
1

Unified and Incremental SimRank: Index-free
Approximation with Scheduled Principle

Fanwei Zhu, Yuan Fang, Kai Zhang, Kevin Chen-Chuan Chang, Hongtai Cao, Zhen Jiang, and Minghui Wu

Abstract—SimRank is a popular link-based similarity measure on graphs. It enables a variety of applications with different modes of querying
(e.g., single-pair, single-source and all-pair modes). In this paper, we propose UISim, a unified and incremental framework for all SimRank
modes based on a scheduled approximation principle. UISim processes queries with incremental and prioritized exploration of the entire
computation space, and thus allows flexible tradeoff of time and accuracy. On the other hand, it creates and shares common “building blocks”
for online computation without relying on indexes, and thus is efficient to handle both static and dynamic graphs. Our experiments on various
real-world graphs show that to achieve the same accuracy, UISim runs faster than its respective state-of-the-art baselines, and scales well on
larger graphs.

Index Terms—SimRank approximation, unification, index-free, scheduled principle, scalability.

F

1 Introduction

Graphs are ubiquitous nowadays, requiring effective similarity
measures based on their link structures. Among the link-based
similarity measures, SimRank has attracted much attention since it
was first proposed by Jeh et al. [6]. The intuition behind SimRank
is “ two objects are similar if they refer to similar objects”, which
is recursive with “one object is maximally similar to itself” as the
base case. Such intuition naturally simulates human judgements
on the similarity of objects based on their connections, and thus
has a wide range of applications.

Consider the following scenarios on a DBLP network with
interconnected nodes such as researchers, papers and conferences.

Scenario 1 (Single-pair SimRank): Collaboration prediction.
Given two researchers r1 and r2, could r1 be collaborated with
r2 in the future? In this case, we can compute a SimRank score
s(r1, r2) and compare it with some heuristic threshold to make a
prediction.

Scenario 2 (Single-source SimRank): Bibliographic search. Given
a paper p, what are the most relevant papers to p in the entire
corpus? In this case, the input query is a paper p, and the output
is a ranking over all the paper nodes according to the SimRank
similarity between p and each paper in the network.

Scenario 3 (All-pair SimRank): Research community discovery.
What are the similar papers, researchers, and conferences that
form a community of certain research interest? In this case, the
similarity between each pair of nodes should be computed and
further leveraged by clustering methods such as K-means to detect
the research communities in the graph.

As shown in the above scenarios, there are generally three
popular modes of the SimRank problem on a graph G = (V, E):

• F. Zhu, M. Wu, K. Zhang, and Z. Jiang are with Zhejiang Uni-
versity City College, China. E-mail:{zhufw,mhwu}@zucc.edu.cn, dro-
gozhang@gmail.com, jzjzjzzju@zju.edu.cn

• Y. Fang (corresponding author) is with Singapore Management University,
Singapore. E-mail:yfang@smu.edu.sg

• H. Cao and K. Chang are with University of Illinois at Urbana-
Champaign, USA. E-mail:{hongtai2, kcchang}@illinois.edu

TABLE 1: SimRank Problems on a Graph G = (V, E).

SimRank Problems Query
Q=(A,B) Output

General
definition Partial-pair A ⊆ V

B ⊆ V
s(u, v): a A-by-B similarity matrix,
with each entry [S]u,v = s(u, v)

Popular
modes

Single-pair A={u}
B={v}

s(u, v): a single SimRank similarity
score between u and v

Single-source A={u}
B=V

[S]u: a |V |-by-1 similarity vector,
with each entry [S]u,v = s(u, v)

All-pair A=V
B=V

[S]: a |V |-by-|V | similarity matrix,
with each entry [S]u,v = s(u, v)

single-pair SimRank computes the similarity score s(u, v) between
a pair of nodes u and v (Scenario 1); single-source SimRank
computes the similarity score between a query node u and every
node v ∈ V (Scenario 2); all-pair SimRank computes the similarity
for every pair of nodes in G (Scenario 3).

As a general form of SimRank problems, partial-pairs Sim-
Rank (or SimRank-based Similarity Join) [29], [21], [17], [30],
[13], is defined over two subsets of nodes where only similarities
between node-pairs from those subsets are computed. Most of
existing partial-pair SimRank focus on the subset of node-pairs
that have higher similarity than the others in a graph, either
returning the top-K similar node-pairs [21], [13] or the node-pairs
with similarities greater than a given threshold [17], [30]. More
discussions about SimRank Join can be found in Sect. 2.

We summarize these SimRank modes in Table 1, where a
SimRank query is formalized as Q = (A, B) with each of A and B
being a single node, a subset of nodes, or all the nodes V , and the
output S (Q) is the set of corresponding similarity scores.

While SimRank is confirmed to be an effective similarity
measure in practical applications [7], the computation of SimRank
is not trivial. A straightforward approach for SimRank is to
compute the similarity scores iteratively. Specifically, the SimRank
similarity between two nodes u and v is recursively computed

2

based on their in-neighbors In(u) and In(v), as follows [6].

s(u, v) =


C

|In(u)||In(v)|
∑

i∈In(u)

∑
j∈In(v)

s(i, j) u , v

1 u = v
(1)

Due to the iterative nature, the computation is expensive even
on a moderately large graph. Thus, many works have devoted to
speedup SimRank computation with approximation. In this paper,
we also focus on the efficient approximation of SimRank. We
summarize three major challenges in SimRank approximation and
motivate our solution as follows– the detailed study of existing
works can be found in Sect. 2.

First, as there are distinct modes of SimRank for different
scenarios, it is desirable to support all different modes in a unified
manner by one algorithm for simplicity and robustness of system
maintenance. In contrast, virtually all existing algorithms are
designed for specific modes. E.g., ProbeSim [14] and PRSim [26]
the state-of-the-art methods based on Monte Carlo simulation,
sample random tours from a “single-source” query node which
cannot be naturally extended to sampling for single-pair queries
where the two ends are fixed and must meet.

Second, as different applications may have specific require-
ment of the approximation– some online tasks emphasize on a fast
estimate while some others may rely on more accurate scores, it is
desirable to support flexible tradeoffs of efficiency and accuracy.
For example, in the Bibliographic search scenario, a fast estimate
of SimRank similarities is expected to quickly return a ranked
list of relevant papers, while in the Collaboration prediction
scenario, more accurate SimRank scores would be preferred for
an effective prediction. In contrast, most other algorithms exhibit
often a narrow range of tradeoff. E.g., ProbeSim’s random trials
requires a certain amount of minimal “significant” samples of the
computation space, which restricts its range of tradeoffs.

Third, as most real-world graphs are dynamic with frequent
updates (e.g., social networks such as Twitter), it is desirable to
support efficient online computation without relying indexes. In
contrast, many other algorithms need to precompute and maintain
an index to process online queries, and thus are not flexible to
handle dynamic graphs. E.g., FLPMC, FBLPMC [24], the state-of-
the-art index-based single-pair SimRank algorithms needs 100ms
to 1s to update its index for each edge insertion or deletion on
medium-sized graphs, and with the increasing of graph size, the
index update time grows exponentially.

Our principle. Motivated by the three challenges, we propose
a unified and incrementally-enhanced framework, UISim, to effi-
ciently process different modes of SimRank queries based on the
random surfer-pair model [6] where the SimRank similarity s(u, v)
is interpreted as the probability that two random surfers can meet
if they randomly walk backwards on the graph G, from nodes u
and v respectively.

Specifically, UISim has three major ingredients–unified com-
putation space, prioritized exploration of the space, and online
sharing of common computation– which are expected to tackle the
above challenges.

First, to support unification of different modes, it identifies a
“computation space of query tours” that is naturally adaptable to
each distinct mode– For any SimRank query Q = (A, B) where
each of A and B is set of query nodes, its computation space is
conceptually viewed as the aggregate of necessary random walk
tours starting from A and B. Thus, to calculate any similarity

scores S (Q), we can simply enumerate the set of corresponding
query tours TQ and process them in a unified framework– all tours
in TQ aggregate to the exact scores, while a subset of tours gives
an approximation.

Second, to support flexible tradeoff of time and accuracy, it
suggests “a prioritized exploration of the computation space” to
gradually cover the query tours in an important-first manner– TQ

is further partitioned into disjoint subsets TQ = T 0
Q ∪ · · · ∪ T η

Q
such that tours in any T i

Q are more important than tours in T i+1
Q .

We then handle TQ through multiple iterations, with each iteration
i computing a SimRank increment Ŝ i(Q) over the tours in T i

Q,
adding up to an overall estimate Ŝ (η)(Q) = Ŝ 0(Q) + · · · + Ŝ η(Q)
after η iterations. Unlike random sampling, our scheduled approxi-
mation is deterministic, intentionally prioritized and incrementally
enhanced, and thus we can support a wide range of tradeoffs with-
out being burdened by statistically-necessary minimal sampling.

Third, for efficient computation without relying indexes, it
allows us to create and share common ”building blocks” computed
on-the-fly to accelerate the iterative computation– We factorize the
query tours into fine-grained segments (i.e., hub segments) that
shared across iterations, and organize them to create basic com-
putation units which can be easily computed and reused online.
Thus, each SimRank increment Ŝ i(Q) can be efficiently derived
from the “assembling” of common building blocks. Unlike other
indexed approaches, our principle achieves high efficiency by
sharing online computations rather than relying on precomputed
indexes, and thus works well on both static and dynamic graphs.

Realization challenges. Note that, the scheduled approximation of
UISim shares similar insight with a previous work FastPPV [31]
which efficiently handles PPV queries by arranging the important
tours first for a fast estimate, as there is a fundamental connection
between SimRank and PPV computation– both can be conceptu-
alized as the incremental aggregation of random walk tours with
varying importance. However, realizing such principle in SimRank
setting posts unique challenges due to the complex query tours and
the diverse query modes:

• First, complex query tours. The query tours TQ SimRank deals
with are complex two-side tours u f x v that meet at any
common node x, while the principle in FastPPV is originally
designed for regular tours u v from one node to the other.
Simply adapting FastPPV to incrementally expand the regular
tours on each side of meeting nodes waste a lot of computations
as most of the spanned tours would not have the same length or
ending node and thus can not be assembled as valid SimRank
tours. One the other hand, the scheduled approximation princi-
ple of FastPPV can only ensure the one-side regular tours are
partitioned and incrementally processed by their importance,
while assembling two sets of important regular tours may not
necessarily result in an important partition of two-side SimRank
tours as the number of valid assembling from those tours are
not guaranteed. Thus, to incrementally explore the computation
space of SimRank queries for an important-first approximation,
we need to develop new techniques to prioritize the generation
of the two-side query tours TQ = T 0

Q ∪ · · · ∪ T η
Q from regular

one-side tours on G.
• Second, diverse query modes. SimRank has a variety of concrete

modes, each of which has its own requirement to identify
the computation space, while FastPPV only solves one kind
of single-source query. Extending FastPPV to other modes is
problematic. For example, for single-pair queries, spanning of

3

tours from a source to all reachable nodes would be wasteful as
many of the spanned tours would not reach the specific target
node; while for all-pair queries, redundant computation over
shared tours spanned from different source nodes should be
avoided. Thus, we need to efficiently specialize the generation
of each T i

Q for different mode of queries such that a complex
query (e.g., single-source SimRank s(u)) can be better processed
than trivially repeating a set of the basic queries (e.g., single-
pair SimRank s(u, v) for each v ∈ V).

To concretely realize the principle, we investigate the nec-
essary query tours in different SimRank modes, and propose to
unify their computation space with the assembling of two query-
specific “partial-tour” sets PA Z PB in Sect. 3. We then develop
a hub-based benefit model to partition those partial tours and
assemble their partitions in an incremental and prioritized manner
such that the query tours that bring more contribution in the
computation would be generated earlier in Sect. 4. We further
identify the shared tour segments in different partial-tour partitions
and propose a subgraph expansion model to use those substructure
as building blocks to speed up the iterative online computation in
Sect. 5. We analyze the complexity and error bound of UISim in
Sect. 6.

Empirical evaluation. We conduct extensive experiments on var-
ious real-world datasets in Sect. 7. We empirically study the effect
of parameters in UISim, and compare it with the state-of-the-
art baselines in different modes, and find out UISim significantly
outperforms its respective baselines in each mode– compared
to the strongest baselines designed specifically for each mode,
to achieve the same level of accuracy, the running time of the
unified UISim is significantly less than that of the baseline. We
also validate the scalability of UISim in growing graphs.

2 RelatedWork
Numerous studies have been devoted to speeding up the computa-
tion of SimRank on a single machine, which fall into three main
categories in the following.

Iterative methods. Some early approaches directly optimize the
basic iterative algorithm, by reducing unnecessary computation
and reusing shared computation both within and across iterations.
Lizorkin et al. [15] propose to memorize the reusable partial
sums across iterations to prevent repeated computation for all-
pair SimRank. Yu et al. [27] further reduce the redundancy in
computing partial sums with sub-summation sharing in all-pair
mode. Li et al. [12] employ position probability to reduce the
computation not relevant to a query in the single-pair mode.
However, even the state-of-the-art iterative methods [27], [12]
require O(k|V |2) time for k iterations in the worst case, which
is still infeasible to handle large graphs.
Linear system solution. Another line of research transforms the
iterative SimRank equation into linear system representation, and
applies the linear algebra techniques such as matrix decomposition
to approximation SimRank. Li et al. [11] derive a linear system
and performs singular value decomposition (SVD) on the simi-
larity matrix to get SimRank approximation. Fujiwara et al. [5]
propose SimMat that computes SimRank based on the Sylvester
equation and low-rank approximation of the similarity matrix. Yu
et al. [28] relax the constraint that the graph should be non-singular
and provides a treatment of SimMat, by supporting similarity
assessment on non-invertible adjacency matrices. Wang et al. [25]
propose a new closed-form solution of exact SimRank matrix,

based on which a local push algorithm is developed for all-pairs
SimRank computation. The linear system based methods breaks
the holistic nature of SimRank computation, however, they cannot
guarantee the first-meeting constraint in the original SimRank
definition. Moreover, they require quadratic time to obtain a
low-rank representation and loss accuracy from the optimization
techniques.
Random walk-based approximation. To handle large graphs, the
majority of studies solve SimRank based on random walks.
Fogaras et al. [4] apply MC simulation to sample random walk
paths between two nodes, which addresses single-pair SimRank.
Kusumoto et al. [8] later extend it to address the single-source
mode through extensive pruning. Although MC methods are
promising in handling large graphs, they can only achieve a higher
level of accuracy through more and more samples at the cost of
efficiency. Wang et al. [24] propose to combine the local push
technique [25] with MC sampling to reduce the sample size.
However, the worst case complexity of the proposed index-free
version BLPMC is the same as the pure MC sampling, while a
more efficient version FLPMC relies on an index precomputed on
a conceptual graph with |V |2 nodes. Wei et al. propose an index-
free single-source algorithm ProbeSim [14] that performs MC sim-
ulation to sample the

√
c−walk of query node, and then from each

visited node probes the
√

c − walk on the other side to compute
the probability of walk pairs. The authors also propose an index-
based algorithm PRSim [26] that decomposes a SimRank query
s(u, v) into two l − hop RPPR (reversed Personalized PageRank
values) and a last meeting probabilities, combining MC sampling
and local push techniques to solve the decomposed computations
with precomputed RPPRs. Wang et al. [23] further combine the
ideas of PRSim and linearization to derive a probabilistic exact
single-source SimRank algorithm ExactSim with additive error of
at most εmin = 10−7, which can be used to compute the ground
truth on billion-edge graphs. Instead of sampling the random walk
tours of a query, a recent work SimPush [19] proposes to focus
on the query tours around a small set of attention nodes in the
close vicinity of the query node to answer single-source SimRank
queries. Although ignoring tours around non-attention nodes re-
duces the computation overhead, it can also hurt the accuracy of
approximation. Moreover, in order to select the attention nodes,
SimPush needs to compute the hitting probabilities for all nodes in
a source graph– a lot of computations are wasted on non-attention
nodes.
Comparison to our work. First, in terms of problem, UISim
proposes to unify all three modes of SimRank with the scheduled
approximation principle, and develops mode-specific techniques to
efficiently handle different SimRank queries. On the contrary, most
previous work only focuses on one specific mode of SimRank
problem. Extending the algorithms designed for one mode to other
modes is not feasible. For example, if we adapt the single-source
solution ProbeSim or PRSim to answer a single-pair query s(u,w),
most of the probes or backward walks would be wasted as they
may not hit the specific node w. Although some previous work
[29], [16] also address different modes of SimRank, their tech-
niques are essentially designed for certain modes. In particular,
Yu et al. [29] conceptually integrate different modes of SimRank
problems by a general definition partial pair SimRank (i.e., Sim-
Rank similarity between any two sets of nodes). However, they
develop an optimized technique for single-source SimRank only,
and proposes to decompose the partial-pair problem into multiple
single-source problems. Maehara et al. [16] propose a linearized

4

technique to efficiently tackle single-pair and single-source, while
the all-pair problem is solved by trivially repeating the single-
source solution. To answer threshold-based SimRank Join queries,
the authors further propose a filter-and-verification framework [17]
to prune the node-pairs based on their SimRank bounds in the
filter phase; and assess the similarity of the candidate pairs in the
verification phase.

It is worth noting, although it is not tailored for SimRank
Join, UISim naturally supports top-K SimRank Join due to its
important-first nature– the most similar node-pairs would always
be computed earlier as the tours between them have higher
importance to be scheduled earlier in our incremental processing
framework. On the contrary, existing SimRank Join algorithms
mainly rely on some pruning techniques to find a candidate set of
promising nodes for further verification given a specific similarity
threshold [17], [30] or the number of expected results [13], [21],
which is less flexible than the prioritized and incrementally-
enhanced approximation of UISim.

Second, in terms of technique, our work follows the line of ap-
proximating SimRank over random walk tours. However, instead
of randomly stimulating fingerprints, we structurally organize all
the tours in the computation space based on their importance, and
enumerate them in a prioritized way. Thus, UISim has two distinct
properties, “important-first” and “incrementally-enhanced”, com-
pared to existing works in the same line. Note that, TopSim [9]
and SimPush [19] are also based on path enumeration rather than
random simulation. However, they only consider random walk
tours in a fixed-length neighborhood of query node, or around
some attention nodes in the neighborhood. On the contrary, UISim
allows a wide range of tradeoff of time and accuracy by gradually
cover the tours in the entire computation space. Another line of
local push based algorithms [24], [25] have the same issue that
a certain amount of local push operations are required to explore
the useful query tours. Therefore, when the time budget is limited,
the performance of local push based algorithms is significantly
inferior than that of UISim.

Third, in terms of applications, UISim is capable of handling
both static and dynamic graphs. Different from the index-based
algorithms which needs expensive cost to update their index on
dynamic graph [18], [24], UISim runs all the computations at query
time and thus can support real-time queries on any graphs. There
are also some index-free algorithms proposed to support dynamic
updates [9], [14], but UISim outperforms them in query efficiency
as we factorize the tours handled in iteration into fine-grained
building blocks that can be computed efficiently online and shared
across iterations.

3 Unified Computation space: aggregating tours
As motivated in Sect. 1, there are distinct modes of SimRank in
real applications, requiring a unified algorithm to process different
queries. To support unified SimRank, we first investigate the
computation space of the general SimRank queries. To illustrate,
we introduce a toy graph G in Fig. 1, and in Fig. 2 we list the query
tours of an example partial-pair query Q = ({a}, {b, g}). We observe
that the computation space of Q is composed of a set of two-side
tours ended with node a and nodes b, g on each side, which can
be partialized into two sets of regular tours at the centered nodes
x1, x2, x3.

Conceptual view of computation space. Conceptually, we can
model the computation space of any SimRank query Q = (A, B) as

Fig. 1: A toy graph G.

	Two-side	Query	Tours	
A={a},	B={b,	g}	

Partial	Tours	
ending	at	A	

Partial	Tours	
ending	at	B	

! ← !! → !	 ! ← !! !1 → !
 → ! 	

! ← !! → !	

! ← ! ← !! → ! → !	 ! ← ! ← !! 	 !! → ! → !	

! ← ! ← !! → ! → !	 !3! ←! ←
! ←! ← 	 !! → ! → !	

! ← ! ← !! → ! → !	

Fig. 2: Query tours of Q = ({a}, {b, g}).

a set of query tours TQ w.r.t. the query nodes A and B, formalized
as:

TQ = {u← u1 f uk ← x→ vk v1 → v | u ∈ A,

v ∈ B, x ∈ X,∀i ∈ [1, k], ui , vi} (2)

where X = {x | x ∈ V, |Out(x)| ≥ 2} is defined as the set of meeting
nodes, i.e., any node x with at least two out-neighbors |Out(x)| ≥ 2
on G. Note that, we use f () to denote a sequence of edges
and← (→) to denote a direct edge throughout this paper.

Then any SimRank similarity can be interpreted as the first-
meeting probability of two backward random surfer on G, starting
from A and B respectively, i.e., the aggregated reachabilities of
tours in TQ. Specifically, s(u, v) can be calculated by aggregating
the reachabilities of the two-side first-meeting tours, uf x v,
which end with u and v on each side [12]:

s(u, v) =
∑

t∈{ufx v}
R(t) (3)

It is worth noting that if the graph contains cycles or self-
loops, the computation space of certain queries would consist of
infinite number of tours. However, a large number of longer tours
containing circles would have trivial contribution to the overall
score. In other words, although in this cases the exact SimRank
scores should be computed over a finite set of query tours, we can
still obtain a good approximation over a smaller set of important
tours.

Concrete tour space. To partition TQ for a scheduled ap-
proximation, we notice that TQ is a set of complex “two-side”
tours which can not be directly identified on G– they have to
be assembled (or partialized) first. Specifically, each two-side
query tour should be assembled from two regular tours on G.
For example, for a single-pair query Q = (a, b), the query tours
T(a,b) is built by assembling the same-length regular tours from the
same meeting nodes to a and b respectively. Formally, for any two
regular tours pu : x u and pv : x′ v on G, we define pu ◦ pv

as the constrained assembling of pu and pv if they 1) start at the
same meeting node, and 2) have the same length. That is:

pu ◦ pv ≡ uf x v iff x = x′ and L(pu) = L(pv) (4)

where L(p) denotes the length of an arbitrary tour p. To avoid
ambiguity, we also refer a two-side query tour as a full tour, and
each regular tour as a partial tour.

Generally, the query tours TQ in any SimRank modes can be
assembled from two corresponding partial-tour sets PA and PB.
Let PU denote the set of partial tours ending at a node u ∈ U, i.e.,
PU = {p : v u | u ∈ U, v ∈ V}, in realization, we construct TQ

as:

TQ ≡ PA Z PB = {pa ◦ pb | pa ∈ PA; pb ∈ PB} (5)

Note that, in Eq. 4, we relax the first-meeting constraint, i.e., two
partial tours should meet at only one node, similar as previous

5

works [18], [21], [22], [26]. Including the multi-meeting tours
(i.e., full tours that have more than one meeting node) would
make the score larger than the exact one, but the error is bounded
and small [18]. Therefore, as an approximation algorithm, UISim
is developed based on Eq. 4 in the following of the paper, and
we will provide a deterministic multi-meeting tours correction
method in Appendix, while the existing works [22], [26] rely on
a probabilistic approximation of the induced error with random
sampling.

The unification of computation space discussed above is natu-
rally adaptable to each distinct SimRank mode:
• First, any SimRank query S (Q) can be processed by incremen-

tally aggregating the reachabilities of certain query tours TQ– all
tours in TQ aggregate to the exact scores, while tours in certain
partitions T i

Q give an approximation.
• Second, the scheduled approximation principle (see Sect. 1)

applies to any mode by enumerating and prioritizing the cor-
responding partial tours PA and PB, which we will discuss in
Sect. 4.

4 Incremental approximation: realizing with partial tours
We now discuss how to concretely realize the scheduled approx-
imation principle with partial tours to support flexible tradeoff

of time and accuracy. Specifically, to incrementally generate the
partitions of TQ, we will explore how to partition partial tours
(e.g., PA) into subsets (e.g., PA = P0

A ∪ · · · ∪ Pi
A), and schedule the

assembling of these partitions (e.g., Pi
A Z P j

B) in a way that the full
tours generated earlier would bring more accuracy improvement
to the computation.

4.1 Hub-based benefit model

Conceptually, we define the benefit of a partial-tour assembling as
the accuracy improvement from handling the assembled tours, and
propose to schedule the assembling of partial tours based on their
benefit. As the benefit of an assembling depends on the importance
of each full (assembled) tour and the number of full tours, i.e.,
handling more important tours would better improve the accuracy
of estimation, we develop two rules to schedule the assembling of
partial tours as follows:
• Rule 1 (Important-First): Important partial tours assembled

earlier. As the reachability (i.e., importance) of any full tour
R(pu ◦ pv) can be computed as the product of its partial tours’
reachability R(pu)R(pv)

CL(pu) , by assembling the important partial tours
earlier, we can also obtain the important full tours earlier.
• Rule 2 (Symmetric-Preferred): Symmetric partitions of partial

tours assembled earlier. As each full tour must be symmetric
(in terms of tour length) at the meeting node, by assembling
symmetric partial tours, we can expect more valid matches.

Guided by the two rules, we now propose a hub-based benefit
model to concretely partition the partial tours and incrementally
assemble their partitions.

First, partitioning partial tours. To partition partial tours, we need
a simple yet effective metric to quantify the above rules. In the
SimRank setting, the reachability of a specific partial tour p : x→
w1 → · · · → wk with length L(p), is the probability of reaching
x from wk through p in a reverse random walk where at each
step, the random surfer would go to one of its in-neighbors, with
probability C, i.e., the damping factor in random walks. That is,

R(p) , CL(p)
L(p)∏
i=1

1
|In(wi)| (6)

Therefore, nodes with a large number of in-neighbors significantly
decay the reachability of the tours passing through. In other words,
the importance of partial tours can be indicated by the number of
high in-degree nodes. On the other hand, the symmetry of two
partial tours can also be indicated by the number of high in-degree
nodes they pass through. Tours passing through more high in-
degree nodes tend to be longer in terms of their natural length, and
vice versa. While this correlation is intuitive, we also empirically
verified it, and found that the average correlation coefficient of the
number of high-degree nodes in a tour and the tour length in the
real-world datasets is around 0.99.

In summary, the number of high in-degree nodes is effective to
measure both tour importance and symmetry. We also refer to the
high in-degree nodes as hub nodes and the number of hub nodes
in a tour p (excluding the starting node as it does not decay the
reachability of p) as the hub length of p, denoted by Lh(p).

Therefore, given a set of hub nodes H selected on G, any
partial tour set Pu can be partitioned into η disjoint subsets Pi

u,
each of which contains only the tours of hub length i, formalized
as:

Pu = P0
u ∪. . .∪ Pη

u s.t. ∀i ∈ {0, . . . , η}, Pi
u = {p | p ∈ Pu,Lh(p) = i} (7)

Second, assembling full tour. With the hub length notion, we can
concretize the two rules to prioritize the assembling of partial-
tour partitions: 1) According to the Important-First Rule, any two
partitions with a smaller sum of hub length should be assembled
earlier; 2) According to Symmetric-Preferred Rule, partitions with
a smaller difference in the hub length should be assembled earlier.

More formally, for any two assemblies Ai j : Pi
u Z P j

v and
Ai′ j′ : Pi′

u Z P j′
v , we should schedule Ai j in an earlier iteration than

Ai′ j′ , denoted by Ai j ≺ Ai′ j′ , with the following criteria:

Ai j ≺ Ai′ j′ if


i + j ≤ i′ + j′

and
|i − j| ≤ |i′ − j′|

(8)

We also notice that, the two rules may conflict sometimes. For
example, consider two assemblies P0

u Z P1
v with P1

u Z P1
v , the

first one should be scheduled earlier according to Rule 1, while
it should be scheduled later according to Rule 2. Generally, when
the order of two assemblies conflicts by each individual rule, the
benefit of their assembling can not be differentiated, and thus can
be scheduled in either order.

4.2 Prioritized SimRank approximation with benefit model

To leverage the benefit model for a prioritized SimRank
approximation, We propose to integrate the above two rules into
Max(i, j) and use it as the overall priority index of any Pi

u Z P j
v,

since Max(i, j) equals (i+ j)+ |i− j|, i.e., larger i+ j and larger |i− j|
would result in a larger Max(i, j), and thus has a higher priority
to be scheduled. Note that, other metrics are also possible as long
as they are consistent with Eq. 8, and easy to check. Now, we are
able to generate the full tours through iterations to incrementally
evaluate SimRank. For any two partitions Pi

u and P j
v, they will be

assembled in iteration Max(i, j). In other words, in iteration k, all

6

!! 	 !!(!!)	 !(!!)	 Partition	

!!!�! → ! 0	 0.25	

!!! !!!�! → !	 	 0	 0.25	
!!!�!! → !	 	 0	 0.25	
!!!�!! → ! → !	 	 0	 0.19	
!!!�!! → ! → !	 	 1	 0.09	

!!!	!!!�!! → ! → !	 	 1	 0.09	
	

!! 	 !!(!!)	 !(!!)	 Partition	
!!!�! → ! 0	 0.25	

!!! !!!�!! → !	 	 0	 0.25	
!!!�! → !	 	 0	 0.25	
!!!�! → ! → !	 	 0	 0.19	
!!!�!! → ! → !	 	 1	 0.09	

!!!	
!!!�!! → ! → !	 	 1	 0.09	
!!!�!! → ! → ! → !	 	 1	 0.07	
!!!�!! → ! → ! → !	 	 1	 0.07	
	b.	Scheduled	assembling	of	partial	partitions	

				

0
bP 1

bP
0
aP

1
aP

Pa
0 Pa

0

Pa
1Pa

1 Iter1:	Max(i,j)=1

Iter0:	Max(i,j)=0	 0 0 0
(,)a b a bT P P=

1 0 1 1 0 1 1
(,)a b a b a b a bT P P P P P P= ∪ ∪

Pb
0

Pb
0

1
bP

1
bP

a.	Partitioning	partial	tours	by	hub	length	

Fig. 3: An example of prioritized generation of full tour partitions
with benefit model.

the partial-tours assemblies Pi
u Z P j

v with Max(i, j) = k would be
scheduled to generate a set of full tours, formalized as:

T k
(u,v) =

⋃
Max(i, j)=k

Pi
u Z P j

v (9)

Example: Scheduled assembling of full tours. Fig. 3 illustrates
the process of generating the full tours of s(a, b) with partial
tours in a prioritized manner. First, the partial tours in Pa and
Pb are partitioned by their hub lengths into P0

a, P1
a and P0

b, P1
b

respectively. As we can see, the reachabilities of tours in P0
a (or P0

b)
are smaller than that of tours in P1

a (or P1
b). Next, according to their

priority index Max(i, j), tours in P0
a are assembled with tours in P0

b
(Max(0, 0) = 0) to generate the most important full tours T 0

(a,b) in
iteration-0, and the other assemblies of partial tour partitions with
Max(i, j) = 1 (i.e., P0

a Z P1
b, P1

a Z P0
b, and P1

a Z P1
b) are scheduled

to generate tours T 1
(a,b) in iteration-1.

With the scheduled generation of full tour partitions, the k-th
SimRank increment ŝk(u, v) is calculated as:

ŝk(u, v) =
∑

Max(i, j)=k

R(Pi
u Z P j

v) (10)

and the SimRank score ŝ(η)(u, v) estimated after iteration-η is:

ŝ(η)(u, v) =

η∑
k=0

∑
Max(i, j)=k

R(Pi
u Z P j

v) =
∑
i, j≤η

R(Pi
u Z P j

v) (11)

The incremental approximation with prioritized assembling of
partial tours allows flexible tradeoff of accuracy and time– a fast
yet good estimate can be obtained with a small η, which can be
further enhanced by increasing the number of iterations.
5 Index-free solution: sharing across iterations
To process SimRank queries in the incremental manner (Eq. 11)
without relying on any precomputed indexes, we now further
examine the specific query tours in each iterations for efficient
online realization. Specifically, given any query Q = (A, B), we
will investigate how to efficiently span the partial tours Pi

u, P j
v and

generate the valid full tours.
First, partial tours spanning. To motivate, let’s examine the

partial tours in the first two iterations of estimating s(a, b) (i.e.,
ŝ0(a, b) and ŝ1(a, b)) in our toy graph.

We observe that the all the tours P1
a (e.g., a ← d ← x1) in

iteration-1 can be “extended” from the tours ended with hubs in
P0

a (e.g., a ← d), by adding corresponding “extension” tours at

that hub node (e.g., d ← x1). The reason behind such extension
is because we partition partial tours by their hub length– tours in
Pi

u are one hub-length shorter than tours in Pi+1
u and thus can be

viewed as the “prefix” tours of Pi+1
u . Generally, we use a graph

expansion model to illustrate such tour extension. We refer to the
set of any partial tours Pi

u (i.e., hub-length-i tours ending at u) as
the i-level in-subgraph of u, as they actually form a subgraph of
incoming tours to u, formalized as Gi(u|∗) = {p : u f v | v ∈
V;Lh(p) ≤ i}. The 0-level in-subgraphs are also referred to as
the prime in-subgraphs. Then, by expanding the (i-1)-level in-
subgraph of u at its “border” hubs, denoted by Hi−1

u , with the
hub-length-0 “extension” tours ending at hub, we can obtain the
i-level in-subgraph Gi(u|∗) consisting of the hub-length-i partial
tours:

Gi(u|v) =
⋃

h∈Hi−1
u

Gi−1(u|h) ⊕G0(h|v) (12)

The reachability of the hub-length-i partial tours can be “ex-
tended” similarly. Formally, let ri (u|v) be the overall reachability
of the extended tours in Gi(u|v), we have:

ri (u|v) =
∑

h∈Hi−1
u

ri−1 (u|h) · r0 (h|v) (13)

Such hub-by-hub graph expansion allows us to efficiently enu-
merate the partial tours in each iteration by dynamically creating
and sharing the common “building blocks” across iterations, i.e.,
the prime subgraphs of hub nodes– on the one hand, once a
prime subgraph is computed, it can be reused in later iterations
to build longer tours, as the set of partial tours in any iteration
are assembled from hub segments (i.e., hub-length-0 tours); on
the other hand, the prime subgraphs can be efficiently computed
on-the-fly as it only consists of the hub-length-0 tours in the
neighborhood of certain nodes.

Next, to assemble full tours over partial-tour partitions, we
notice that partial tours in a partition can have different natu-
ral length, while the valid query tours should have the same
length on either side of the meeting nodes by definition (Eq. 4).
Thus, to assemble two partial-tour sets, we can skip those “mis-
matching” partial tours as they are not able to generate valid full
tours. Accordingly, the aggregated reachability of full tours in
Gη(u|∗) Z Gη(v|∗), can be obtained by assembling the reachability
of length-matched partial tours that start at the same meeting node:

R
(
Gi(u|∗) Z G j(v|∗)

)
=

∑
x∈X

∑
l≤M

1
Cl

(
ri,l (u|x) · ri,l (v|x)

)
(14)

where M is the maximal natural length in computation (i.e.,
the number of iterations required for the fixed-point method to
converge [6]), and in ri,l (u|x) we expand the superscript of hub
length i to also denote natural length l as i, l.

Example: Efficient SimRank estimation with graph expansion.
Fig. 4 shows an example of estimating ŝ(1)(a, b) on our toy graph
(Fig. 1) with hub nodes H = {a, b, c, d, g}. First, in Fig. 4(a) the
prime subgraphs of query nodes G0(a|∗), G0(b|∗) are expanded
at their border hubs d, g, c. The corresponding prime subgraphs
G0(d|∗), G0(g|∗), G0(c|∗) are assembled to generate the hub-
length-1 tours in the expanded graphs G1(a|∗) and G1(b|∗). Then,
tours in G1(a|∗) and G1(b|∗) are assembled length-by-length at
common meeting nodes. Since there is no length-3 tours from
node a, we will not get a match for length-3 tours in G1(b|∗) as
Fig. 4(b) shows. Finally, ŝ(1)(a, b) is estimated by aggregating the

7

̂S(1)(a, b) = ∑
i, j∈(0,1)

R(Pi
a ⋈ Pi

b)

= ∑
t∈{t1,…,t4}

R(t)

= r0,1(a |x3) ⋅ r0,1(b |x3)
+r0,2(a |x1) ⋅ r0,1(b |c)r0,1(c |x1)
+r0,1(a |d)r0,1(d |x1) ⋅ r0,1(b |c)r0,1(c |x1)
+r0,1(a |d)r0,1(d |x2) ⋅ r0,1(b |c)r0,1(c |x2)

L Tours in
G1(a|*)

Tours in
G1(b|*) Valid full tours

1

2

3 N/A N/A

a ← x3 b ← x3
a ← e ← x1
a ← d ← x1
a ← d ← x2

b ← c ← x1
b ← c ← x2
b ← f ← g ← x2
b ← f ← g ← x3

t1 : a ← x3 → b
t2 :a ← e ← x1 → c → b
t3 :a ← d ← x1 → c → b
t4 :a ← d ← x2 → c → b

a

d

e x1

x3

x1

x2

G0(a|*)

G0(d|*)

G1(a|*)

b

c

f g

x3

x2
x3

x1

x2

G0(b|*)

G0(g|*)

G0(c|*)
G1(b|*)

(a) Hub-by-hub graph expansion (b) Length-by-Length tours assembling ̂S(1)(a, b)(c) SimRank estimation

incremental estimation

aggregated reachability

over length-1 tours

over length-2 tours
(shared hub segments)

Fig. 4: An example of efficiently estimating ŝ(1)(a, b) with graph expansion and length-aware assembling.

reachabilities of all valid full tours where each reachability can
be efficiently obtained by reusing the reachability of shared hub
segments, illustrated in Fig. 4(c).

Specification for other modes. Such hub-by-hub extension of
partial tours and length-by-length matching of full tours can
naturally apply to different SimRank modes as we explained in
the unified principle. But since the partial tours PA and PB in
different modes can have different forms, i.e., they can be ending
at a single node, a subset of V , or any node in V , we can utilize
the special properties of partial tours in each mode to design more
efficient implementations.

We start with two single nodes. To span the partial tours from u
to v (i.e., {u v}), we can enumerate the incoming tours of v from
u, or outgoing tours of u to v. Such enumeration can be done by
growing a subgraph from v or u at different directions– expanding
the in-subgraph of v, denoted by G(v|∗) = {p : vf w | w ∈ V}, or
out-subgraph of u, denoted by G(∗|u) = {p : u w | w ∈ V}. It is
worth noting that, no matter the direction of expansion, the prime
subgraphs are always bordered by hub nodes (i.e., high in-degree
nodes), as by definition (Eq. 6) the reachability of tours in both in-
subgraphs and out-subgraphs are decayed by the in-degree (rather
than out-degree) of nodes they pass through.

Now consider how to efficiently span a set of partial tours PU .
To assemble full tours, the valid partial tours in PU should start
from certain meeting nodes, and thus we are able to compare the
number of query nodes |U | with the number of reachable meeting
nodes |XU | to decide the directions of subgraph expansion. If U
only consists of a single node u (as in the single-pair mode), we
should expand an in-subgraph G(u|∗) to obtain PU , since the other
way of expanding an out-subgraph G(∗|x) for each meeting node
x would waste more effort in tours that do not end at u. I.e.,
we choose to expand from U since |U | = 1 � |X|. In contrast,
if tours in PU are from X to V , i.e., U = V , we would instead
expand out-subgraphs G(∗|x) from each meeting node x. That is,
we now choose to expand from X, since |X| < |U | = |V |. Generally,
we should expand the set with fewer nodes– expanding |PU | in-
subgraphs from query nodes U if |PU | < |XU | or |XU | out-subgraphs
from meeting nodes XU if |XU | < |PU |. Therefore, given a parital-
pair SimRank query Q = (A, B), we should compare |PA|, |PB|
with |XA|, |XB| respectively, and decide the direction of expansion
accordingly.

Example: Mode-specific spanning of tours. Fig. 5 gives the exam-
ple of mode-specific tours spanning and assembling using our toy
graph G. For single-pair estimation ŝ0(a, b), the prime in-subgraph
of a and b are spanned and then the partial tours are assembled
at the common meeting nodes x3. For single-source estimation
ŝ0(a, ∗), first the prime in-subgraph G0(a|∗) are spanned, then the
prime out-subgraphs of meeting nodes x1 and x3 in G0(a|∗) are

spanned to generate the full tours. For all-pair estimation ŝ0(∗, ∗),
the out-subgraphs of all meeting nodes x1, x2 and x3 in G are
spanned, and matched tours in each subgraph are assembled as
full tours.

Algorithm 1: Incremental & Unified SimRank approxi-
mation

Input: a graph G; number of hub nodes H; number of
iteration η; query Q = (A, B); max tour length M

Output: estimated SimRank Ŝ (η)(Q)

H ← Select |H| hubs on G;
if A = {u}, B = {v} then

r(η) (u|∗)← GraphExp(G, η);
Xu ← meeting nodes in r(η) (u|∗);
r(η) (v|∗)← GraphExp(G, η);
Xv ← meeting nodes in r(η) (v|∗);
foreach x ∈ Xu ∩ Xv do

foreach l ∈ [1,M] do
s(u, v)← s(u, v) + r(η),l (u|∗)r(η),l (v|∗);
Ŝ (η)(Q)← s(u, v)

end
end

if A = {u}, B = V then
r(η) (u|∗)← GraphExp(G, η);
Xu ← meeting nodes in r(η) (u|∗);
foreach x ∈ X do

r(η) (∗|x)← GraphExp(G, η);
foreach v ∈ V do

foreach l ≤ M do
s(u, v)← s(u, v) + r(η),l (u|∗)r(η),l (∗|x);
ˆ[S]u,v ← s(u, v);

end
end

end
Ŝ (η)(Q)← ˆ[S];

if A = B = V then
X ← meeting nodes in G;
foreach x ∈ X do

r(η) (∗|x)← GraphExp(G, η);
foreach v ∈ V do

foreach l ≤ M do
s(u, v)← s(u, v) + r(η),l (u|x)r(η),l (v|x);
ˆ[S]u,v ← s(u, v);

end
end

end
Ŝ (η)(Q)← ˆ[S];

return Ŝ (η)(Q).

8

x3
c
e a
d

⋈
G0(*|x1) G0(*|x2)

x2
g
c
d

⋈
G0(*|x3)

x1
b
g f
a

⋈
G0(*|x3)

G0(a|*)

a d
e x3

x1 x1
b
g f
a

x3
c
e a
d

G0(*|x1)⋈

⋈
a d

e x3

x1
bc

fg

x1

G0(a|*)G0(b|*)

⋈
(a) Single-pair (b) Single-source (c) All-pair

Fig. 5: An example of spanning partial tours in different modes.

Algorithm 2: GraphExp (Subroutine)
Input: a graph G; a root node u; type of subgraph κ, number of

iterations η
Output: reachability over η-level subgraph r(η)

u

1 if κ = ‘I′ then
2 Construct prime in-subgraph G0(u|∗) on G;
3 r0

u ← r0(u|∗);
4 if κ = ‘O′ then
5 Construct prime out-subgraph G0(∗|u) on G;
6 r0

u ← r0(∗|u);
7 r(η)

u ← r0
u;

8 if η > 0 then
9 for i = 1 . . . η do

10 Hi ← hubs in ri−1
u ;

11 foreach hi ∈ Hi do
12 if κ = ‘I′ then
13 Expand Gi−1(u|hi) with G0(hi|∗);
14 ri

u ← r0(u|hi)r0(hi|∗);
15 if κ = ‘O′ then
16 Expand Gi−1(hi|u) with G0(∗|hi);
17 ri

u ← r0(∗|hi)r0(hi|u);
18 end
19 r(η)

u ← r(η)
u + ri

u;
20 end
21 return r(η)

u .

Details of the unified index-free solution for three SimRank
modes are illustrated in Algorithm 1. First, we select a set of
hub nodes H on the input graph G– Given |H|, the number of
hubs, |H| nodes with the highest in-degree are chosen as hubs
(Line 1). In our current discussion, we only explore the decaying
power of hubs for discriminating tours, and thus we select hub
nodes by their in-degree (i.e., higher in-degree indicates higher
decaying power). The number of hubs depends on the structure of
graph, which we will explain in the Sect. 7. Then we chose mode-
specific graph expansion technique to compute the reachability of
partial tours, which will be further assembled in a length-aware
manner at the same meeting nodes and aggregate to the overall
approximation. The subroutine of incremental graph expansion is
sketched in Algorithm 2.

6 Complexity and error analysis
In this section, we present an analysis of the UISim algorithm, in
terms of its complexity and error bound.

6.1 Complexity analysis

Time analysis. Since hub selection can be done in constant time,
we focus the complexity analysis on 1) initial prime subgraphs

processing cost, 2) prime subgraphs expansion cost, and 3) full
tours assembling cost.

First, initial prime subgraph processing cost. Depending on
the mode of SimRank query, we have different kinds of prime
subgraphs—prime in-subgraphs of u and v for a single-pair query
Q = (u, v), prime in-subgraph of u and prime out-subgraphs of
the corresponding meeting nodes x ∈ Xu for a single-source
query Q = (u,V), and prime out-subgraphs of each meeting
node x ∈ X for an all-pair query Q = (V,V). Given an average
degree d and an input prime subgraph of size m (i.e., of m
nodes), while the processing time consists of the construction
time and reachability computation time, the former is dominated
by the latter. In particular, the reachabilities can be computed
using the fixed point power-iteration method [31], which takes
O((m + md)I) = O(mdI) time, where I is the number of power
iterations and md is the number of edges. Note that the number of
power iterations I is the number of times to multiply the transition
matrix in the power-iteration method until convergence, which
is typically a small constant. In contrast, the construction of the
prime subgraph is done using a depth-first search, which takes
O(m + md) = O(md) time only. Therefore, the overall processing
time is O(mdI).

Second, prime subgraph expansion cost. Prime subgraphs ex-
pansion is to extend the initial prime subgraphs at their border hubs
(i.e., assemble the prime subgraph of each border hub), iteration by
iteration, to build the candidate partial tours. Assuming an average
degree of d, the sum of degrees of all hubs nodes dH and the sum
of degree of all nodes dV , there are T = O((d(1 − dH/dV))L)
partial tours of up to length L in each prime subgraph. That is, at
each node (starting from the query node), among the d neighbors,
d(dH/dV) is the number of hub nodes (given that dH/dV is the
probability of an outgoing edge leading to a hub) where the
expansion would stop, and d(1 − dH/dV) is the number of non-
hubs which will be further expanded to span longer tours. Note
that, hub nodes are typically nodes with largest degrees, and thus
1 − dH/dV would be small. Moreover, when H becomes larger,
1 − dH/dV and hence T will decrease—a prime subgraph reduces
its size significantly when the number of hubs increases.

Suppose a prime subgraph has |H̄| border hubs. Clearly, |H̄| ≤
|H|, and in most cases |H̄| � |H|. In each iteration:
• For single-pair mode, we extend |H̄| prime in-subgraphs (each

of which contains T tours) on each side of the query node.
• For single-source mode, we extend |H̄| prime in-subgraphs on

the side of the query node, and |X̄||H̄| prime out-subgraphs on
the side of meeting nodes X̄ for the given query. Clearly |X̄| ≤
|X| where X is the set of all meeting nodes.
• For all-pair mode, we extend at most |X||H̄| prime out-

subgraphs on all meeting nodes X.
Thus, the complexity of η iterations of expansion is bounded
by O(|H̄|ηT), O(|X̄||H̄|ηT) and O(|X||H̄|ηT) for the three modes,

9

TABLE 2: Time and Space Analysis of the Three Modes.

Mode
Time

Spacesubgraph subgraph full tour
construction extension assembling

Single-pair
O(Imd)

O(|H̄|ηT) O(T 2) O(md|H̄|η)
Single-source O(|X̄||H̄|ηT) O(|X̄|T 2) O(md|X̄||H̄|η)

All-pair O(|X||H̄|ηT) O(|X|T 2) O(md|X||H̄|η)
where T = (d(1 − dH/dV))L

respectively.
Note that, in UISim we use iteration to refer to the extension

of subgraphs, which is different from the fixed-point iteration as
used in traditional iterative methods. Specifically, the fixed-point
iterative method generally stabilizes after 5 iterations [6], which
means we only need to handle partial tours of natural length up to
5 (i.e., L = 5). In UISim, the hub length of a tour is generally much
smaller than its natural length, and thus it is sufficient to cover
the necessary tours with only 1–2 expansions (i.e., η ≤ 2), as our
experiments in Sect. 7 would also confirm.

Lastly, full tour assembling cost. When the candidate partial
tours on each side of the meeting nodes are spanned, they will be
matched to build the full tours. To generate valid full tours, only
the partial tours of the same length will be assembled. Given an
expanded subgraph, there are T partial tours up to length L as
discussed earlier. Thus, the cost to match two set of partial tours
up to length L in a subgraph is T 2. That is, we have T tours on
each set, and we need to do pair-wise assembling of them. Thus,
for single-pair mode where only two subgraphs will be handled,
the assembling cost is O(T 2), for single-source mode, it costs
O(|X̄|T 2) to assemble |X̄| pairs of subgraphs, and for all-pair mode,
O(|X|T 2) is required to assemble |X| pairs of subgraphs.

Space analysis. The space cost depends on the number of prime
subgraphs handled in each iteration. Following the time analysis,
all the modes require O(md) space for the initial prime subgraphs.
In addition, the single-pair mode requires an extra space of
O(md|H̄|η) to store the prime subgraphs used in η expansions.
Similarly, the single-source and all-pair modes require an extra
space of O(md|X̄||H̄|η) and O(md|X||H̄|η), respectively.

Summary. We summarize the time and space complexity analysis
in Table 2. We make two remarks on the computation of UISim.

First, the three modes of UISim are necessary for efficient
mode-specific computation. Comparing across the three modes,
we clearly observe that the advantage of mode-specific query pro-
cessing techniques in terms of both time and space. Specifically,
the single-source cost is smaller than that of repeating single-pair
queries for |V | times since |X̄| � |V |, and the all-pair cost is much
smaller than repeating the single-pair mode for |V |2 times since
|X| � |V |2, or repeating the single-source mode for |V | times since
|X| � |V ||X̄|.

Second, UISim is efficient and scalable. Its time cost is dom-
inated by the prime subgraphs expansion cost (e.g., O(|H̄|ηT),
where η is typically in [0, 2], and |H̄| � |V |. More importantly,
given more hubs, each prime subgraph handled in computation
becomes smaller rapidly. That is, both m and T significantly
decrease with a larger number of hubs. Similarly, the prime
subgraph construction and full tour assembling cost also decreases
with a larger H. Therefore, UISim is scalable to larger graphs by
selecting a large number of hubs.

6.2 Error bound analysis

As UISim incrementally handles partitions of query tours to ap-
proximate the SimRank score of any nodes u and v, the accuracy of
the approximation improves with more iterations of enhancement.
Formally, we establish the following theorem on the expected error
after η iterations.

Theorem 1. Consider a random edge from the graph. Suppose
the probability of the edge ending at any node is proportional
to the node degree. Then, the expected error in ŝ(η)(u, v), which
represents the SimRank estimation between u and v after η
iterations, satisfies the following bound:

Eu,v∈V
[
s(u, v) − ŝ(η)(u, v)

]
≤

(
dH

dV

)η+1

Cη+2, (15)

where dV is the sum of degrees of all nodes, and dH is the sum of
degrees of all hub nodes.

Proof: To compute the expected error, we investigate the
length of partial tours covered after η iterations. First, all of the
partial tours up to length η + 1 have been covered. Partial tours
of exactly length η + 1 only accounts for a fraction of

(
dH
dV

)η
of

all tours starting from the query node. Furthermore, for such a
partial tour, there is a probability of dH

dV
when the partial tour ends

at a hub node and thus cannot extend further. Thus, among all
the partial tours, a fraction of

(
dH
dV

)η+1
will not extend to length

η + 2 or longer. In other words, this fraction of the set of partial
tours of length η + 2 or longer are not covered after η iterations.
As established previously [15], the total contribution of all η + 2
or longer partial tours is bounded by Cη+2. Thus, in our case, the
expected error is bounded by

(
dH
dV

)η+1
Cη+2.

Since C < 1 and dH
dV

< 1, the bound approaches 0 at an
exponential rate as η grows. In other words, an earlier iteration
contributes exponentially more to the SimRank score. Plugging in
some plausible values C = 0.75, dH

dV
= 0.2 and η = 2, we get the

bound as 0.00253, which is fairly tight given that 0 ≤ s(u, v) ≤ 1.

Remark. Our bound is built upon the skewed degree distribution
of nodes. Moreover, we are assuming an undirected graph in the
analysis here, which means the in- and out-degrees are the same.
(In the case of a directed graph, the analysis should use in-degrees
instead, i.e., the probability of a directed edge ending at any node
is proportional to the node in-degree.) In particular, hub nodes
have higher degrees and partial tours are more likely to run into a
hub node, i.e., dH

dV
� |H|

|V | . That means, the probability of a random
edge ending at a hub node is skewed w.r.t. the degree, rather than
uniformly distributed over all nodes.

7 Empirical Evaluation
We empirically evaluated UISim on several real-world graphs. The
experiments showed that UISim is substantially more efficient than
previous state-of-the-art baselines in all three modes, and can also
scale to larger graphs.

7.1 Experimental setup

Datasets. We use eight real-world datasets from different domains
and with different properties and sizes summarized in Table 3.
In particular, six datasets are used for baseline comparison where
three smaller graphs of them are also used for parameter study,

10

TABLE 3: Summary of Datasets.

Dataset Description Directed Nodes Edges Purpose
4Area DBLP bibliographic network in four areas, similar to ref. [20], [3] no 12 413 91 192

Parameter study, and
comparison to baselinesWikiVote Wikipedia administrator election network [10] (dangling nodes removed) yes 1 300 39 456

CondMat Collaboration network of Arxiv Condensed Matter [10] no 23 133 93 497
enwiki2013 A snapshot of the English part of Wikipedia[10] [1] yes 4 206 785 101 355 853

Comparison to baselinesit2014 A fairly large crawl of the .it domain [1] yes 41 291 594 1 150 725 436
Friendster On-line gaming network [10] no 65 608 366 1 806 067 135
Gnutella Gnutella peer to peer network with several snapshots [10] yes 62 586 147 892 Scalability study

Dblp Full DBLP bibliographic network with several snapshots, similar to ref. [3] no 2 073 13 25 759 41

and two evolving graphs with several snapshots are used to test
the scalability of UISim.

Environment. We implement all methods in C++, and evaluate
them on a Linux system with 3.5GHz CPU and 192GB RAM.

7.2 Experiments on smaller graphs

We first evaluate the algorithms on three smaller graphs, 4Area,
WikiVote and CondMat. As the ground truth, the exact SimRank
scores are computed by the power-iteration method with 55
iterations which ensures at most 10−12 absolute error.

Test queries and evaluation. In the single-pair and single-
source modes, we randomly sample 100 queries from each graph.
Given a query, all the methods compute approximate SimRank
scores. Thus, we need to evaluate their accuracy w.r.t. the ex-
act scores based on the näive computation. In particular, for
single-pair queries, we adopt the metrics of Absolute Error (Ab-
sErr) and Relative Goodness (RG). For a node pair, suppose
its exact SimRank score is s and the estimated score is ŝ.
Subsequently, AbsErr is simply defined as |s − ŝ|, and RG as
min {(s + δ)/(ŝ + δ), (ŝ + δ)/(s + δ)} where δ is a small number to
avoid division by zero. We then report the average of the 100 test
pairs for each metric.

For each single-source query, we compute the SimRank scores
of other nodes w.r.t. the query node, which enable us to obtain a
ranking of nodes in decreasing SimRank scores. Given that users
are often more interested in first few ranked results, we evaluate
the accuracy of top K nodes in the ranking, where K = {10, 20, 30}
on smaller graphs and K = {200, 300, 500} on larger graphs.
The average AbsErr (AvgErr) can be computed on the exact
and estimated SimRank scores of these K result nodes for each
query. RG can be extended to measure the “relative goodness”
of a ranking, called Relative Average Goodness (RAG) as defined
previously [31], [32], [2]. As both AvgErr and RAG evaluate the
accuracy of the scores, we additionally use precision (Prec) to
evaluate the accuracy of rankings, which is the fraction of correct
nodes in the top K lists. We also average over the 100 test queries
for each metric.

In all-pair mode, we initially compute the SimRank scores of
all 1

2 |V |2 node pairs (i.e., there is only one query consisting of all
the pairs). Since the vast majority of this enormous number of
pairs are uninteresting with very low SimRank scores,we evaluate
the accuracy of the top K = {200, 500, 1000, 1500} most similar
pairs with largest SimRank scores. We also use AvgErr, RAG and
Prec as our accuracy metrics. Note that, as analyzed in Sect. 1,
returning the K most similar pairs from all-pair SimRank results
actually solves the top-K SimRank Join problem, and thus we also
compare all-pair UISim to top-K SimRank Join algorithm in our
experiments.

Impacts of different settings. As discussed, we have two main
parameters, namely, number of hubs |H| and number of iterations
η. We first study their impacts on the performance of UISim and
discuss how to set the parameters. For single-source queries, we
report the results on top K=20 results and for all-pair queries,
top K=200 results. The results are shown in Fig. 6 and Fig. 7
respectively. Note that, for a consistent presentation, we plot the
complement of AbsErr (or AvgErr) instead, i.e., 1-AbsErr (or 1-
AvgErr). Thus all the metrics indicate a better accuracy with a
larger value.

Number of hubs. We first illustrate the effect of varying number
of hubs |H| in Fig. 6, where we fix η = 2. On the one hand, in
most scenario having more hubs drastically reduces the average
query time of UISim, just as we have expected in Sect. 6. That
is, with more hubs H, the number of partial tours in each prime
subgraph T decreases exponentially, and thus both the subgraph
extension time and full tour assembling time are decreased. On
the other hand, when we have more hubs, we also observe a slight
decrease in accuracy as the number of non-hubs which will be
further expanded to span longer tours decreases. That is, more
expansions are stopped by the border hubs, potentially hurting
accuracy. Nevertheless, as we reasonably increase |H| in Fig. 6,
most drops in accuracy are very minor while query processing
becomes much faster, which is consistent with our theoretical
analysis in Sect. 6. That is, when |H| becomes larger, the decrease
in running time is exponential while the increase in expected error
is linear. Thus, it is still beneficial to use a relatively large |H|.

In practice, we should also consider the structure of graphs
(e.g., dH and dV in Eq. 15) to set the value |H|. More hubs
should be selected on larger and denser graphs. To determine the
number of hubs, a simple rule is |H| = β log(d)|V |, where d is
the average node degree for some choice of β > 0. Empirically,
the desirable range of β is between 0.1 and 0.5 for a reasonable
trade-off between accuracy and time.

Number of iterations. Next, we study the ability of incremental
query processing by UISim. We vary the number of expansion
iterations η in Fig. 7, where we fix |H|. Our results show that
more iterations result in better accuracy (if not already good at
η = 0), but require longer time to process. Thus, the accuracy
of our SimRank estimation indeed improves in an incremental
manner. In particular, accuracy improvement is generally more
significant in earlier iterations (from η = 0 to 1 as compared
to from η = 1 to 2). In most cases, high accuracy can be
obtained with very few iterations at η = 1. It is interesting to
observe that, the experiments also reveal the different contribution
of SimRank increments ŝk(u, v) in our scheduled approximation–
when η = 0, only the most important increment ŝ0(u, v) contributes
to the final scores, while when η = 1, the first two increments
ŝ0(u, v) and ŝ1(u, v) make contributions, and so on. Thus, the
results validate that the increments with small k contribute more

11

(a) SP, 4Area

1K 2K 3K 4K
0.1

0.4

0.7

1.0

Number of hubs

A
cc

ur
ac

y

0

3

6

9

Q
ue

ry
tim

e
(m

s)
1-AbsErr Time

(b) SP, WikiVote

200 400 600 800
0.1

0.4

0.7

1.0

Number of hubs

A
cc

ur
ac

y

0

1

2

3

Q
ue

ry
tim

e
(m

s)

(c) SP, CondMat

5K 6K 7K 8K
0.1

0.4

0.7

1.0

Number of hubs

A
cc

ur
ac

y

0

0.12

0.24

0.36

Q
ue

ry
tim

e
(m

s)

(d) SS, 4Area

1K 2K 3K 4K
0.1

0.4

0.7

1.0

Number of hubs

A
cc

ur
ac

y

3

6

9

12

Q
ue

ry
tim

e
(1

03
m

s)

1-AvgErr RAG Prec@20 Time

(e) SS, WikiVote

200 400 600 800
0.1

0.4

0.7

1.0

Number of hubs

A
cc

ur
ac

y

1.0

1.5

2.0

2.5

Q
ue

ry
tim

e
(1

03
m

s)

(f) SS, CondMat

5K 6K 7K 8K
0.1

0.4

0.7

1.0

Number of hubs
A

cc
ur

ac
y

0.0

0.8

1.6

2.4

Q
ue

ry
tim

e
(1

02
m

s)

(g) AP, 4Area

1K 2K 3K 4K
0.1

0.4

0.7

1.0

Number of hubs

A
cc

ur
ac

y

1

3

5

7

Q
ue

ry
tim

e
(1

06
m

s)

1-AvgErr RAG Prec@200 Time

(h) AP, WikiVote

200 400 600 800
0.1

0.4

0.7

1.0

Number of hubs

A
cc

ur
ac

y

1.8

2.0

2.2

2.4

Q
ue

ry
tim

e
(1

05
m

s)

(i) AP, CondMat

5K 6K 7K 8K
0.1

0.4

0.7

1.0

Number of hubs

A
cc

ur
ac

y

0.0

0.6

1.2

1.8

Q
ue

ry
tim

e
(1

03
m

s)

Fig. 6: Impact of number of hubs on accuracy metrics: AbsErr,
AvgErr, RAG, Prec@K (left y-axis) and query time (right y-axis)
in three modes: single pair (SP), single source (SS) and all pair
(AP).

than the increments with large k.

Comparison to baselines. We compare UISim with the state-of-
the-art competitors in each query mode: BLPMC [24], the single-
pair solution; ProbeSim [14], PRSim [26] and SimPush [19],
the single-source solutions; FLP [25], the all-pair solution, and
TreeWand [21], the SimRank Join solution. Since PRSim is an
index-based algorithm, for fair comparison, we also perform its
index-free version by setting the number of precomputed hubs
to zero. In the following, We refer to the original index-based
PRSim as PRSim w/, and its index-free version as PRSim w/o.
The threshold-based SimRank Join method [17] is not included as
a baseline because it has a different setting where the threshold
of similarity need to be specified. When the threshold is set
to zero, it reduces to all-pair SimRank and it is two orders of
magnitude slower than FLP algorithm (i.e., the state-of-the-art all-
pair baseline in our experiments) as reported in Reference [25].

As all algorithms compute approximate SimRank scores, there
is a trade-off between accuracy and query time. In order to fairly
compare different methods, we should fix their accuracy at a
similar level, and then compare the running time under these
settings. To obtain comparable accuracy, the parameter settings in
different methods cannot be directly derived from their theoretical
error bounds, which have different formulations (e.g., some are
deterministic, some are probabilistic, and some are in the expec-
tation sense), and have varying degrees of tightness. Therefore, to
systematically compare different methods in practice, we vary the
parameters of each method in a reasonably large range, so as to
evaluate a large number of different configurations. Subsequently,
we compare different methods under these configurations that give

(a) SP, 4Area

0 1 2
0.4

0.6

0.8

1.0

Number of iterations

A
cc

ur
ac

y

0

3

6

9

Q
ue

ry
tim

e
(m

s)

1-AbsErr Time

(b) SP, WikiVote

0 1 2
0.4

0.6

0.8

1.0

Number of iterations

A
cc

ur
ac

y

0

1

2

3

Q
ue

ry
tim

e
(m

s)

(c) SP, CondMat

0 1 2
0.4

0.6

0.8

1.0

Number of iterations

A
cc

ur
ac

y

0

0.15

0.3

0.45

Q
ue

ry
tim

e
(m

s)

(d) SS, 4Area

0 1 2
0.7

0.8

0.9

1.0

Number of iterations

A
cc

ur
ac

y

0

5

10

15

Q
ue

ry
tim

e
(1

03
m

s)

1-AvgErr RAG Prec@20 Time

(e) SS, WikiVote

0 1 2
0.7

0.8

0.9

1.0

Number of iterations

A
cc

ur
ac

y

0

7

14

21

Q
ue

ry
tim

e
(1

02
m

s)

(f) SS, CondMat

0 1 2
0.7

0.8

0.9

1.0

Number of iterations

A
cc

ur
ac

y

0

7

14

21

Q
ue

ry
tim

e
(1

02
m

s)

(g) AP, 4Area

0 1 2
0.7

0.8

0.9

1.0

Number of iterations
A

cc
ur

ac
y

0

2

4

6

Q
ue

ry
tim

e
(1

06
m

s)

1-AvgErr RAG Prec@200 Time

(h) AP, WikiVote

0 1 2
0.7

0.8

0.9

1.0

Number of iterations

A
cc

ur
ac

y

0.0

0.8

1.6

2.4

Q
ue

ry
tim

e
(1

05
m

s)

(i) AP, CondMat

0 1 2
0.7

0.8

0.9

1.0

Number of iterations

A
cc

ur
ac

y

0.0

0.3

0.6

0.9

Q
ue

ry
tim

e
(1

06
m

s)

Fig. 7: Impact of number of iterations on accuracy metrics:
AbsErr, AvgErr, RAG, Prec@K (left y-axis) and query time (right
y-axis) in three modes: single pair (SP), single source (SS) and all
pair (AP).

similar accuracy.

Parameter setting. For all algorithms, we set the damping factor
C = 0.75. Specifically, ε, the error bound in BLPMC is varied from
0.005 to 0.015 at the step of 0.001; εa, the maximum absolute error
in ProbeSim and PRSim is varied from 0.001 to 0.2 at the step of
0.001. Other parameters are specified according to the original
papers. For UISim we vary |H| in the range discussed earlier, and
for each value of |H| we try η = {0, 1, 2}.

We run all the settings and evaluate their accuracy using the
metrics explained earlier. For single-pair and single-source mode,
we plot the results of settings with running time falling into a
same range in Fig. 8, where x-axis is the running time and y-axis
is the accuracy. Here we only present AbsErr for the single-pair
mode and precision for the single-source mode as the accuracy
metric, since we observe similar trends in other metrics as well.
Typically, we focus on relatively small running time (e.g., from
0 to 20 ms in the single-source mode) as many applications will
require a fast online computation of SimRank. For each method,
if we observe different accuracy with the same running time, we
report the highest accuracy.

From Fig. 8, we can clearly observe the advantage of UISim.
On the one hand, UISim always need less time to achieve the
same accuracy as its baseline. More concretely, we compare
different methods under configurations that give similar accu-
racy. We exhibit the detailed accuracy and the running time of
several “accuracy-moderated” configurations in Table 4 and 5.
As observed, to achieve similar accuracy, UISim runs faster than
the respective baselines in each mode. For example, as shown in
Table 5, UISim outperforms the strongest index-free single-source

12

(a) SP, 4Area

0.01 0.03 0.05
0

0.05

0.1

0.15

Time (ms)

A
bs

E
rr

UISim BLPMC

(b) SP, WikiVote

0.01 0.03 0.05
0

0.05

0.1

0.15

Time (ms)
A

bs
E

rr

(c) SP, CondMat

0 0.05 0.1
0

0.05

0.1

0.15

Time (ms)

A
bs

E
rr

(d) SS, 4Area

0 5 10 15 20
0.4

0.6

0.8

1

Time(ms)

Pr
ec

is
io

n

UISim ProbeSim PRSim w/ PRSim w/o SimPush

(e) SS, WikiVote

0 5 10 15 20
0.4

0.6

0.8

1

Time(ms)

Pr
ec

is
io

n

(f) SS, CondMat

0 5 10 15 20
0.6

0.8

1

Time(ms)

Pr
ec

is
io

n

Fig. 8: Comparison of accuracy against time with baselines in single pair (SP) and single source (SS) modes.

TABLE 4: Detailed Comparison under Accuracy-moderated Con-
figurations in Single-pair Mode.

Dataset
L1S RAG Time (ms)

UISim BLPMC UISim BLPMC UISim BLPMC

4Area
.978 .954 .563 .570 0.007 0.014
.984 .969 .571 .531 0.009 0.019
.990 .983 .648 .648 0.01 0.024

WikiVote
.960 .939 .781 .815 0.014 0.033
.961 .950 .781 .790 0.016 0.029
.977 .972 .871 .882 0.031 0.045

CondMat
.999 .944 .666 .660 0.007 0.013
.999 .974 .666 .663 0.009 0.019
.999 .995 .669 .671 0.017 0.048

baseline SimPush, and is even faster than the index-based PRSim
w/ on smaller graphs. We also observe that SimPush is more
sensitive to the graph structure. For example, SimPush is more
inferior than UISim on 4Area (Fig. 8 (d)) and CondMat (Fig. 8
(f)) compared with their performance on WikiVote (Fig. 8 (e)).
The reason is because generally the source graph of a query is also
large (or dense) on 4Area/CondMat, and thus more time is wasted
in identifying attention nodes and conducting reverse push at each
level. On the other hand, UISim can achieve a good accuracy very
fast while the baselines do not perform well within limited time.
For example, as shown in Fig. 8(e), UISim can achieve a precision
above 0.9 within 5ms, while given the same time, the best accuracy
of the baselines is around 0.8. Such observation also validates
the benefit of the “important-first” property of UISim discussed in
Sect. 1.

For all-pair SimRank and SimRank Join, since the range
of time we observed in UISim and the baseline TreeWand are
vastly different (running one configuration can take several of
hours for TreeWand), we only report the detailed results of nine
configurations in Table 6. The results show that to achieve similar
or better accuracy levels, UISim runs up to 4 times faster than FLP,
and several orders of magnitude faster than TreeWand. It is worth
noting that on 4Area and CondMat, the precision of all algorithms
are around 1, but the AvgErr is relatively large. The reason is
that there are many top ranked node pairs with the same exact
SimRank scores, and the estimates for them are mostly the same
(although not equal to the exact scores). Thus, the relative ranking
obtained with approximate algorithms are still quite similar as the
true ones.

We also evaluate the results with different K under the same
configurations for single-source and all-pair queries. For single-
source queries, we vary K from 10 to 30, and for all-pair queries,
from 500 to 1500. Note that TreeWand is not included in the
evaluation as it is running time increases with larger K (while
other algorithms can compute the SimRank scores of all pairs,

not just the K results). As shown in Fig. 9, UISim stably achieves
higher accuracy than the baseline with larger K, while the accuracy
of SimPush drops prominently with large K, mainly due to the
pruning of non-attention nodes. For all-pair queries, since the
precision of UISim and FLP are similar in some cases, we also
evaluate the AvgErr with different K and observe that UISim can
always obtain a smaller AvgErr of top K results.

7.3 Experiments on larger graphs

We next evaluate UISim on three large graphs Enwiki2013, IT2004
and Friendster, with up to 65 million nodes and 1.8 billion edges
(Table 3). We focus on the single-source node comparison with
the baselines, since for single-pair queries, the baseline method
runs out of memory on all the three graphs. All-pair mode is also
not evaluated here, as most applications would not need all-pair
results on graphs of this scale.

On large graphs, it is impractical to calculate the exact Sim-
Rank similarities with Power Method. However, a latest work
ExactSim [23] provides a probabilistic exact single-source Sim-
rank solution that can achieve a precision of 7 decimal places
with high probability. We thus use the results of ExactSim with
ε = 10−7 as ground truth on large graphs to evaluate UISim and
the baselines ProbeSim, PRSim w/, PRSim w/o, and SimPush. We
vary the parameters of different algorithms in the suggested range
and compare them under “accuracy-moderated” configurations,
similarly as we experiment with smaller graphs.

On each graph, 50 random queries are chosen and their average
results are reported. We plot the trade-off between precision and
query time (in log scale) in Fig. 8 (d), (e), (f), and observe that
generally the accuracy of each method increases with more query
time. However, the baselines need more time (by one order of
magnitude) to achieve a higher precision above 0.9; while after
that, the precision of all methods increase slightly, even with
longer query time.

The detailed comparison of concrete settings with accuracy
up to 0.97 are shown in Table. 7. For example, on Friendster, to
achieve the precision around 0.93, UISim needs 10.75ms while
the strongest baseline SimPush needs 105.7ms; to increase the
query time (to 20.08ms for UISim and 128.5ms for SimPush), the
precision only increase by 0.007 (K=500).

For thorough comparison, we also evaluate the accuracy of
different algorithms with varied K. It can be observed that, UISim
is up to 10 times faster than the strongest baseline SimPush while
they produce results with a accuracy higher than 0.9.

13

TABLE 5: Detailed Comparison under Accuracy-moderated Configurations in Single-source Mode (K=20).

Dataset Precision AvgErr RAG Query Time(ms) Index cost of
PRSim w/

UISim ProbeSim PRSim
w/o

PRSim
w/

SimPush UISim ProbeSim PRSim
w/o

PRSim
w/

SimPush UISim ProbeSim PRSim
w/o

PRSim
w/

SimPush UISim ProbeSim PRSim
w/o

PRSim
w/

SimPush Space
(KB)

Time
(ms)

4Area
0.701 0.675 0.636 0.638 0.697 0.012 0.017 0.005 0.014 0.014 0.733 0.714 0.677 0.663 0.726 0.442 6.345 12.935 5.021 5.170 40 5.28
0.821 0.799 0.818 0.799 0.817 0.011 0.012 0.002 0.009 0.011 0.846 0.822 0.840 0.821 0.838 2.530 7.656 44.729 6.610 9.652 56 5.52
0.893 0.874 0.875 0.880 0.892 0.006 0.012 0.005 0.006 0.010 0.910 0.910 0.891 0.898 0.909 11.142 18.287 97.624 10.742 16.540 172 7.42

WikiVote
0.843 0.794 0.802 0.791 0.803 0.011 0.010 0.001 0.012 0.011 0.852 0.812 0.820 0.807 0.811 1.627 11.657 46.698 7.827 2.061 48 6.67
0.883 0.862 0.855 0.843 0.882 0.010 0.010 0.001 0.011 0.009 0.892 0.875 0.869 0.856 0.890 4.191 22.342 102.699 10.043 4.890 68 8.30
0.908 0.888 0.895 0.884 0.908 0.009 0.011 0.000 0.007 0.008 0.917 0.898 0.905 0.895 0.915 10.808 43.730 176.557 33.998 12.083 572 29.34

CondMat
0.905 0.905 0.867 0.855 0.897 0.017 0.022 0.007 0.016 0.008 0.944 0.942 0.945 0.917 0.949 0.230 1.819 2.001 2.093 6.703 152 9.88
0.916 0.900 0.887 0.884 0.908 0.015 0.022 0.005 0.011 0.006 0.950 0.945 0.955 0.934 0.955 0.565 1.931 3.007 3.385 8.321 300 14.92
0.924 0.923 0.914 0.926 0.925 0.012 0.022 0.003 0.007 0.004 0.954 0.953 0.969 0.959 0.964 1.988 2.684 7.146 6.487 12.669 612 24.87

(a) SS, 4Area

10 20 30
0.7

0.8

0.9

1

K

Pr
ec

@
K

UISim ProbeSim PRSim w/ PRSim w/o SimPush

(b) SS, WikiVote

10 20 30
0.7

0.8

0.9

1

K

Pr
ec

@
K

(c) SS, CondMat

10 20 30
0.7

0.8

0.9

1

K

Pr
ec

@
K

(d) AP, 4Area

500 1,000 1,500
0.4

0.6

0.8

1

K

Pr
ec

@
K

UISim-Prec FLP-Prec

0.0

0.1

A
vg

E
rr

UISim-AvgErr FLP-AvgErr

(e) AP, WikiVote

500 1,000 1,500
0.4

0.6

0.8

1

K

Pr
ec

@
K

0

0.1

A
vg

E
rr

(f) AP, CondMat

500 1,000 1,500
0.4

0.6

0.8

1

K

Pr
ec

@
K

0

0.1

A
vg

E
rr

Fig. 9: Comparison of accuracy with different K under time-moderated configurations in single-source (SS) and all-pair (AP) modes.

TABLE 6: Detailed Comparison under Accuracy-moderated Con-
figurations in All-pair Mode (K=200).

Dataset
Precision AvgErr Time (s)

UISim FLP TreeWand UISim FLP TreeWand UISim FLP TreeWand

4Area
1 1 1 .032 .034 .682 4.050 6.655 11740
1 1 1 .030 .030 .680 5.089 8.782 11867
1 1 1 .014 .015 .651 7.642 32.495 12045

WikiVote
.905 .930 .935 .011 .013 .0102 0.682 2.49 400.21
.960 .950 .980 .004 .009 .0038 4.615 8.197 401.97
.970 .955 .981 .003 .009 .0037 5.036 11.346 402.59

CondMat
1 1 .980 .044 .049 .547 1.291 1.509 2413.2
1 1 .980 .043 .045 .546 1.457 1.750 2580.1
1 1 1 .038 .040 .618 2.458 2.831 2696.1

100 101 102
0.4

0.6

0.8

1

Time(ms)

Pr
ec

is
io

n

UISim ProbeSim PRSim w/ PRSim w/o SimPush

(a) Enwiki

100 101 102 103
0.6

0.7

0.8

0.9

1

Time(ms)

Pr
ec

is
io

n

(b) IT2004

101 102 103
0.6

0.7

0.8

0.9

1

Time(ms)

Pr
ec

is
io

n

(c) Friendster

Fig. 10: Comparison of accuracy against time with baselines in
single source mode on large graphs.

7.4 Scalability on growing graphs

Finally, we test the scalability of UISim on two growing graphs
Gnutella and Dblp. In particular, Gnutella includes snapshots on
different dates, whereas Dblp includes snapshots of different years.
Each subsequent snapshot has a larger number of nodes |V | and
edges |E|, as shown in Table 8.

The key to scaling UISim is to increase the number of hubs
|H|. As discussed in Sect. 7.2, using more hubs can reduce query
time. Thus, we reasonably increase |H| on a larger snapshot
(|H| = β log(d)|V | with β = 0.25). As shown in Table 8, by using
more hubs, we are able to achieve an approximate linear scale-
up of query time in single-pair and single-source modes. That is,
when we double the size of the graph, the average query time

roughly doubles too. On the other hand, with more hubs, only a
sub-linear increase of memory cost is observed on growing graphs.
The reason is that although more prime subgraphs of hubs are
involved in the expansion when the number of hubs increases, the
average size of prime subgraphs decreases as more tours would be
truncated by hubs in the prime subgraphs.

8 Conclusion
In this paper, we presented an index-free approach to efficiently
process all three modes of SimRank in a unified framework.
As our key principle, we conceptually scheduled the tours for a
prioritized computation, which exhibits two desirable properties:
“important-first” and “incrementally-enhanced.” To realize this
principle, we developed a benefit-based tour assembling model
and mode-specific tour spanning and matching techniques to
effectively process each mode of queries. Empirically, UISim is
not only superior to the strongest baselines designed specifically
for each mode, but also scalable to larger graphs.

Acknowledgment
We thank Yichen Shen (Zhejiang University City College), Zemin
Liu (Singapore Management University) and Chengfeng Mao
(University of Illinois at Urbana-Champaign) for their partic-
ipation and contribution in this work. This material is based
upon work supported by the Primary Research and Development
Plan of Zhejiang Province, China (Grant No.2021C01164), the
National Science Foundation IIS 16-19302 and IIS 16-33755, Zhe-
jiang University ZJU Research 083650, Futurewei Technologies
HF2017060011 and 094013, IBM-Illinois Center for Cognitive
Computing Systems Research (C3SR)- a research collaboration
as part of the IBM Cognitive Horizon Network, grants from
eBay and Microsoft Azure, UIUC OVCR CCIL Planning Grant
434S34, UIUC CSBS Small Grant 434C8U, and UIUC New
Frontiers Initiative. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the
author(s) and do not necessarily reflect the views of the funding
agencies.

14

TABLE 7: Detailed comparison under accuracy-moderated Configurations in single-source mode on large graphs.

Dataset
K=500 K=300 Query Time(ms) Index Cost of

PRSimPrecision AvgErr Precision AvgErr

UISim SimPush PRSim
w/o

PRSim
w/

ProbeSim UISim SimPush PRSim
w/o

PRSim
w/

ProbeSim UISim SimPush PRSim
w/o

PRSim
w/

ProbeSim UISim SimPush PRSim
w/o

PRSim
w/

ProbeSim UISim SimPush PRSim
w/o

PRSim
w/

ProbeSim Space
(MB)

Time
(s)

Enwiki2013
0.893 0.882 0.874 0.814 0.867 0.003 0.002 0.002 0.005 0.001 0.899 0.899 0.886 0.866 0.894 0.003 0.002 0.002 0.004 0.001 1.720 10.208 26.4 11 85.4 29.2 6.4
0.906 0.895 0.887 0.854 0.901 0.003 0.002 0.002 0.004 0.001 0.905 0.912 0.891 0.880 0.919 0.003 0.002 0.002 0.003 0.001 7.247 13.5 36.6 13.2 99 34.8 7.8
0.907 0.900 0.908 0.897 0.936 0.004 0.001 0.002 0.003 0.001 0.906 0.917 0.917 0.900 0.945 0.004 0.002 0.002 0.003 0.001 14.11 22.06 56.8 17 160 45 9.6

IT2004
0.898 0.885 0.872 0.811 0.853 0.025 0.015 0.018 0.029 0.030 0.910 0.909 0.908 0.866 0.888 0.024 0.014 0.016 0.023 0.027 5.533 17.545 541 36.6 121.4 1475.9 61.5
0.904 0.893 0.877 0.865 0.877 0.025 0.014 0.024 0.024 0.023 0.911 0.917 0.896 0.866 0.888 0.023 0.014 0.021 0.019 0.020 7.487 24.09 2450 121.8 757 3116.2 105.7
0.907 0.917 0.890 0.902 0.880 0.024 0.011 0.024 0.016 0.024 0.912 0.927 0.912 0.921 0.918 0.023 0.012 0.020 0.015 0.020 8.838 165.15 14726 416 1385 6100.6 172

Friendster
0.930 0.898 0.882 0.881 0.898 2E-04 1E-04 2E-04 2E-04 1E-04 0.931 0.924 0.911 0.914 0.926 2E-04 1E-04 3E-04 3E-04 1E-04 10.75 105.7 158 157 2240 52.5 134.8
0.937 0.910 0.937 0.940 0.955 2E-04 1E-04 2E-04 1E-04 1E-04 0.942 0.939 0.949 0.957 0.967 2E-04 1E-04 2E-04 2E-04 1E-04 20.08 128.5 323 325 4595 106.5 496.4
0.942 0.936 0.961 0.967 0.971 2E-04 1E-04 1E-04 1E-04 1E-04 0.945 0.965 0.966 0.973 0.979 2E-04 1E-04 1E-04 1E-04 1E-04 42.33 164.4 717 716 6797 214.3 1263.2

TABLE 8: Scalability of UISim on Growing Graphs.
Query time (ms) Memory (MB)

Dataset # Nodes # Edges # Hubs
SP SS SP SS

Gnutella1 6,301 20,777 816 0.36 200.8 3.69 4.10
Gnutella2 8,717 31,525 1,217 0.48 344.56 4.51 5.53
Gnutella3 10,876 39,994 1,538 0.52 412.2 5.02 6.14
Gnutella4 22,687 54,705 2,168 0.314 308.17 7.68 9.22
Gnutella5 36,682 88,328 3,500 0.323 275.7 11.57 13.31
Gnutella6 62,586 147,892 5,843 0.311 371.38 18.74 20.58
DBLP1 360,248 3,299,662 86,628 97.73 5709.6 158.7 172.03
DBLP2 588,076 5,942,059 147,681 374.83 10931 272.9 282.62
DBLP3 943,308 10,349,565 245,323 490.68 15905 457.3 481.28
DBLP4 1,585,596 18,862,938 426,294 2116.2 49780 785.4 796.7
DBLP5 2,073,139 25,759,412 567,163 2513.6 69744 1061 1113

References
[1] P. Boldi, A. Marino, M. Santini, and S. Vigna. BUbiNG: Massive

crawling for the masses. In WWW Companion, pages 227–228, 2014.
[2] S. Chakrabarti. Dynamic personalized pagerank in entity-relation graphs.

In WWW, pages 571–580, 2007.
[3] Y. Fang, K. C. Chang, and H. W. Lauw. Roundtriprank: Graph-based

proximity with importance and specificity? In ICDE, pages 613–624,
2013.

[4] D. Fogaras and B. Rácz. Scaling link-based similarity search. In WWW,
pages 641–650, 2005.

[5] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, and M. Onizuka. Efficient
search algorithm for SimRank. In ICDE, pages 589–600, 2013.

[6] G. Jeh and J. Widom. SimRank: a measure of structural-context
similarity. In KDD, pages 538–543, 2002.

[7] G. Jeh and J. Widom. Scaling personalized web search. In WWW, pages
271–279, 2003.

[8] M. Kusumoto, T. Maehara, and K.-i. Kawarabayashi. Scalable similarity
search for SimRank. In SIGMOD, pages 325–336, 2014.

[9] P. Lee, L. V. S. Lakshmanan, and J. X. Yu. On top-k structural similarity
search. In ICDE, pages 774–785, 2012.

[10] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[11] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and T. Wu. Fast computation
of SimRank for static and dynamic information networks. In EDBT,
pages 465–476, 2010.

[12] P. Li, H. Liu, J. X. Yu, J. He, and X. Du. Fast single-pair SimRank
computation. In SDM, pages 571–582, 2010.

[13] R. Li, X. Zhao, H. Shang, Y. Chen, and W. Xiao. Fast top-k similarity
join for simrank. Information Sciences, 381:1–19, 2017.

[14] Y. Liu, B. Zheng, X. He, Z. Wei, X. Xiao, K. Zheng, and J. Lu.
Probesim: Scalable single-source and top-k simrank computations on
dynamic graphs. PVLDB, 11(1):14–26, 2017.

[15] D. Lizorkin, P. Velikhov, M. Grinev, and D. Turdakov. Accuracy
estimate and optimization techniques for simrank computation. The
VLDB Journal, 19(1):45–66, 2010.

[16] T. Maehara, M. Kusumoto, and K. Kawarabayashi. Efficient simrank
computation via linearization. In KDD, pages 1426–1435, 2014.

[17] T. Maehara, M. Kusumoto, and K.-i. Kawarabayashi. Scalable simrank
join algorithm. In ICDE, pages 603–614, 2015.

[18] Y. Shao, B. Cui, L. Chen, M. Liu, and X. Xie. An efficient similarity
search framework for SimRank over large dynamic graphs. PVLDB, 8(8),
2015.

[19] J. Shi, T. Jin, R. Yang, X. Xiao, and Y. Yang. Realtime index-free
single source simrank processing on web-scale graphs. arXiv preprint
arXiv:2002.08082, 2020.

[20] Y. Sun, J. Han, J. Gao, and Y. Yu. iTopicModel: Information network-
integrated topic modeling. In ICDM, pages 493–502, 2009.

[21] W. Tao and G. Li. Efficient top-k SimRank-based similarity join. In
SIGMOD, pages 1603–1604, 2014.

[22] B. Tian and X. Xiao. Sling: A near-optimal index structure for simrank.
In Proceedings of the 2016 International Conference on Management of
Data, pages 1859–1874, 2016.

[23] H. Wang, Z. Wei, Y. Yuan, X. Du, and J.-R. Wen. Exact single-source
simrank computation on large graphs. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, pages 653–
663, 2020.

[24] Y. Wang, L. Chen, Y. Che, and Q. Luo. Accelerating pairwise simrank
estimation over static and dynamic graphs. PVLDB, 28(1):99–122, 2019.

[25] Y. Wang, X. Lian, and L. Chen. Efficient simrank tracking in dynamic
graphs. In ICDE, pages 545–556, 2018.

[26] Z. Wei, X. He, X. Xiao, S. Wang, Y. Liu, X. Du, and J.-R. Wen. Prsim:
Sublinear time simrank computation on large power-law graphs. In
Proceedings of the 2019 International Conference on Management of
Data, pages 1042–1059, 2019.

[27] W. Yu, X. Lin, and W. Zhang. Towards efficient SimRank computation
on large networks. In ICDE, pages 601–612, 2013.

[28] W. Yu and J. A. McCann. Sig-sr: SimRank search over singular graphs.
In SIGIR, pages 859–862, 2014.

[29] W. Yu and J. A. McCann. Efficient partial-pairs SimRank search on large
networks. PVLDB, 8(5), 2015.

[30] W. Zheng, L. Zou, Y. Feng, L. Chen, and D. Zhao. Efficient simrank-
based similarity join over large graphs. Proceedings of the VLDB
Endowment, 6(7):493–504, 2013.

[31] F. Zhu, Y. Fang, K. C.-C. Chang, and J. Ying. Incremental and accuracy-
aware personalized pagerank through scheduled approximation. PVLDB,
6(6):481–492, 2013.

[32] F. Zhu, Y. Fang, K. C.-C. Chang, and J. Ying. Scheduled approximation
for personalized pagerank with utility-based hub selection. VLDBJ, pages
1–25, 2015.

Appendix
In Sect. 3, we relax the first-meeting constraint in partial-tour
assembling (Eq. 4), and thus the multi-meeting tours could be
included in computation. We now discuss how to correct the
reachability of the unexpected multi-meeting tours.

Consider a set of full tours T(u,v) = Pu Z Pv currently
handled in estimating ŝ(u, v). For any meeting node x ∈ X,
if it has an in-neighbor x1, there will be a multi-meeting tour
u f x ← x1 → x v in T(u,v), where the unexpected meeting
node x1 is 1 hop away from the first-meeting node x. We refer to
such tours as 1-hop multi-meeting tours. Furthermore, there could
be 2-hop multi-meeting tours u f x ← y ← x2 → z → x v
with the unexpected meeting node x2 2 hops away from x, and so
on. Similarly, x2 can have its own in-neighbors, which results in a
set of 3-hop multi-meeting tours.

To correct ŝ(u, v), the estimated SimRank on T(u,v), we should
subtract the reachability of all the multi-meeting tours, from 1-hop
to M-hop (M is the maximal tour length). Let ∆i(u, v) denote the
overall reachability of i-hop multi-meeting tours between u and v,
we can obtain the correct SimRank score s(u, v) as:

s(u, v) = ŝ(u, v) −
M∑

i=1

∆i(u, v) (16)

Let us start with 1-hop multi-meeting tours. We notice that
all such tours share the same type of tour segment x ← x′ → x,
that is, R(x ← x′ → x) is a common factor in computing the

15

reachability of any 1-hop multi-meeting tour. Thus, to calculate
∆1(u, v), we can segment each 1-hop multi-meeting tour into two
parts, x ← x′ → x and u f x v, and then compute the
overall reachability of the tour segments in each part respectively
to assemble the final reachability, as formalized below.

Proposition 1. For any nodes u and v, ∆1(u, v), the overall reach-
ability of 1-hop multi-meeting tours in T(u,v) is:

∆1(u, v) =
∑
x∈X

C
|In(x)| ŝx(u, v). (17)

where ŝx(u, v) is the overall reachability of all the tours which
meet at x in T(u,v).

Proof: According to Eq. 6, the reachability of a specific
1-hop multi-meeting tour tx : u f x ← x1 → x v is R(tx) =

C
|In(x)|2 R(uf x v). Let Ψx denote the set of 1-hop multi-meeting
tours w.r.t. x in T(u,v), we have

R(Ψx) =
∑

x′∈In(x)

R(tx′) = |In(x)| × C
|In(x)|2 ŝx(u, v) =

C
|In(x)| ŝx(u, v).

(18)

By further aggregating R(Ψx) of every x, the overall reach-
ability of all 1-hop multi-meeting tours in T(u,v) is given by∑

x∈X
C
|In(x)| ŝx(u, v).

Based on Proposition 1, the SimRank similarity after correct-
ing ∆1(u, v) is calculated as

ŝ(u, v) − ∆1(u, v) =
∑
x∈X

ŝx(u, v) − ∆1(u, v) =
∑
x∈X

(
1 − C
|In(x)|

)
ŝx(u, v).

(19)

Thus, to correct the reachability of 1-hop multi-meeting tours,
we only need to multiple our estimate by a coefficient 1 − C

|In(x)|
when matching the full tours at each meeting node x. For other
multi-meeting tours, their reachability can be computed similarly
by utilizing the in-degree of the intermediate nodes between
meeting nodes.

PLACE
PHOTO
HERE

Fanwei Zhu received her Ph.D. degree in Com-
puter Science from Zhejiang University in 2012.
She is currently an Associate Professor in Zhejiang
University City College. Her research focuses on
graph-based proximity search and social network
analysis.

PLACE
PHOTO
HERE

Yuan Fang received his Ph.D. degree in Com-
puter Science from University of Illinois at Urbana-
Champaign in 2014. He is currently an Assistant
Professor in the School of Information Systems,
Singapore Management University. His research
focuses on graph-based machine learning and
data mining, as well as their applications for the
Web and social media.

PLACE
PHOTO
HERE

Kai Zhang received his Bachalor’s degree in Com-
puter Science from Zhejiang University City Col-
lege in 2020. He is currently a Research Assistant
in Tsinghua University. His research focuses on
information extraction and data mining.

PLACE
PHOTO
HERE

Hongtai Cao received his Bachelor of Engineering
from Zhejiang University and Master of Science
from the University of Southern California. He is a
Ph.D. candidate in Computer Science at the Uni-
versity of Illinois Urbana-Champaign. His research
interests include graph database systems and data
analysis.

PLACE
PHOTO
HERE

Kevin Chen-Chuan Chang is a Professor in Uni-
versity of Illinois at Urbana-Champaign. His re-
search addresses large-scale information access,
for search, mining, and integration across struc-
tured and unstructured big data including Web data
and social media. He also co-founded Cazoodle
for deepening vertical data-aware search over the
Web.

PLACE
PHOTO
HERE

Minghui Wu received his PhD degree in Computer
Science and Engineering from Zhejiang University.
He is a professor of Computer Science at Zhejiang
University City College. His major interests include
Artificial Intelligence, Big Data, Mobile Application,
and Software Engineering.

