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Neighbor-Anchoring Adversarial
Graph Neural Networks
Zemin Liu, Yuan Fang, Yong Liu, Vincent W. Zheng

Abstract—Graph neural networks (GNNs) have witnessed widespread adoption due to their ability to learn superior representations
for graph data. While GNNs exhibit strong discriminative power, they often fall short of learning the underlying node distribution for
increased robustness. To deal with this, inspired by generative adversarial networks (GANs), we investigate the problem of adversarial
learning on graph neural networks, and propose a novel framework named NAGNN (i.e., Neighbor-anchoring Adversarial Graph Neural
Networks) for graph representation learning, which trains not only a discriminator but also a generator that compete with each other. In
particular, we propose a novel neighbor-anchoring strategy, where the generator produces samples with explicit features and
neighborhood structures anchored on a reference real node, so that the discriminator can perform neighborhood aggregation on the
fake samples to learn superior representation. The advantage of our neighbor-anchoring strategy can be demonstrated both
theoretically and empirically. Furthermore, as a by-product, our generator can synthesize realistic-looking features, enabling potential
applications such as automatic content summarization. Finally, we conduct extensive experiments on four public benchmark datasets,
and achieve promising results under both quantitative and qualitative evaluations.

Index Terms—Neighbor-anchoring, generative adversarial network, graph neural network.
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1 INTRODUCTION

G RAPH structures are widespread in real-world sce-
narios, ranging from social networks to biological

networks. Many advanced analytics on graphs, such as
personalized recommendation on social networks [1] and
disease gene identification on biological networks [2], can be
cast as instances of node classification and link prediction.
Thus, addressing these problems heavily rely on effective
representations for graphs. While traditional approaches
often involve significant manual feature engineering, graph
neural networks [3], [4] have emerged as a promising family
of representation learning models for graphs.

Existing work. Graph neural networks (GNNs) aim to map
the nodes of a graph into a low-dimensional space whilst
preserving their structural information, to ultimately sup-
port graph-based applications. Recent state-of-the-art ap-
proaches, such as graph convolutional networks [3], graph
attention networks [4] and GraphSAGE [5], employ a similar
key process of multi-layer neighborhood aggregation. In one
layer, each node receives and aggregates messages (i.e., node
features or embeddings) from their neighboring nodes. Ad-
ditional layers may be utilized so that the neighbors recur-
sively receive messages from their neighbors. Such neigh-
borhood aggregation effectively smooths the node messages
along the graph structures [6], leading to powerful graph
representations. In contrast, another line of graph repre-
sentation learning methods known as network embedding,
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such as DeepWalk [7] and node2vec [8], generally predict
context nodes drawn from random walk paths, to effectively
preserve structural information on graphs. However, they
lack the key neighborhood aggregation operator that unifies
both node messages and graph structures in GNNs.

In the context of node classification, while graph neu-
ral networks can be powerful discriminative models by
learning the node conditional class distributions, generative
approaches can also be useful by learning the underlying
node distributions conditioned on classes. To exploit the
power of both discriminative and generative models, gen-
erative adversarial networks (GANs) [9], [10] have become
popular in recent years. Specifically, GANs employ the
adversarial principle involving both a discriminator and a
generator. The two players contest with each other in a
minimax game—the discriminator’s objective is to distin-
guish “real” samples from the true distribution and “fake”
samples from the generator, whereas the generator aims
to fool the discriminator by producing fake samples that
mimic the real ones. In particular, the generator produces
complement samples in the low density regions [11], which
can ultimately lead to more robust decision boundaries.

Present work. Inspired by GANs, we investigate the ad-
versarial training of graph neural networks. Although there
are many GAN-based approaches for graphs [12], [13], [14],
[15], they seldom explore GANs and GNNs jointly in an
end-to-end manner. In our approach, as shown in Fig. 1,
GANs are utilized to generate fake nodes in the sparse
region of the graph where there is a low-density of edges
[15]; more specifically, the generated nodes tend to lie in
the periphery of the dense regions under our proposed
strategy, as we shall see. As such, by discriminating the
real and fake nodes, the discriminator can learn a better
decision boundary between classes. In other words, the fake
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Fig. 1: Motivation of GANs on graph. Ideally, our generator
would produce samples not only in the sparse regions
with a low-density of links, but also in the periphery of
the dense regions. The fake samples are complementary to
enhance the robustness of node representations, enabling
the discriminator to learn better decision boundaries.

nodes are complementary in nature to augment the real
nodes, which enhance the robustness of node representa-
tions. However, training GNNs in an adversarial manner is
not straightforward. In particular, two major challenges still
remain with the design of the generator.

First, what is the definition of a sample on a graph? In non-
graph data, an instance is simply its features, such as the
pixels of an image. In contrast, on a graph, a node is charac-
terized by not only its features, but also its structures, i.e., its
neighbors on the graph. Thus, the generator must account
for both parts, which are necessary for the key operation of
neighborhood aggregation in GNNs. However, in existing
adversarial approaches on graphs such as GraphGAN [12]
and GraphSGAN [11], [15], a sample is only defined as its
latent embedding, lacking explicit features and structures to
perform neighborhood aggregation.

Second, how do we produce good samples? Previous ap-
proaches typically produce samples from a prior noise
distribution freely [13], [15], [16], [17], without explicit con-
straints between the real and fake samples. In other words,
they entirely depend on the model to learn any relationship
between the real and fake samples, which may be hard to
be reliably learned. On the contrary, if each fake sample is
generated w.r.t. a reference real node, the generator and
discriminator could become more conscious of each other’s
output. Specifically, given a pair of fake sample and its
reference node, the discriminator can better detect their
finer differences. This would in turn guide the generator
to produce a more realistic sample for a given reference
node, such that the fake samples not only “fill” in the sparse
regions between classes [11], [15], but also concentrate on
the periphery of the dense regions of each class, as shown
in Fig. 1. As a result, the discriminator is able to learn better
decision boundaries for the classes.

To address the above challenges, we propose a novel
neighbor-anchoring strategy. In this strategy, the generator
produces samples with explicit features and structures, so
that the discriminator can perform neighborhood aggrega-
tion on them. Furthermore, given a reference real node, the
generator produce a sample anchored on the same set of
neighbors as the reference node, i.e., they have the same
set of neighbors. At the same time, the generator utilizes a
feature synthesizer, aiming to produce features that mimic
the reference node (without knowing the actual features

of the reference node). By sharing the same neighbors
and thus isolating their effects on a fake sample and its
reference node, the model can focus on discriminating and
generating their features to achieve mutual improvement,
and encourage the fake sample to reside closer to the real
node at the periphery of dense regions. The advantage of
our neighbor-anchoring strategy can be demonstrated both
theoretically and empirically. Furthermore, as a by-product,
our generator can synthesize realistic-looking features for
any node on the graph which are interpretable—both real
and synthetic features reside in the same space—enabling
potential applications such as automatic content summa-
rization. For instance, on a bibliographic network, given a
paper node and its references (i.e., neighbors on the graph),
we can automatically generate a bag-of-words feature vector
to summarize the paper.

Contributions. In summary, we propose a new framework
of Neighbor-anchoring Adversarial Graph Neural Networks
(NAGNN), to learn more robust end-to-end node represen-
tations on a graph. We make the following contributions.

• We propose a novel neighbor-anchoring strategy for
generating adversarial node samples on a graph.

• We realize the neighbor-anchoring principle with a
model NAGNN, which performs end-to-end adver-
sarial training of graph neural networks, and further
present a formal analysis on its error.

• We conduct extensive experiments on four public
datasets, and in terms of accuracy on average outper-
form GCN and GAT by 3.3% and 1.7%, respectively.
Furthermore, our generator also serves as a feature
synthesizer, for which we conduct a qualitative study.

2 RELATED WORK

Graph representation learning. Network embedding [7],
[8], [18], [19], [20], [21] has been extensively studied
given its strong performance on downstream tasks such as
node classification and link prediction. They aim to learn
low-dimensional and structure-preserving embeddings for
nodes on a graph, typically in an unsupervised manner.
Most of these approaches exploit graph structures through
random walk sampling [7], [8] and various orders of prox-
imity [18].

More recently, graph neural networks (GNNs) [22] have
emerged as a promising direction for end-to-end graph rep-
resentation learning in a semi-supervised setting. Hinged on
the core idea of recursive neighborhood aggregation, vari-
ous approaches have been proposed. For instance, Graph-
SAGE [5] designs several aggregation functions to pool
neighborhood information. Others try to differentiate the
importance of different neighbors through neural attention
mechanisms [4], [23] and adaptive receptive paths [24].
Different forms of graph convolution have also been con-
sidered, such as accounting for higher-order or hierarchical
graph structures [25], [26], performing disentangled con-
volution according to latent factors [27], and conducting
node-wise localization [28]. Additionally, structure-aware
approaches [29], [30] focus on distinguishing different graph
structures for more expressive aggregation.
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GANs. Since their inception, GANs [9], [10] have achieved
considerable success in many research fields including com-
puter vision [31], [32], natural language processing [33],
[34] and data mining [35], [36]. Generally, a generator is
designed to learn the underlying data distribution, so as to
produce fake samples that resemble the real ones. While the
discriminator is tasked to differentiating the real and fake
samples, resulting in improved discriminating power. This
in turn drives the generator to come up with better samples.
When the data is sparse or noisy, the generator becomes
especially crucial to ensure the robustness of the model.
GANs have also been extended to deal with supervised
learning [11], [37], where each real sample belong to one of
the K classes. In this setting, an extra class is considered
in the discriminator to house the fake samples from the
generator, resulting in a total of K + 1 classes.

GANs on graph data. Inspired by the strong perform of
GANs, an increasing number of studies [12], [13], [14], [15],
[16], [17], [38], [39] leverage the generative adversarial prin-
cipal to learn more robust node representations on graphs.
Most of them focus on the network embedding setting [12],
[13], [14], [40]. Others consider variants of network embed-
ding, such as heterogeneous network embedding [38] and
multi-view network embedding [39]. Nevertheless, these
network embedding models are typically unsupervised and
often employ a direct embedding lookup for node repre-
sentations. A few studies [16], [17] employ graph autoen-
coders to train GANs, which leverage various neighborhood
aggregation such as the long short-term memory [16] and
graph convolution [17]. However, like network embedding,
they are also unsupervised to optimize the reconstruction
error in the autoencoder. The work on GraphSGAN [15]
is the most related to ours, which adopts a GAN to learn
semi-supervised node representations using a K + 1 class
formulation. However, the discriminator only employs a
multi-layer perceptron, rather than a graph neural network
as characterized by the key operation of recursive neigh-
borhood aggregation. Instead, to capture graph structures,
it requires a separately trained network embedding model
such as DeepWalk [7]. This also implies that GraphSGAN
is not truly end-to-end, as its optimization cannot influence
network embedding through backpropagation.

On another line, there exist adversarial attack and de-
fense models on graphs [41], [42]. However, their problem
is different from ours: They aim to minimize the impact of
adversarial noises added to the graph, in order to recover
the performance of GNNs to a level comparable on a “clean”
graph. In our problem, we aim to improve the graph repre-
sentations, and do not assume that the graphs have been
adversarially modified.

3 PRELIMINARIES

In this section, we introduce the problem statement and a
brief review of generative adversarial nets.

3.1 Problem Statement
In this paper, we work with featured graphs. Let G =
(V, E ,X) denote a featured graph, where V is a set of nodes,
E is a set of edges between the nodes, and X ∈ R|V|×M is a

feature matrix for the nodes such that M is the number of
features. Further let xv ∈ RM denote the feature vector of
node v ∈ V , i.e., the row of X corresponding to v.

On a featured graph G, we investigate the problem of
semi-supervised node classification. Specifically, each node
belongs to one of the K classes {1, 2, . . . ,K}. However, we
only observe the class labels of a subset of the nodes in V .
Let L be this subset of nodes with their observed labels,
i.e., ∀(v, y) ∈ L, v ∈ V is a node with its observed label
1 ≤ y ≤ K . Note that |L| < |V|. The problem is to classify
the remaining nodes which do not have observed labels.

3.2 Generative Adversarial Networks

We employ a generative adversarial network (GAN) [9], [32]
to address our classification problem. It can be regarded as a
minimax game between two players, namely, a discrimina-
tor D and a generator G. Each player seeks to improve itself
by competing with the other player iteratively. Specifically,
the generator G aims to generate fake samples that resemble
real nodes, and the discriminator aims to distinguish the
real nodes from the fake samples. Thus, a better generator
would force the discriminator to also become more effective,
and vice versa.

In our classification setting, since each real node belongs
to one of the K classes, we adopt the commonly used K+ 1
setting [15], [43]. That is, we consider K+ 1 classes given K
original classes. The discriminator aims to not only classify
a real node into the right class among the K original classes
{1, 2, . . . ,K}, but also identify fake samples and classify
them into the augmented class K + 1. Formally, GANs aim
to optimize the following minimax game.

max
θG

min
θD

Ev,y∼Ptrue [− logD(y|v; θD)]

+ Ev̂∼PθG [− logD(K + 1|v̂; θD)],
(1)

where θD and θG are the parameters of the discriminator
and generator, respectively; Ptrue is the true joint distribution
of nodes and labels, and PθG is the distribution learned by
the generator; D(y|v) is the output of the discriminator to
estimate the class distribution conditioned on a node. In
this formulation, the discriminator attempts to minimize
the cross entropy between the true and estimated class
distributions (i.e., to tell apart the original K classes as
well as the fake samples), whereas the generator tries to
maximize the cross entropy (i.e., to fool the discriminator).

4 PROPOSED MODEL: NAGNN
In this section, we introduce the proposed model NAGNN.
We start with an overview of NAGNN, followed by the
two main components, namely, the generator G and the
discriminator D. Finally, we present the overall algorithm.

4.1 Overview

The overall framework of NAGNN is illustrated in Fig. 2.
As with typical graph-based models, for a given node, we
are concerned with its neighbors on the graph. As shown
in Fig. 2(a), consider node v’s neighbors Nv = {a, b, c, d}.
Using this neighborhood as an example, Fig. 2(b) and (c)
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Fig. 2: Overall framework of NAGNN. (a) An existing node v and its neighboring nodes in the graph. (b) The generator,
which produces a fake sample v̂ anchored on the neighbors of the real node v. (c) The discriminator, which utilizes a GNN
to classify real nodes into the first K classes, and fake samples into class K + 1.

illustrate the two main components, namely, the generator
and the discriminator, respectively.

The role of the generator is to produce fake samples.
Each fake sample v̂ consists of a feature vector xv̂ , as well
as a local structure or a set of neighbors Nv̂ . The former is
synthesized by a neural network, while the latter is based on
a novel neighbor-anchoring strategy. On the other hand, the
discriminator employs a GNN (e.g., GCN or GAT) to learn
node representations, so as to differentiate the fake sample
v̂ from the real nodes v based on their final representations
fv̂ and fv , respectively. Specifically, it aims to classify v
into one of the original classes {1, 2, . . . ,K} and v̂ into the
augmented class K + 1.

4.2 Discriminator

Graph convolution. As shown in Fig. 2(c), our discrimi-
nator employs a GNN to learn node representations and
predict their classes. The choice of GNN is flexible, since
different GNNs mainly differ in the way of neighborhood
aggregation. Here we use graph convolutional networks
(GCN) [3], [5] to exemplify our discriminator, although it
can be easily extended to others such as graph attention
network (GAT) [4]. We will experiment with both GCN and
GAT in our empirical study. A GCN consists of multiple
layers of graph convolution, where in the layer l ≥ 1, a
neighborhood aggregation is performed on each node v to
derive its intermediate representation f

(l)
v ∈ RN

(l)

:

f (l)v = ReLU

 1

|Ñv|

∑
v′∈Ñv

W(l)f (l−1)v

 , (2)

where N (l) is the embedding size of the layer l representa-
tion, Ñv = Nv ∪ {v} denotes v’s neighbors with v itself in-
cluded, and W(l) ∈ RN

(l)×N(l−1)

is a learnable embedding
matrix in layer l. In particular, the initial representation is
simply the input features, i.e., f (0)v , xv , and N (0) = M , the
number of input features. Moreover, we denote the final N -
dimensional representation of an L-layer GCN as fv , f

(L)
v ,

where N = N (L).

Loss function. Typically, the final representation leverages
a softmax function for multi-class output [3], [4]. Thus,

the discriminator is also parameterized by a classification
matrix W ∈ R(K+1)×N under the K + 1 class setting
discussed in Section 3, such that

D(y|v; θD) =
exp (Wyfv)∑K+1

y′=1 exp (Wy′fv)
, (3)

where Wy ∈ RN denotes the y-th row of W, i.e., the
weight vector of class y. Specifically, D(y|v; θD) estimates
the probability of class y given node v. Note that θD, the
parameters of the discriminator, include the embedding
matrix W(∗) in each layer of graph convolution as well as
the classification matrix W.

The goal of the discriminator is to classify the real nodes
into the their corresponding classes {1, 2, . . . ,K}, and si-
multaneously put the fake samples into the augmented class
K + 1. Subsequently, the loss function for the discriminator
can be formulated as follows:

− 1

|L|
∑

(v,y)∈L

logD(y|v; θD)

− α · 1

|V̂|

∑
v̂∈V̂

logD(K + 1|v̂; θD) + λD ‖θD‖22 . (4)

Here (v, y) ∈ L is a real node v ∈ V with its observed label
y, whereas V̂ is the set of fake samples produced by the
generator. Moreover, α > 0 controls the importance of fake
samples, and λD > 0 is the regularization parameter for the
discriminator.

4.3 Generator
Typically, the generator draws samples from a preset noise
distribution, which are further transformed by a neural net-
work to generate realistic samples that mimic real samples.
Its parameters receive gradient updates from the discrimi-
nator as it tries to fool the discriminator.

Neighbor anchoring. In our context, a fake sample v̂ con-
sists of dual parts: its feature vector xv̂ , and its structure or
the set of neighbors Nv̂ . While both parts can be entirely
generated, we propose a novel form of neighbor-anchoring
strategy. Specially, the generator produces a (fake) sample v̂
w.r.t. a reference real node v on the graph. On the one hand,
the sample v̂’s feature vector xv̂ is synthesized by a neural



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

network such as a multi-layer perceptron (MLP) as shown in
Fig. 2(b). On the other hand, v̂’s neighborhood is anchored
on v’s neighborhood, i.e., Nv̂ = Nv . In other words, the
sample v̂ simply borrows its neighbors from the reference
node v, as shown in Fig. 2(b), such that Nv̂ = {a, b, c, d} as
well.

The advantages of neighbor anchoring are twofold. First,
the generator and discriminator become more conscious
of each other’s output. By controlling v and v̂ to share
the same neighbors, the discriminator can perceive finer
differences between the real and synthesized features, xv
and xv̂ . Meanwhile, by isolating the effect of neighbors, the
generator can better leverage the feedback from the discrim-
inator to synthesize more realistic features. Second, given
the shared neighbors and similar features xv and xv̂ under
a sufficiently powerful generator, a GNN tends to produce
similar final representations fv and fv̂ . This encourages the
discriminator to learn a more refined boundary around the
class of v due to the presence of a nearby fake sample v̂, as
illustrated in Fig. 1. This is largely consistent with previous
theoretical findings [11], [15] in that an effective generator
should not be a perfect generator that samples from the
true distribution, but a complement generator that “fills” in
the low-density regions between classes. In particular, the
neighbor-anchoring strategy further requires that the fake
samples reside near the periphery of dense regions, driving
the discriminator to search for better decision boundaries. A
formal analysis will be presented in Section 4.5.

Remark. Several recent studies investigate mutual infor-
mation maximization [44], [45], [46] for graph representation
learning in an unsupervised manner. Although they also
exploit the relationship between each node and the con-
text to improve graph representation learning, they have
fundamental differences from our method. First, they max-
imize the mutual information between each node and its
context (e.g., the neighborhood), as an additional constraint
such that the GNN-based encoder can train contextually
relevant node representations. In contrast, our proposed
NAGNN capitalizes on the neighboring nodes as the input
of the generator to produce fake samples anchored on them.
The anchoring strategy is more desirable than generating
fake nodes without constraints, as the generator and dis-
criminator could become more conscious of each other’s
output by focusing on the finer differences between a fake
node and its reference node with an identical neighborhood.
Second, they usually regard the graph-level representation
as the context. For efficiency, the aggregation of several sub-
sampled patch-level representations (e.g., sampling a few
nodes from the 1-hop and 2-hop neighbors, respectively)
can be an alternative context on large graphs. In contrast,
our NAGNN strictly resorts to the ego’s neighborhood as a
reference to achieve anchoring.

Feature synthesizing. With the neighbor-anchoring strat-
egy, our generator parameterized by θG can be formulated
as a function G(v, z; θG), which outputs a fake sample v̂
based on a reference node v and some noise vector z.
While the reference node v lends v̂ its set of neighbors,
the noise z is drawn from a predetermined multivariate
distribution Z for synthesizing the feature vector xv̂ . We

adopt a multivariate Gaussian distribution as Z :

Z , Gaussian(x̄v̂, σ
2I), (5)

where x̄v̂ represents the mean vector, and σ2I is the co-
variance matrix for some choice of real-valued σ. The mean
vector can simply be a zero vector, but we can also regarded
it as a initial estimator of the synthesized feature vector xv̂ .
In order to synthesize more realistic features, we derive the
initial estimator from the features of v̂’s neighbors (which
are also the neighbors of the reference node v due to neigh-
bor anchoring), based on the assumption that the features of
a node is related to the features of its neighbours. Here we
compute the mean feature vector, i.e.,

x̄v̂ =
1

|Nv̂|
∑
v′∈Nv̂

xv′ , (6)

although other forms of aggregation such as max- or sum-
pooling can also be adopted, which achieve similar em-
pirical performance as mean-pooling. Subsequently, given
some noise z ∼ Z , we employ an MLP to synthesize the
feature vector of the sample v̂, i.e., xv̂ = MLP(z), and the
generator’s parameters θG are in fact this MLP’s parameters.
To generate features in the same space as the real features,
the input and output layer must have the same dimensions
as the real features. The dimensions of the hidden layer is
flexible (usually a small constant such as 64 or 128). Thus,
the total number of parameters of the MLP is linear in the
feature dimensions.

Loss function. In our neighbor-anchoring generator, while
each sample v̂ is generated w.r.t. a real node v, we further
constrain the reference node v to be a labeled node from
L, to make it more challenging for the discriminator to
correctly classify real labeled node. Moreover, while the
generator is deemed successful when a fake sample v̂ is
classified by the discriminator into any of the K real classes,
we further require the generator to fool the discriminator
to the extent that v̂ is classified into the same class of the
reference node v. Thus, the loss of the generator can be
defined as follows, which tries to make the discriminator
believe that the sample v̂ also belongs to the class of the
reference node v.

− 1

|L|
∑

(v,y)∈L,z∼Z

logD(y|G(v, z; θG); θD) + λG ‖θG‖22 . (7)

4.4 Overall Algorithm
We resort to an iterative strategy to train NAGNN, alter-
nating between the discriminator and generator until the
model converges. More precisely, in each iteration, we first
fix θG to optimize θD to improve the discriminator using
fake samples from the current generator, after which we fix
θD to optimize θG so that the generator can produce better
samples as judged by the current discriminator. The pseu-
docode of our training process is sketched in Algorithm 1.

In the following, we conduct a complexity analysis on
the algorithm. The discriminator inherits its complexity
from the GNN (e.g., GCN). In each iteration of our ad-
versarial training procedure, to perform L-layer recursive
neighborhood aggregation for a given node, a total of O(dL)
nodes must be processed, where d is the maximal node
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Algorithm 1 Model training for NAGNN

Input: graph G, labeled set L, number of epochs nD for the
discriminator and nG for the generator in each iteration,
number of fake samples mD for the discriminator and mG

for the generator.
Output: θD , θG.

1: initialize parameters θD , θG;
2: while not converged do
3: for i = 1 to nD do . train discriminator
4: V̂ ← generate mD fake nodes for each labeled node
5: update θD with L and V̂ according to Equation (4)
6: end for
7: for i = 1 to nG do . train generator
8: generate mG fake samples w.r.t. each labeled node
9: evaluate the fake samples using the discriminator

10: update θG according to Equation (7)
11: end for
12: end while
13: return θD , θG.

degree in the graph. Thus, with mD samples generated
w.r.t. each reference node, the discriminator incurs a time
complexity of up to O(nD · mD · |V| · dL) for nD epochs.
Next, we analyze the generator. The feature synthesizer can
precompute the initial estimator for all reference nodes in
O(d·|V|) time. During training time, the generator produces
one fake sample w.r.t. each reference node, and evaluate
them using the discriminator, thus takingO(nG ·mG ·|V|·dL)
time for nG epochs. Thus, the overall time complexity for
NAGNN is O((nG · mG + nD · mD) · |V| · dL). Note that
nG,mG, nD,mD are all small constants. While the term
dL may be prohibitive for large d and L, in practice a
small number of layers L such as two or three is sufficient.
Furthermore, neighborhood sampling [5], [47], [48] can also
be performed to reduce the effective maximum degree d to
a small constant, although these methods are beyond the
scope of our discussion. Overall, our adversarial approach
belongs to the same complexity class as vanilla GNNs.

4.5 Theoretical Analysis
We provide a theoretical analysis to substantiate the intu-
ition behind our neighbor-anchoring generator.

Definitions and assumptions. The discriminatorD(y|v; θD)
is defined as the softmax output in Eq. (3), to estimate the
class distribution given a node v under the K + 1 formula-
tion. The softmax output is parameterized by a classification
matrix W ∈ R(K+1)×N . For brevity, we call W a classifier,
which makes the following prediction on a node v based on
its final representation fv :

h(v;W) = arg max
1≤y≤K+1

(Wyfv) . (8)

Suppose the discriminator has high enough capacity
such that the K + 1 classes become pairwise linearly sepa-
rable in the space of final representations. Subsequently, we
can define the convergence conditions for the discriminator
as the basis of our error analysis.

Definition 1 (Converged Classifier). A classifier W is said to
be converged if both the following conditions hold:
• ∀(v, y) ∈ L, Wyfv > maxy′ 6=yWy′fv ;
• ∀v̂ ∈ V̂ , maxy≤K Wyfv̂ <WK+1fv̂ .

In Definition 1, the first condition requires that all labeled
nodes are classified correctly, and the second condition
implies that all fake samples are classified into the class
K + 1.

For the generator, to quantitatively differentiate the
neighbor-anchoring generator from the non-anchoring
counterpart, we introduce the following definition of ε-
samples.

Definition 2 (ε-Sample). For some finite positive constant ε,
a fake sample v̂ is called an ε-sample, if there exists a real
labeled node v such that the L1 distance between their final
representations is bounded by ε, i.e., ‖fv − fv̂‖1 < ε.

Definition 2 essentially requires ε-samples to be close to
some labeled node in the final representation. In particular,
the final representation of a node v is a function of v’s input
features xv , and the set of v’s neighbors. In other words,
fv , φ(xv,Nv), where φ denotes some form of recursive
neighbor aggregation, i.e., a GNN. The function φ is a form
of smoothing [49], in which each node v becomes similar to
its neighbors Nv , whilst also accounting for its own input
features xv . Thus, to see if two nodes v and v̂ have similar
final representations, we can examine their neighbors Nv
and Nv̂ , as well as their input features xv and xv̂ .

For our neighbor-anchoring generator, since each sample
v̂ replicates the neighbors of some labeled reference node,
say v, we have N (v̂) = N (v). Furthermore, thanks to the
universal approximation theorem [50], [51], the MLP-based
generator is capable of recovering the features of v̂ suffi-
ciently well, i.e., ‖xv̂−xv‖ can be arbitrarily small. Applying
the aggregation function φ with its associated smoothing ef-
fect [6], [49], we have ‖φ(xv̂,Nv̂)−φ(xv,Nv)‖ = ‖fv̂−fv‖ <
ε for some finite ε. In other words, v̂ is an ε-sample given
the existence of v. This essentially imply that our generator
produces the fake samples that lie close to the reference
nodes, which tend to be in the periphery of the dense
regions.

In contrast, without neighbor-anchoring, the neighbors
of v̂ are sampled from the underlying distribution given a
noise prior, and thus there may not exist any labeled node
with the same or a similar set of neighbors. That is, the
difference between N (v̂) and N (v) for any given labeled
node v can be arbitrarily large, and so does the difference
between xv̂ and xv . Therefore, v̂ is not an ε-sample or ε can
be arbitrarily large.

Error analysis. We give a bound on the generalization error
[52], to show that the neighbor-anchoring generator tends to
give a smaller error than a non-anchoring generator.

Consider a classifier W. Its generalization error is the
difference between its expected error e(W) over the true
distribution of data, and its empirical error ẽ(W) over the
observed data. Specifically,

e(W) = Ev,y∼P (v,y) [I(y 6= h(v;W))] , (9)

ẽ(W) =
1

|L|
∑

(v,y)∈L

I(y 6= h(v;W)), (10)

where I is a binary indicator function to model the 0-1 error.
We first derive a generalization bound in the presence

of generic fake samples, without considering ε-samples for
now.
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Lemma 1 (Generalization Error). Let U denote the universe of
converged classifiers. The generalization error of any classifier W
is bounded, i.e., e(W)− ẽ(W) ≤ BU (W) such that

BU (W) = max
U∈U

K∑
y=1

∑
v∈V

P (v, y)I(h(v;W) 6= h(v;U)). (11)

Furthermore, without knowing the joint distribution P (v, y),
BU (W) gives the tightest possible bound for the same U .

Proof. Under the assumption that the K + 1 classes are
pairwise linearly separable in the final representation space,
there exists an oracle classifier U∗ ∈ U such that it gives zero
expected error. Thus, given a node v, a classifier W makes
an error on this node if W disagrees with U∗. Thus, the
expected error is e(W) =

∑K
y=1

∑
v∈V P (v, y)I(h(v;W) 6=

h(v;U∗)). Subsequently, BU (W) in Equation (11) is an
upper bound on e(W). Since the empirical error ẽ(W) is
bounded by zero from below, the generalization error is
bounded by BU (W) from above.

Furthermore, without knowing the full distribution
P (v, y), every classifier in U could be the oracle. When the
oracle U∗ happens to the maximizing classifier in Equa-
tion (11), BU (W) is the exact error and thus also represents
the tightest possible bound if P (v, y) or U∗ is unknown.

One immediate consequence of Lemma 1 is that, the
bound is monotonic w.r.t. the universe of converged clas-
sifiers U , as formalized below.

Corollary 1 (Bound Monotonicity). Let U ′ be a subset of U ,
i.e., U ′ ⊆ U . For any classifier W, BU ′(W) ≤ BU (W).

Finally, we investigate the error when the fake samples
are constrained such that they are ε-samples.

Theorem 1 (Error with ε-Samples). Let Uε be the universe of
converged classifiers when the generator produces ε-samples. For
any classifier W, it holds that BUε(W) ≤ BUε′ (W) if ε ≤ ε′.

Proof. By Definition 2, for an ε-sample v̂, there exist a real
labeled node v such that ‖fv − fv̂‖1 < ε, and thus Uyfv −
Uyfv̂ < ε‖Uy‖1 for any Uy ∈ R1×N . Equivalently, Uyfv <
Uyfv̂ + ε‖Uy‖1 (*).

Next, suppose v is from class y, i.e., (v, y) ∈ L. By con-
dition (ii) in Definition 1, a converged classifier U requires
maxy≤K Uyfv̂ < UK+1fv̂ , which implies Uyfv̂ < UK+1fv̂ .
Since having K + 1 linear models for K + 1 classes is a
form of over-parameterization, UK+1 can be fixed as a zero
vector [11], [43]. Thus, we have Uyfv̂ < 0. Together with (*),
we obtain Uyfv < ε‖Uy‖1.

Finally, jointly considering condition (i), a converged
classifier U requires maxy′ 6=yUy′fv < Uyfv < ε‖Uy‖1,
when the generator produces ε-samples. Note that
ε‖Uy‖1 < ε′‖Uy‖1 if ε < ε′. That means, ε′-samples imply a
less strict requirement on the converged classifiers, i.e., Uε ⊆
Uε′ . Thus, by Corollary 1, we have BUε(W) ≤ BUε′ (W) for
any classifier W, which concludes the proof.

As discussed earlier, the neighbor-anchoring generator
is assumed to produce ε-samples for some finite ε. On the
other hand, without neighbor-anchoring, the fake samples
are unconstrained, which can be regarded as ε′-samples for
some arbitrarily large ε′ such that ε′ ≥ ε. By Theorem 1, the

TABLE 1: Summary of datasets.

Datasets # Nodes # Edges # Classes # Features

Cora 2,708 5,429 7 1,433
Citeseer 3,327 4,732 6 3,703
Pubmed 19,717 44,338 3 500

DBLP 1,866 7,153 4 1,084

neighbor-anchoring generator entails a better error bound
than its non-anchoring counterpart.

5 EXPERIMENTS

In this section, we evaluate the performance of our proposed
model NAGNN on four public datasets. Specifically, we
compare our model with state-of-the-art baselines, study the
neighbor-anchoring strategy, and investigate parameter sen-
sitivity. Finally, we also present a case study to demonstrate
the quality of our generator.

5.1 Experimental Setup

Datasets. We conducted experiments on four public real-
world graph datasets, namely, Cora, Citeseer, Pubmed [53]
and DBLP [54]. Each node in the graph is a document, and
the links among documents represent the citation relation.
Each document has a sparse bag-of-words feature vector,
and belongs to one of the several classes based on its topic.

While no further processing was done on the three
datasets Cora, Citeseer and Pubmed, we performed addi-
tional filtering on the DBLP dataset to focus on four research
areas: artificial intelligence (AI), database (DB), data mining
(DM) and information retrieval (IR). We identified major
conferences in the four areas, and only retained their papers.
In particular, AI includes “IJCAI”, “NeurIPS”, “AAAI”,
“ECAI”, “ACL”, “COLT”, “ICML” and “ECML”; DB in-
cludes “ICDE”, “VLDB”, “SIGMOD”, “PODS”, “EDBT” and
“ICDT”; DM includes “PKDD”, “WSDM”, “SDM”, “ICDM”,
“WWW”, “KDD”, “PAKDD” and “CIKM”; IR includes “SI-
GIR”, “TREC” and “ECIR”. Based on its publication venue,
each paper is assigned a research area as its class label.
Additionally, to reduce potential noises, we removed words
occurring in fewer than five papers and papers with fewer
than five words.

The four datasets are summarized in Table 1. We em-
ployed all of them for multi-class node classification. For
the case study on the generator, only DBLP was used, as it
is the only dataset with explicit words as features, whereas
the other datasets only contain word identifiers.

Baselines. We consider baselines from the following four
main categories of graph representation learning. (1)
Network embedding: DeepWalk; (2) Unsupervised GAN-
based models: GraphGAN, ARGA and ARVGA; (3) Semi-
supervised GAN-based models: ARGA(S), ARVGA(S) and
GraphSGAN; (4) End-to-end graph neural networks: GCN
and GAT. The details of the baselines are introduced below.
• DeepWalk [7]: It is a network embedding approach,

which samples truncated random walks on the graph,
and applies the skip-gram model on the resulting node
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TABLE 2: Node classification performance (in percent) with standard deviation using 20 labeled nodes per class, averaged
over 10 runs. The best results are bolded. In the column of “Input data”, A denotes the adjacency matrix, X denotes the
feature matrix, and L denotes the labeled nodes.

Methods Input Cora Citeseer Pubmed DBLP
data Accuracy Micro-F Macro-F Accuracy Micro-F Macro-F Accuracy Micro-F Macro-F Accuracy Micro-F Macro-F

DeepWalk A 73.8±0.3 74.9±0.1 74.0±0.1 61.6±0.2 60.5±1.0 59.8±0.5 67.4±0.3 65.2±0.1 66.1±0.1 50.4±1.0 51.8±0.8 49.1±1.1
GraphGAN A 58.8±0.2 57.9±0.1 57.2±0.1 60.4±1.4 58.5±0.1 58.6±0.1 73.2±0.1 75.3±0.1 73.2±0.1 52.4±2.5 51.1±3.5 52.1±4.3
ARGA A, X 58.2±0.5 48.8±0.8 39.7±0.7 48.7±1.3 47.4±2.1 44.5±2.3 53.8±1.3 46.5±2.7 41.4±3.5 56.4±1.3 55.1±1.1 55.2±1.2
ARVGA A, X 46.4±1.9 35.6±2.3 26.8±1.4 64.4±0.3 64.0±0.2 56.0±0.3 40.7±0.2 20.1±0.4 19.3±0.3 25.0±0.2 17.1±1.2 23.7±0.5
ARGA(S) A, X, L 72.1±0.7 68.7±0.6 56.4±0.9 61.8±1.2 59.9±1.8 57.2±1.4 62.6±1.6 55.3±2.3 50.8±2.4 59.3±1.8 57.8±1.5 58.0±1.4
ARVGA(S) A, X, L 63.7±1.5 62.5±1.7 50.6±1.4 68.9±0.5 68.1±0.8 61.4±0.6 50.7±1.4 46.0±0.8 39.3±0.9 41.7±1.1 43.9±1.3 42.3±1.4
GraphSGAN A, X, L 79.2±0.6 79.3±0.5 78.0±0.6 67.4±0.7 65.8±0.4 61.8±0.5 68.2±0.4 68.7±0.5 67.5±0.5 58.6±0.9 57.4±0.8 56.8±0.9

GCN A, X, L 81.5±0.7 80.8±0.5 80.4±0.6 70.4±0.5 68.3±0.7 66.9±0.4 78.9±0.3 78.8±0.4 78.0±0.3 61.7±1.5 62.2±1.2 60.9±0.7
NAGCN A, X, L 83.2±0.6 81.7±0.4 81.9±0.5 72.8±0.4 70.7±0.5 69.0±0.4 79.0±0.3 79.4±0.2 78.4±0.3 66.4±0.7 65.4±0.9 64.6±0.9

GAT A, X, L 82.9±0.6 82.0±0.6 81.8±0.6 72.4±0.7 70.4±0.8 68.2±0.7 77.2±0.5 77.7±0.7 76.6±0.5 68.6±3.1 64.1±4.3 57.2±7.2
NAGAT A, X, L 83.5±0.4 82.6±0.3 82.5±0.2 72.9±0.4 70.9±0.5 68.3±0.8 77.7±0.4 77.8±0.1 77.0±0.3 71.8±1.7 69.1±1.4 68.6±1.3

sequences for node embedding. We concatenate the
output embeddings with the feature vectors as the final
representation, since DeepWalk does not leverage node
features in training.

• GraphGAN [12]: It is an unsupervised GAN-based ap-
proach, which learns more robust node embedding in
a network. Similar to DeepWalk, we concatenate their
output node embeddings with the feature vectors for
further node classification.

• ARGA [17]: It is an unsupervised GAN-based model,
which employs a graph autoencoder in the adversarial
setting and uses a GCN as its encoder. Thus, both graph
structures and node features have been considered in
this method. It also has a variant ARVGA, which em-
ploys a variational graph autoencoder.

• ARGA(S) [17]: We further extend ARGA to the semi-
supervised setting, by implementing a classification
layer on the learned representation, in order to fully
exploit the labeled data for better performance. Simi-
larly, we extend ARVGA into a semi-supervised variant
ARVGA(S) by also adding a classification layer.

• GraphSGAN [15]: It performs semi-supervised node
classification using the adversarial principle. Its gen-
erator generate fake, latent representations for nodes.
Both its discriminator and generator are MLPs, and it
requires a separate network embedding step to capture
graph structures.

• GCN [3]: It is a GNN approach that utilizes graph
convolutions to aggregate information from neighbours
to form the representation of each node. It is trained
end-to-end in a semi-supervised manner.

• GAT [4]: It is a more advanced variant of GCN, which
exploits a self-attention mechanism to assign different
weights to neighbours to reflect their relative impor-
tance.

We used the following settings for the baselines, which
are derived based on our empirical tuning in line with
recommended settings reported in the literature. For Deep-
Walk, we sampled 10 random walks per node, with walk
length 100 and window size 5, and set the embedding
dimension to 128. For GraphGAN, we use DeepWalk for
pre-training its generator and discriminator. We set its em-

bedding dimension to 128, batch size as 64, L2 regularization
weight as 0.00001, learning rate as 0.001, and number of
steps for the generator and discriminator in one iteration
both as 30. We report the classification performance based
on the node embeddings from its generator, since they
achieve better empirical results than the discriminator’s
output. For ARGA and ARVGA, we set the learning rate as
0.001, number of epochs as 200, and constructed encoders
with a 32-neuron hidden layer and a 16-neuron embedding
layer. Two hidden layers with 16 and 64 neurons were used
for the discrminator. For GraphSGAN, we set the training
batch size as 64, the number of training epochs as 100,
learning rate as 0.003, and the scale factor between labeled
and unlabeled nodes as 0.5. For GCN, we adopted two
layers, such that the first (hidden) layer has a dimension
of 8, while the second (output) layer follows a multi-
class classifier. Besides, we set learning rate as 0.005, L2
regularization as 0.0005, and a dropout probability of 0.6.
For GAT, we adopted similar settings as GCN, but with 8
attention heads in the first layer, each of which computes an
8-dimensional output. An exponential linear unit (ELU) is
applied following each layer.

For unsupervised methods (DeepWalk, GraphGAN,
ARGA and ARVGA), we further train a logistic regression
classifier using their output embeddings as node features.
We also tried support vector machines and softmax classifi-
cation with cross entropy, which yielded similar or inferior
results as logistic regression.

Our models. For the proposed NAGNN, we experiment
with different GNNs as its discriminator. Specifically, we
adopted GCN and GAT from the baselines. Thus, we call
the two instances of our model NAGCN and NAGAT, using
GCN and GAT as their discriminator, respectively. For our
discriminators, we applied the same parameters employed
in the corresponding baseline GCN or GAT. We used the
Adam optimizer to train the model, with learning rate 0.005
for discriminator and 0.001 for generator, L2 regularization
0.005 for both the discriminator and generator. The genera-
tor employs an MLP with one hidden layer, and uses ELU
as its activation function.

We pre-trained both the discriminators and generators.
Specifically, the discriminators use the model of their cor-
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responding baseline, GCN or GAT, to initialize the pa-
rameters, whereas the generator is pre-trained by reducing
the error between the synthesized features and the actual
features on the real nodes.

In each iteration of training, we chose the number of fake
samples per labeled node as mD = 10 for the discriminator
and mG = 1 for the generator. We further set the number
of each epochs to nD = 20 for the discriminator and
nG = 10 for the generator, which report stable empirical
performance. Training the discriminator more than the gen-
erator is consistent with previous findings [38], [55]. We
set σ = 0.01 for the prior Gaussian distribution in the
generator, and α = 0.5 for the weight of fake samples in
the discriminator. We have also analyzed the sensitivity of
these two parameters in Sect. 5.4.

Model evaluation. Three datasets Cora, Citeseer and
Pubmed have standard splits into training, testing and vali-
dation sets. We split the DBLP data similarly. Specifically, on
each dataset, the training set includes 20 nodes per class, the
test set includes 1000 nodes and the validation set includes
500 nodes. We trained each model for 10 times, and report
their average performance and the standard deviation. In
particular, their performance was evaluated with three met-
rics: accuracy, micro-F and macro-F scores. Note that, under
the standard definition micro-F is equivalent to accuracy in
multi-class classification. To better evaluate datasets with
imbalanced class distributions, when computing the micro-
F score, we removed the largest class and only micro-
averaged over the other smaller classes as another metric
to complement accuracy and macro-F score.

Environment. We implement the model with Python 3.6.5
and Tensorflow 1.13.0. All experiments were run on a Linux
server with an Intel Xeon W-2133 CPU and a NVIDIA
GeForce RTX 2080Ti GPU.

5.2 Performance Evaluation
We compare the performance of our models NAGCN and
NAGAT with the baselines. First, we evaluate the perfor-
mance using 20 labeled nodes per class as training data,
which is the standard split. Next, we reduce the number of
labeled nodes to study the robustness of our model.

20 labeled nodes per class (standard split). We report the
results in Table 2, and make the following observations.

Firstly, our models NAGCN and NAGAT, which adopts
GCN and GAT as their respective discriminator, consistently
outperforms the baselines on all datasets. Compared to the
strongest baselines GCN and GAT, in terms of accuracy,
NAGCN outperforms GCN by 3.3%, and NAGAT outper-
forms GAT by 1.7%, averaged across four datasets. Further-
more, our models not only improve accuracy consistently,
but also reduce the standard deviation of their performances
in most cases. This observation implies that our model is
both more effective and robust, due to the adoption of
adversarial training.

Secondly, our models perform much better than
GraphSGAN in all cases, which is the next best method after
end-to-end neural networks. In particular, GraphSGAN also
trains the generator and discriminator using the K + 1
class formulation in a semi-supervised manner. However,

(a) Cora (b) Citeseer

(c) Pubmed (d) DBLP

Fig. 3: Performance with fewer labeled nodes.

it is not truly end-to-end, as it requires a separate network
embedding model to capture the graph structure. Further-
more, it does not employ neighbor anchoring strategy and
neighborhood aggregation as in our model.

Thirdly, our models significantly outperform all other
baselines by very large margins. As discussed earlier, Deep-
Walk and GraphGAN are based on unsupervised network
embedding without neighborhood aggregation, and thus
are limited (even if equipped with a GAN). On the other
hand, ARGA and ARVGA are unsupervised methods em-
ploying adversarial regularized graph autoencoders, and
ARGA(S) and ARVGA(S) are their semi-supervised exten-
sions. While the latter perform better due to the exploitation
of labeled data during embedding training, all of them em-
ploy graph convolutional layers to reduce the reconstruction
error, rather than to discriminate real and fake samples for
better decision boundaries.

Fewer labeled nodes. We vary the number of labeled node
per class and report the comparison between NAGCN and
GCN in Fig. 3. We only report the accuracy, as the micro-F
and macro-F scores follow a similar trend. We observe that,
in most cases, our model NAGCN’s margin of improvement
over GCN generally increases with fewer labeled nodes.
For instance, averaging over four datasets, we improve over
GCN by 3.3% with 20 labeled nodes per class, whereas the
improvement grows to 3.8% with 10 labeled nodes per class.
This demonstrates that our model is robust toward a small
number of labeled nodes.

Training efficiency. In Fig. 4, we compare the training
time of GNNs and our NAGNN counterparts. While our
approach NAGNN requires more training time due to the
iterative training procedure that alternates between the gen-
erator and GNN-based discriminator, our time cost is on
the same order as the GNN counterparts, generally being
slower by a constant factor. Overall, the time comparison
shows that our approach belongs to the same compleixity
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Fig. 4: Training time comparison.

Fig. 5: Impact of our neighbor-anchoring strategy.

class as GNNs, consistent with the analysis in Section 4.4.

5.3 Model Analysis

Ablation study. Next, we study the benefit of the proposed
neighbor-anchoring strategy in Fig. 5, which compares
NAGCN with two degenerate versions: (1) no neighbor-
anchoring, where each fake sample is generated from a noise
prior for both its features and neighbors, without anchoring
its neighbors on any reference node; (2) no initial estimator,
where the neighbor-anchoring strategy is adopted, but the
feature synthesizer initializes from a zero-mean noise prior.

We observe that the model without neighbor-anchoring
performs the worst, which implies that generating fake
samples anchored on the neighbors of a real reference node
is crucial. Moreover, without an initial estimator, the per-
formance is also not optimal, indicating that a good initial
estimator can help the generator to produce more realistic
feature vectors.

Visualization. We further visualize the final representations
learned by the no anchoring version and the full model
in Fig. 6. As our discussion in earlier sections suggests,
given neighbor-anchoring on reference nodes, in Fig. 6(a), a
significant fraction of the fake samples not only residing in
the low-density region, but also concentrating more on the
periphery of the dense regions, enabling the discriminator to
refine the decision boundary. In contrast, without neighbor-
anchoring, in Fig. 6(b), the fake samples are more uniformly
distributed across the entire space.

5.4 Parameters Sensitivity

We further investigate the impact of parameters on our
model, using NAGCN as an example. The results on NA-
GAT are similar. Specifically, we study the Gaussian distri-
bution parameter σ, and the weight of fake samples α.

(a) With neighbor-anchoring (b) No neighbor-anchoring

Fig. 6: Visualization of generated samples and real nodes.
The solid dots denote real nodes, and different colors indi-
cate different classes; the hollow circles denote fake samples.
In (a), the fake samples are drawn in the same color as their
reference nodes; in (b), the fake samples are not anchored
on any real nodes and are all drawn in grey.

(a) Impact of σ (b) Impact of α.

Fig. 7: Impact of parameters.

Impact of σ. Fig. 7a presents the performance changes when
the standard deviation of the prior σ is varied between
0.0001 and 10000. Note that, we normalize the accuracy
values over the best value in each dataset so that the
performance on different datasets can be plotted together.
We can see that when σ is between 0.01 and 1, the optimal
performance can be generally achieved. The reason is that,
the non-zero values in the initial estimator of the feature
synthesizer are generally in the range [0.1, 1.0] with mean-
pooling of the neighborhood. As a result, if σ is too large,
the initial estimator is completed dominated by the noise,
resulting in degraded performance. On the other hand, , this
could alter the initialization feature vector too much, such
that the important initialization feature information could
be override. On the contrary, if σ is too small, the prior
drawn from the prior has little variance and thus limit the
expressiveness of the generator.

Impact of α. Fig. 7b shows the performance changes when
the weight of the fake samples in the discriminator α is
varied between 0.01 and 10. We can observe that, when
α ∈ [0.01, 1.0], the performance is relatively stable, with
α = 0.1 being the most optimal. However, when α is
too large, the performance drops quickly. This indicates
that, there should be a balance between the weight of real
samples and fake samples.

5.5 Case study
We conduct a case study on the DBLP dataset, to evaluate
the ability of the generator to synthesize features. Note that
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TABLE 3: Qualitative evaluation of the synthesized features from our generator on the DBLP dataset.

DOC GROUND TRUTH TERMS TERMS FROM NEIGHBOURS (BASELINE) TERMS FROM OUR GENERATOR

1
models, language, classification,

text, combining, bayes, naive
models, combining, positive,

bayes, reduction, naive, language
combining, models, classification,

text, language, email, naive

2
models, database, local,

sharing, meta
models, sharing, classifiers,

integrating, mining
database, models,

mining, databases, local

3
problems, decision,

constraint, utility, regret
decision, regret, utility,

incremental, criterion
regret, utility, decision,
incremental, constraint

4
networks, structure,

local, bayesian, compiling
approximation, local,

practical, propagation, structure
networks, local, bayesian,

propagation, structure

DBLP is the only dataset with actual words as features,
rather than only a word identifier in the other datasets.

In particular, for each node (document) in DBLP, we first
obtain its actual word terms as the ground truth of com-
parison. Next, as a baseline, we directly aggregate feature
vectors from its neighbours by taking their average, and
keep the same number of terms as the ground truth by tak-
ing the top ranking features with the largest values. Finally,
we employ our generator to synthesize a fake feature vector,
and also only keep the same number of terms by taking the
top ranking features.

Table 3 shows four documents and their terms using dif-
ferent methods, where each row represents one document.
In the last two columns, terms in bold are also found in the
ground truth. From the table we can make two observations.

Firstly, terms from the generator are generally closer
to the ground truth terms than terms aggregated from its
neighbours are. This is because the generator takes the
feature vector aggregated from its neighbours as its initial-
ization, which will be improved by adversarial training with
the discriminator. Thus, after adversarial training, it could
generate better fake samples from its initialization.

Secondly, terms from the generator is not perfect com-
pared to the ground truth. This is in fact a crucial point
of the generator, as the role of a generator is to produce
complementary samples for the discriminator to differenti-
ate [11], [15], which must not be indistinguishable from the
real ones.

6 CONCLUSION

In this paper, we investigated the problem of adversarial
learning with graph neural networks, and proposed a novel
framework NAGNN for end-to-end graph representation
learning. In particular, we proposed a novel neighbor-
anchoring strategy, in which the generator produces fake
samples with explicit features, based on structures anchored
on the neighbors of a reference real node. Subsequently, the
GNN-based discriminator can perform recursive neighbor-
hood aggregation on the fake samples to learn powerful
representations. The neighbor-anchoring strategy ensures
that the fake samples lie in the periphery of the dense
regions, which facilitates the learning of a more refined de-
cision boundary. Besides, the generator could enable poten-
tial applications such as automatic content summarization
by synthesizing realistic features. Finally, our experiments
demonstrated promising results of NAGNN, both quantita-
tively and qualitatively.
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Hjelm, “Deep graph infomax.” in ICLR, 2019.

[45] J. Cao, X. Lin, S. Guo, L. Liu, T. Liu, and B. Wang, “Bipartite graph
embedding via mutual information maximization,” in WSDM,
2021, pp. 635–643.

[46] P. Wang, Y. Fu, Y. Zhou, K. Liu, X. Li, and K. Hua, “Exploiting
mutual information for substructure-aware graph representation
learning,” in IJCAI, 2020, pp. 3415–3421.

[47] J. Chen, T. Ma, and C. Xiao, “Fastgcn: fast learning with graph
convolutional networks via importance sampling,” ICLR, 2018.

[48] W. Huang, T. Zhang, Y. Rong, and J. Huang, “Adaptive sampling
towards fast graph representation learning,” in NeurIPS, 2018, pp.
4558–4567.

[49] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and
S. Jegelka, “Representation learning on graphs with jumping
knowledge networks,” in ICML, 2018, pp. 5453–5462.

[50] K. Hornik, “Approximation capabilities of multilayer feedforward
networks,” Neural networks, vol. 4, no. 2, pp. 251–257, 1991.

[51] K. Hornik, M. Stinchcombe, H. White et al., “Multilayer feed-
forward networks are universal approximators.” Neural networks,
vol. 2, no. 5, pp. 359–366, 1989.

[52] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from
Data. AMLBook Press, 2012.

[53] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad, “Collective classification in network data,” AI magazine,
vol. 29, no. 3, pp. 93–93, 2008.

[54] Y. Fang, K. C.-C. Chang, and H. W. Lauw, “Roundtriprank: Graph-
based proximity with importance and specificity,” in ICDE, 2013,
pp. 613–624.

[55] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative
adversarial networks,” in ICML, 2017, pp. 214–223.

Zemin Liu received his Ph.D. degree in
Computer Science from Zhejiang University,
Hangzhou, China in 2018, and B.S. Degree in
Software Engineering in Shandong University,
Jinan, China in 2012. He is currently a Research
Scientist in the School of Computing and Infor-
mation Systems, Singapore Management Uni-
versity, Singapore. His research interests include
graph-based machine learning.

Yuan Fang received his Ph.D. degree in Com-
puter Science from the University of Illinois at
Urbana-Champaign, United States in 2014, and
Bachelor’s degree in Computer Science from
National University of Singapore, Singapore in
2009. He is currently an Assistant Professor at
the School of Computing and Information Sys-
tems, Singapore Management University, Singa-
pore. Previously, he was a scientist at the In-
stitute for Infocomm Research, Agency for Sci-
ence, Technology and Research (A*STAR), Sin-

gapore and a data scientist at DBS Bank, Singapore. His work has
been featured in the Best Papers collection of VLDB 2013. His current
research focuses on graph-based machine learning, Web and social
media mining, recommendation systems and bioinformatics.

Yong Liu is a Research Scientist at Joint NTU-
UBC Research Centre of Excellence in Active
Living for the Elderly (LILY), Nanyang Technolog-
ical University, Singapore. Before that, he was
a Data Scientist at NTUC Enterprise, Singa-
pore from November 2017 to July 2018, and
a Research Scientist at Data Analytics Depart-
ment, Institute for Infocomm Research (I2R),
A*STAR, Singapore from November 2015 to
October 2017. He received his Ph.D. from the
School of Computer Science and Engineering at

Nanyang Technological University in 2016 and B.S. from the Department
of Electronic Science and Technology at University of Science and Tech-
nology of China in 2008. His current research focuses on recommender
systems and bioinformatics.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

Vincent W. Zheng received his Ph.D. degree in
Computer Science from Hong Kong University
of Science and Technology in 2011. He is a
senior tech lead in WeBank, China. Previously,
he was a senior research scientist at the Ad-
vanced Digital Sciences Center, Singapore, and
a research affiliate at the University of Illinois
at Urbana-Champaign. His research interests in-
clude graph mining, information extraction, ubiq-
uitous computing and machine learning.


	Introduction
	Related Work
	Preliminaries
	Problem Statement
	Generative Adversarial Networks

	Proposed Model: NAGNN
	Overview
	Discriminator
	Generator
	Overall Algorithm
	Theoretical Analysis

	Experiments
	Experimental Setup
	Performance Evaluation
	Model Analysis
	Parameters Sensitivity
	Case study

	Conclusion
	References
	Biographies
	Zemin Liu
	Yuan Fang
	Yong Liu
	Vincent W. Zheng


