: Meta-
learned user preference estimator for cold-start recommendation,”
in KDD, 2019, pp. 1073–1082.

[43] M. Brockschmidt, “GNN-FiLM: Graph neural networks with
feature-wise linear modulation,” in ICML, 2020, pp. 1144–1152.

[44] Z. Liu, Y. Fang, C. Liu, and S. C. Hoi, “Node-wise localization of
graph neural networks,” in IJCAI, 2021.

[45] Z. Wen, Y. Fang, and Z. Liu, “Meta-inductive node classification
across graphs,” in SIGIR, 2021, pp. 1219–1228.

[46] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “PathSim: Meta
path-based top-k similarity search in heterogeneous information
networks,” PVLDB, vol. 4, no. 11, pp. 992–1003, 2011.

[47] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and
O. Yakhnenko, “Translating embeddings for modeling multi- re-
lational data,” in NeurIPS, 2013, pp. 2787–2795.

[48] H. Li, Y. Liu, N. Mamoulis, and D. S. Rosenblum, “Translation-
based sequential recommendation for complex users on sparse
data,” IEEE TKDE, vol. 32, no. 8, pp. 1639–1651, 2020.

[49] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable
representation learning for heterogeneous networks,” in KDD,
2017, p. 135–144.

[50] W. Huang, Y. Li, Y. Fang, J. Fan, and H. Yang, “BiANE: Bipartite
attributed network embedding,” in SIGIR, 2020, pp. 149–158.

[51] H. Valizadegan, R. Jin, R. Zhang, and J. Mao, “Learning to rank by
optimizing ndcg measure,” in NIPS, vol. 22, 2009.

[52] S. Lawrence and C. L. Giles, “Overfitting and neural networks:
conjugate gradient and backpropagation,” in IJCNN, vol. 1, 2000,
pp. 114–119.

[53] J. Lever, M. Krzywinski, and N. Altman, “Points of significance:
model selection and overfitting,” Nature methods, vol. 13, no. 9, pp.
703–705, 2016.

[54] B. Xu, J. Zhang, R. Wang, K. Xu, Y.-L. Yang, C. Li, and R. Tang,
“Adversarial monte carlo denoising with conditioned auxiliary
feature modulation,” ACM Trans. Graph., vol. 38, no. 6, 2019.

Zhongzhou Liu receives his Master degree in
Software Engineering from Wuhan University in
2020. He is now a Ph.D. student in the School of
computing and Information Systems, Singapore
Management University. His research interets
including recommendation system, graph-based
machine learning as well as data mining in social
network.

Yuan Fang received his Ph.D. degree in Com-
puter Science from University of Illinois at Ur-
bana Champaign in 2014. He is currently an
Assistant Professor in the School of Computing
and Information Systems, Singapore Manage-
ment University. His research focuses on graph-
based machine learning and data mining, as
well as their applications for the Web and social
media.

Min Wu is a research scientist in Data Analytics
Department, Institute for Infocomm Research.
He received Ph.D. degree from Nanyang Tech-
nological University, Singapore, in 2011, and re-
ceived B.S. degree in Computer Science from
University of Science and Technology of China,
2006. His research interests include Graph Min-
ing from Large-Scale Networks, Learning from
Heterogeneous Data Sources, Ensemble Learn-
ing, and Bioinformatics.

	Introduction
	Related Work
	Traditional Recommendation Models
	Micro-View Aware Recommendation
	Adaptive Learning

	Preliminaries
	Input Data
	Recommendation Problem
	Meta-paths

	Proposed Approach
	Base Embedding Model
	Dual-View Adaptive Module
	Dual-view Formulation
	Dual Adaptive Layers

	Prediction Layer
	Training
	Testing

	Experiment
	Experiment Setup
	Datasets
	Data Splitting
	Evaluation Metrics
	Baselines
	Parameters and Settings

	Performance Comparison
	Ablation study
	Model analyses
	Impact of Parameters
	Feature Initialization
	Prediction Layer
	Model Scalability
	Model efficiency

	Case Study
	Macro-view Preference
	Micro-view Preference
	Prediction Results

	Conclusion
	References
	Biographies
	Zhongzhou Liu
	Yuan Fang
	Min Wu

