
1

Metagraph-based Learning
on Heterogeneous Graphs

Yuan Fang, Wenqing Lin, Vincent W. Zheng, Min Wu, Jiaqi Shi, Kevin Chen-Chuan Chang, Xiao-Li Li

Abstract—Data in the form of graphs are prevalent, ranging from biological and social networks to citation graphs and the Web. In
particular, most real-world graphs are heterogeneous, containing objects of multiple types, which present new opportunities for many
problems on graphs. Consider a typical proximity search problem on graphs, which boils down to measuring the proximity between two
given nodes. Most earlier studies on homogeneous or bipartite graphs only measure a generic form of proximity, without accounting for
different “semantic classes”—for instance, on a social network two users can be close for different reasons, such as being classmates or
family members, which represent two distinct semantic classes. Learning these semantic classes are made possible on heterogeneous
graphs through the concept of metagraphs. In this study, we identify metagraphs as a novel and effective means to characterize the
common structures for a desired class of proximity. Subsequently, we propose a family of metagraph-based proximity, and employ a
learning-to-rank technique that automatically learns the right parameters to suit the desired semantic class. In terms of efficiency, we
develop a symmetry-based matching algorithm to speed up the computation of metagraph instances. Empirically, extensive experiments
reveal that our metagraph-based proximity substantially outperforms the best competitor by more than 10%, and our matching algorithm
can reduce matching time by more than half. As a further generalization, we aim to derive a general node and edge representation
for heterogeneous graphs, in order to support arbitrary machine learning tasks beyond proximity search. In particular, we propose the
finer-grained anchored metagraph, which is capable of discriminating the roles of nodes within the same metagraph. Finally, further
experiments on the general representation show that we can outperform the state of the art significantly and consistently across various
machine learning tasks.

Index Terms—Semantic Proximity Search, Meta-structures, Graph Mining, Heterogeneous Graph Representation.

F

1 INTRODUCTION

THE proliferation of the Internet has availed an increas-
ingly rich collection of data objects. Typically these

objects can be organized into a graph G = (V,E), where
the nodes V model the objects and the edges E model
their interactions. These graphs are often heterogeneous [1]
containing different types of objects. Consider the graph in
Figure 1 based on a toy social network, which interconnects
various users and their attributes. We treat each user and
attribute value as a node, and each node is further associated
with a type like user and school. More generally, the edges
may also belong to different types. In our toy graph, the
edge types can be understood as a bijection from the pairs
of node types.

Unlike traditional homogeneous graphs which only
carry inter-node structural information, heterogeneous
graphs further encompass semantic information that explain
the nodes and their interactions. Such semantic information
present new opportunities to many data-driven problems
on graphs. In particular, we introduce a motivating problem
next, as the main subject to address in this paper.

• Y. Fang and J. Shi are with Singapore Management University, Singapore.
E-mail: {yfang,jqshi}@smu.edu.sg

• M. Wu and X.-L. Li are with Institute for Infocomm Research, Singapore.
E-mail: {wumin,xlli}@i2r.a-star.edu.sg

• W. Lin is with Tencent, China. E-mail: edwlin@tencent.com
• V. W. Zheng (corresponding author) is with WeBank, China. E-mail:

vincent.zheng@adsc-create.edu.sg
• K. C.-C. Chang is with University of Illinois at Urbana-Champaign,

United States. E-mail: kcchang@illinois.edu

Manuscript received xxx; revised xxx.

Clinton
(surname)

123 Green St
(address)

Harvard
(school)

Economics
(major)

Physics
(major)

Microsoft
(employer)

Music
(hobby)

456 White St
(address)

Stanford
(school)

Alice
(user)

Bob
(user)

Kate
(user)

Jay
(user)Tom

(user)

Fig. 1: Toy heterogeneous graph (node type in parenthesis).

1.1 Motivating Problem: Semantic Proximity Search

One important problem on graphs is proximity search. Given
a query node q ∈ V , how do we measure the proximity of
other nodes to q, so that we can return the nodes closest
to q? Most earlier studies, including Personalized PageRank
[2] and SimRank [3], fail to capitalize on the rich semantics
carried by a heterogeneous graph. Specifically, with various
types of interconnected objects, different semantic classes of
proximity arise from different underlying reasons, as illus-
trated in Table 1. For the same query node (e.g., Bob), there
could be multiple classes of proximity with different result
nodes (e.g., Alice as family, and Tom as classmate). Thus, it
falls short to only measure a “generic” form of proximity
without differentiating the various semantic classes.

We call the task of searching for a desired semantic
class of proximity w.r.t. a query node as semantic proximity
search [4]. It is a new problem in the sense that previous
studies on proximity search [2], [3], [5], [6], [7] neither

2

TABLE 1: Toy semantic classes of proximity

Query Semantic class Answer(s) Reason
Alice same employer and hobbyKate close friends
Jay same address

Kate classmates Jay same school and major
Bob family Alice same surname and address
Bob classmates Tom same school and major

(a) Classmate (b) Close friend (c) Family

major

school

user user hobby

employer

user user

addressuser user
surname

address

user user

Fig. 2: Possible toy structures for each class of proximity.

intend to explicitly differentiate the semantic classes, nor
can effectively accomplish so. Beyond proximity search, the
closest problems to ours are social circle learning [8] and
relationship profiling [9] on graphs. In terms of semantic
proximity, their circles or relationships are also semantic-
oriented, but they only find latent clusters and thus do not
target specific classes of interest. In terms of search, they
need to optimize for the best global configuration, and thus
cannot process ad-hoc queries in real time.

1.2 Insights and Challenges
To differentiate various semantic classes, it comes to us a
natural question: what kinds of representation or structure
can characterize a class. Ideally, we require one that is not
only universal in capturing different semantics, but also
systematically enumerable for efficient processing.

We hinge on the novel insight that different seman-
tic classes can often be characterized by different tell-tale
common structures. For instance, in Figure 1 and Table 1,
the proximity between Kate and Jay (classmate) can be
attributed to their common school and major, as illustrated
by the structure (M1) in Figure 2(a). Likewise, Figure 2(b)
and (c) showcase some possible structures which can char-
acterize, to different extents, close friend (M2 and M3) and
family (M4), respectively. We call such common structures
metagraphs as they abstract objects into types. That is, each
node in a metagraph (denoted by a rounded rectangle) de-
scribes the type of an object, rather than an object itself. Intu-
itively, two nodes “sharing” more characteristic metagraphs
of a class are more likely to satisfy that class of proximity.
Apart from capturing the semantic classes, metagraphs also
enable online proximity search. By computing and indexing
metagraphs offline, we can efficiently support any query on-
the-fly by looking up the precomputed metagraphs.

Note that a less general concept known as metapath
has been proposed [6], which only considers common
path structures between two nodes. In fact, metagraph
M3 in Figure 2(b) is also a metapath, which only cap-
tures the common address between two users. In contrast,
metagraphs can jointly model multiple common attributes.
Consider two metapaths user–employer–user and user–
hobby–user. Each of them cannot characterize the prox-
imity of close friends on their own. However, by taking

them jointly we obtain metagraph M2, which can better
characterize close friends. In other words, each metagraph
is a nonlinear combination of metapaths, and is thus more
expressive. Given the increased complexity of metagraphs
compared to metapaths, it is also more challenging to utilize
and process metagraphs, as we will discuss next.
Utilizing metagraphs. The characteristic metagraphs for an
arbitrary class of proximity are often unknown. Further-
more, a class may be characterized by multiple metagraphs
to varying extents. For instance, close friends could be
colleagues with the same hobby or simply roommates, cor-
responding to M2 and M3 in Figure 2(b), respectively. One
may also say that M2 is more likely to indicate close friends
than M3. While domain experts can lend some guidance on
certain special classes, it is impractical to rely on them alone
for the general case. To better cope with different graphs
and semantic classes in proximity search, we propose a
machine learning approach that can automatically identify
the characteristic metagraphs (e.g., M2 and M3) based on
some example query and answer nodes (e.g., Kate as query,
Alice and Jay as answers). In practice, we learn a weight for
each metagraph to quantify how well it can characterize the
desired class. These weights can be applied to answer future
queries for the same class of proximity.
Processing metagraphs. It is necessary to compute the
instances of each metagraph in order to know what meta-
graphs are “shared” by any two given nodes. However,
computing the instances of a metagraph (also called match-
ing a metagraph) is highly costly. It is equivalent to solving
the NP-hard subgraph matching problem [10]. Furthermore,
the number of instances of a metagraph on an input graph
does not follow the property of downward closure, which
excludes the techniques for frequent subgraph mining [11],
[12], [13]. To compute the instances of a metagraph more
efficiently, we observe that many useful metagraphs are
symmetric, such as M1–M4 in Figure 2 where two objects
sharing one or more common attributes. However, existing
methods spend a large amount of redundant computation
on symmetric substructures within a metagraph. Thus, we
propose a novel symmetry-based matching algorithm which
re-uses “symmetric” computation. As a result, we can avoid
redundancy and substantially improve the efficiency of
metagraph matching.

1.3 Generalization
Given that metagraphs are able to capture rich semantics
on heterogeneous graphs, they can be leveraged to address
many other machine learning tasks on graphs beyond se-
mantic proximity search.

However, there is a major drawback with metagraphs
of the form shown in Figure 2. While they can effectively
model the interactions between nodes, they lack the gran-
ularity to discriminate the role of individual nodes within
the interaction. Although this is not an issue for many
metagraphs, such as M1 where the two user nodes play
balanced roles as classmates of each other, in general a
relationship may involve imbalanced or distinct roles, such
as the roles of advisor and advisee, physician and patient,
or vendor and client. To differentiate these roles within the
same metagraph, we propose the more granular anchored

3

metagraphs—the nodes in a metagraph are “anchored” (i.e.,
differentiated) as the head or tail nodes. The differentiation
enables us to better capture the semantics of individual
nodes and their interactions.

Based on anchored metagraphs, we build general node
and edge representations to support arbitrary machine
learning tasks on heterogeneous graphs. The tasks can be
node-centric like node classification and clustering, or edge-
centric like link prediction and proximity search. Anchored
metagraph-based representations are generally more effec-
tive due to the extra granule, and could become particularly
advantageous when nodes have distinct roles or edges are
directed.

1.4 Contributions
To summarize, we make the following contributions.
• Concept. We propose the novel concept of metagraphs

to capture rich semantics on heterogeneous graphs. In
particular, metagraphs are well suited to address our mo-
tivating problem of semantic proximity search. (Section 2)

• Learning. Towards semantic proximity search, we design
a family of metagraph-based proximity measures, whose
parameters are learnable to model different semantic
classes. (Section 3)

• Matching. We devise an efficient metagraph matching
algorithm, which exploits the symmetric components in
a metagraph to avoid redundant computation. (Section 4)

• Generalization. We generalize metagraphs to anchored
metagraphs in order to model nodes of distinct roles.
Based on anchored metagraphs, we develop universal
node and edge representations to support arbitrary ma-
chine learning tasks. (Section 5)

• Experiments. Our extensive experiments demonstrate the
superiority of our metagraph-based approach for seman-
tic proximity search. Further experiments show that the
general representation based on anchored metagraphs
perform consistently well across various machine learn-
ing tasks. (Sections 6 and 7)

2 PRELIMINARIES

In this section, we first formalize the problem, and present
the metagraph concept as well as the overall framework.

2.1 Problem statement
We formalize the notion of object graph, and introduce the
task of semantic proximity search on such graphs.
Object graph. An object graph can be represented as G =
(V,E, τ), where V denotes the set of objects and E de-
notes the set of edges between objects. Given objects of
heterogeneous types T , there is a type function for objects,
τ : V → T . On the toy graph in Figure 1, we would have
types T = {user, school, hobby, . . .}, and for instance,
τ(“Alice”) = user and τ(“123 Green St”) = address.
Furthermore, a graph S = (VS , ES , τ) is a subgraph of G
iff VS ⊆ V and ES ⊆ E.
Semantic proximity search. On a graph G = (V,E, τ),
given a query node q ∈ V and a desired class of proximity,

the task is to produce a ranking over V in descending
proximity to q w.r.t. the desired class. We cast this as a
machine learning problem, where a set of training examples
Ω are available for learning the desired class of proximity.
In particular, we adopt a learning-to-rank framework [14],
where each training example is a triple (q, v, u) such that
node v is ranked before node u for the query node q. That is,
v’s proximity to q should be greater than u’s. Thus, the task
boils down to defining a family of proximity measures be-
tween nodes that can abstract arbitrary classes of proximity,
with a set of parameters that can be optimized by learning
to rank.

2.2 Metagraph and related concepts
We propose the notion of metagraph to measure the prox-
imity between nodes.
Metagraph. There are many distinct objects of the same
type, e.g., both “123 Green St” and “456 White St” are ad-
dresses. In order to identify and summarize common struc-
tures on the object graph, it becomes necessary to consider a
type-level description, which we call a metagraph. Formally,
a metagraph can be represented as M = (VM , EM , τM),
where VM is the set of nodes to denote the types, and EM
is the set of edges between VM . That is, ∀v ∈ VM , we have
τM (v) ∈ T where τM is a type function for the metagraph.
Note that a node on the object graph has both an intrinsic
value (e.g., “Alice” or “Microsoft”) and a type, whereas the
value of a node on the metagraph is immaterial and only the
type matters.
Metagraph instances. In order to know whether two nodes
on the object graph “share” a characteristic metagraph for
the desired class of proximity, it is crucial to identify sub-
graphs on G that are instances of any given metagraph M .
Informally, a subgraph S is an instance of M if they have
the same structure and their nodes have matching types. For
instance, in Figure 1 the following subgraphs
• S1: “Alice”–“123 Green St”–“Bob” and

• S2: “Kate”–“456 White St”–“Jay”
both match metagraph M3 in Figure 2, and thus they are the
instances of M3. We present a formal definition next.

Definition 1 (Metagraph instance). Consider a subgraph S =
(VS , ES) and a metagraph M = (VM , EM , τM). S is an
instance of M if there exists a bijection between the node
sets of S and M , φ : VS → VM , such that
• ∀v ∈ VS , τ(v) = τM (φ(v)), and

• ∀v, u ∈ VS , 〈v, u〉 ∈ ES iff 〈φ(v), φ(u)〉 ∈ EM . �

Metagraph indices. Subsequently, we can quantify how
two nodes v and u share any given metagraph, i.e., how
v and u occur in the instances of the metagraph. Let
M = {M1,M2, . . .} be a set of metagraphs, and I(Mi) be
the set of instances of Mi. The co-occurrences of v and u
can be encoded by a vector mvu with |M| elements. Its i-th
element, mvu[i], is the number of instances ofMi containing
both v and u. Likewise, let mv[i] be the number of instances
of Mi containing v. That is,

mvu[i] , |{S ∈ I(Mi) : (v, u) ∈ V 2
S }|. (1)

mv[i] , |{S ∈ I(Mi) : v ∈ Vs}|. (2)

4

Mining the set
of metagraphs

Offline/Training

Online/Testing

Metagraphs ℳ
= {𝑀ଵ,𝑀ଶ,… }

Matching every 𝑀௜,
i.e., computing

instances

Optimal model

Proximity evaluation ranking over 𝑉

Instances
ℐ 𝑀௜ ,𝑀௜ ∈ ℳ

input outputsubproblem

Learning

Query 𝑞

Graph 𝐺

Training
examples Ω

Indexing

Metagraph
indices

Fig. 3: Overall framework for metagraph-based learning,
using semantic proximity search as an example task.

More generally, we can further transform these vectors, such
as applying logarithm to the raw counts.

We call mvu and mv metagraph indices, which form
the basis of our proximity measure as we shall discuss in
Section 3. They can be precomputed offline by scanning
through the metagraph instances, and can be loaded on-
demand during training and testing.

2.3 Overall Framework
To summarize our approach, we present the overall frame-
work in Figure 3. It consists of online and offline phases.
Offline phase. It consists of three main subproblems.

Initially, given a graph G, we enumerate the set of
metagraphs M = {M1,M2, . . .}. Abundant literature [12],
[13] exists on this subproblem, and its time cost typically
accounts for only a few percent of the entire offline phase.
Therefore, we directly apply an existing state-of-the-art ap-
proach GRAMI [13].

Next, for each metagraph Mi ∈ M from the output of
the previous subproblem, we compute the set of instances
I(Mi). We also call the process of computing the instances
of Mi as matching Mi. We study the subproblem of efficient
metagraph matching in Section 4. Subsequently, we further
compute the metagraph indices, which form part of the
input to learning and evaluating the proximity.

Lastly, with a set of training examples for the desired
semantic class, we need to learn the optimal model. We
address this subproblem in Section 3. In particular, we need
to develop a family of metagraph-based proximity measures
to accommodate arbitrary classes, and a supervised method
to learn the best parameters.
Online phase. Given a query node q ∈ V , the precomputed
metagraph indices, as well as the optimal model for the
desired class, we can evaluate the proximity between q and
other nodes v ∈ V . Subsequently, we rank the nodes in V in
descending order of their proximity to q.

3 LEARNING SEMANTIC PROXIMITY

We propose to learn the optimal proximity based on meta-
graphs. We start with defining a family of proximity mea-
sures which can flexibly cater to different semantic classes.
Next, given some training examples, we develop a learning-
to-rank approach to optimize the parameters within the
proximity family.

3.1 Metagraph-based Proximity
Given a class with certain characteristic metagraphs, a good
proximity measure must account for two aspects. First, if v
and u share many characteristic metagraphs, v and u are
more likely to satisfy the desired class. Second, if v (or u)
indiscriminately occurs with many metagraphs, v and u
may simply appear by chance to share many characteris-
tic metagraphs. Incorporating both aspects, we propose a
metagraph-based measure below.

Definition 2 (Semantic proximity). The semantic proximity be-
tween any two nodes v and u is

π(v, u;w) ,
2 m>vuw

m>v w + m>uw
, (3)

for some non-negative vector w of |M| elements. �

The measure π entails a family of proximity with pa-
rameters w. We interpret w as the characteristic weights (or
simply weights) of the metagraphs, which can be varied
to fit different classes of proximity. The weights shall be
non-negative, indicating the importance of the metagraphs
towards the desired semantic class. Consider the toy exam-
ple in Figure 2 with M = {M1, . . . ,M4}. A reasonable
w could be (0.9, 0, 0, 0)T for classmate, (0, 0.6, 0.1, 0)T for
close friends, and (0, 0, 0, 0.8)T for family, where the i-th
dimension of w encodes the importance of metagraph Mi.
Thus, within the family of proximity, the optimal model for
a class is completely specified by its optimal weights w∗,
which we aim to learn automatically.

Interestingly, the proposed measure exhibits a few de-
sirable properties, as described in Theorem 1. In particular,
partial transitivity implies that if a node v is close to both
nodes u and z, u and z tends to be close to each other
too. This is a common phenomenon on social networks,
where friends of friends are more likely to be friends than a
random person.

Theorem 1 (Properties). Given any three nodes x, y, z and
weights w, the following hold.
• Symmetry. π(v, u;w) = π(u, v;w).

• Boundedness. 0 ≤ π(v, u;w) ≤ 1.

• Scale-invariance. π(v, u;w) = π(v, u; cw) for any c > 0.

• Partial transitivity. There exists some δ > 0, such that for
any ε ∈ [0, 1], if π(v, u;w) ≥ 1+εδ

1+δ and π(v, z;w) ≥ 1+εδ
1+δ ,

then π(u, z;w) ≥ ε. �

3.2 Learning to Rank
For a desired class of proximity, we assume some training
examples Ω as supervision. Each example is a triple (q, v, u),
where node v is ranked before node u for the query node
q, i.e., v’s proximity to q should be greater than u’s. These
examples can often be gathered by user studies [8], [9], while
some platforms like Facebook also allow users to label their
connections directly.

Given the training data Ω, we can find the optimal
weights w∗ by maximizing the log-likelihood. Intuitively,
it becomes more likely to observe an example (q, v, u) when
v’s proximity to q is increasingly larger than u’s. In other
words, the probability of the example, P (q, v, u;w), tends

5

to increase with the difference in v and u’s proximity to q,
π(q, v;w)−π(q, u;w). In particular, we define the probabil-
ity using a sigmoid function in Eq. 4. Here µ ∈ (0,∞) is a
scaling variable to control the shape of the distribution; we
set µ = 5, which is found to be robust in our experiments.

P (q, v, u;w) ,
1

1 + e−µ(π(q,v;w)−π(q,u;w))
(4)

Subsequently, given all the examples, we aim to maxi-
mize the following log-likelihood function L, to ultimately
find the optimal weights w∗ = arg maxw L(w|Ω). Since
L is differentiable, it can be optimized by employing the
gradient descent algorithm.

L(w|Ω) =
∑

(q,v,u)∈Ω logP (q, v, u;w) (5)

3.3 Dual-Stage Training
As illustrated in Section 1, there exist a huge number of
metagraphs even with just a few types of object. To reduce
the overall matching time, we propose a novel process
of dual-stage training. As the key insight, while there are
many metagraphs in M, the vast majority of them are
irrelevant. Only a small number of metagraphs among M
can characterize the desired class of proximity. In other
words, the optimal weights w∗ are sparse with many zero
or nearly zero entries. Therefore, it is ideal to only focus on a
small subset of candidate metagraphs, K ⊂ M, which show
promise to characterize the desired class. Subsequently, we
only match the candidates and compute the proximity based
on the instances of these candidates.
Seed metagraphs. Note that, without computing the in-
stances of any metagraph, there is no clue at all to locate
the promising candidates. Instead, we first identify a small
number of seed metagraphs K0 as the initial candidates and
compute their instances I(M),∀M ∈ K0, which can lead
us to more candidates. The seeds must meet the following
criteria. First, easy identification: we can easily recognize the
seeds without computing any instance. Second, fast match-
ing: the seeds can be matched very fast. Third, candidate
heuristic: the seeds must enable some heuristic for selecting
more candidates without computing more instance.

To select the seeds, we observe that metapaths (i.e.,
metagraphs that are paths such as M3 in Figure 2) are less
complex than general metagraphs. As a result, there are
far fewer metapaths than metagraphs. Matching a metapath
also tends to be much faster due to the simpler structure.
Candidate heuristic. We need to further develop a heuristic
using the seeds in order to identify additional metagraphs
from M \ K0, without computing more instances. Again,
we can only rely on the structural information of the meta-
graphs. On the one hand, two metagraphs are structurally
similar if they share some common pattern, such as their
maximum common subgraph (MCS) [15]. The larger MCS
shared by two metagraphs, the more structurally similar
they are. Letting M be the MCS of Mi and Mj , their
structural similarity can be defined as

SSim(Mi,Mj) = (|VM |+|EM |)2
(|VMi

|+|EMi
|)×(|VMj

|+|EMj
|) . (6)

On the other hand, the function of a metagraph refers to
its contribution to (or its weight in) the proximity measure.

Algorithm 1: Dual-Stage Training
Input: graph G; set of metagraphsM; number of candidates

|K|; training examples Ω
Output: optimal weights w∗

// seed stage
1 K0 ← {M ∈M|M is a path}
2 I0 ← {I(M)|M ∈ K0}
3 w0 ← Train(Ω,K0, I0)

// candidate stage
4 K ← Top |K| metagraphs by H scores based on K0,w0

5 I ← {I(M)|M ∈ K}
6 w∗ ← Train(Ω,K0 ∪ K, I0 ∪ I)
7 return w∗.

That is, two metagraphs are functionally similar if their
corresponding weights are also similar.

Intuitively, metagraphs that are structurally similar tend
to be functionally similar too. Given the seeds K0 and their
instances, we can learn the function of the seeds, i.e., their
corresponding weights in w0. Supposing that a metagraph
Mj ∈ M \ K0 is structurally similar to a seed Mi ∈ K0,
Mj and Mi will also be functionally similar. That is, if Mi

has a large weight (i.e., w0[i] is large), Mj is also likely to
have a large weight (i.e.,Mj is a promising candidate). Thus,
we select candidates with the largest candidate heuristic score
H , which maximizes their structural similarity to any seed
metagraph with a large weight:

H(Mj) , max
Mi∈K0

{w0[i] · SSim(Mi,Mj)} . (7)

Dual-stage algorithm. We outline the above heuristic in
Alg. 1, consisting of two stages. In the seed stage, we com-
pute the instances of the seeds K0, and train their weights
w0. In the candidate stage, based on K0 and w0, we further
identify candidates K using the candidate heuristic, and
train new weights w∗ for K0 ∪ K.

4 EFFICIENT METAGRAPH MATCHING

In this section, we address the subproblem of metagraph
matching, which dominates the offline phase. We first sum-
marize existing algorithms, and further present a new solu-
tion to address their drawback.

4.1 Subgraph Matching Revisited
Consider a metagraph M = (VM , EM , τM) on a graph G =
(V,E, τ). To compute the instances of M on G, there are a
number of existing approaches [16], [17], [18], [19] based on
the backtracking method, summarized as follows.

Given an ordering of nodes in VM , let ui ∈ VM be the
i-th node in the ordering where 1 ≤ i ≤ |VM |. Denote Dk

as the set of k nodes in V that match {u1, u2, . . . , uk}, and
C(uk+1|Dk) as the set of nodes each of which can match
uk+1 given the existing matching Dk.

Initially, we have D0 = ∅. The backtracking method
first identifies the set C(u1|D0) of nodes in V such that
the type of each node v ∈ C(u1|D0) equals the type of
the first node u1 in VM , i.e., τ(v) = τM (u1). For each node
v ∈ C(u1|D0), we match v to u1, i.e., D1 = {v}. Given D1,
we further identify the set C(u2|D1) for u2 such that each
node v′ ∈ C(u2|D1) can match u2 and the graph induced

6

(a) Metagraph M5. (b) Simplified metagraph M+
5 .

�� ����

��
�� ��

user user

user

school

majormajor

�� ��

��

�� ��

��
��

user

user

school

major

Fig. 4: A metagraph M5 and its simplified metagraph M+
5 .

on D1 ∪ {v′} is an instance of the metagraph induced on
u1 and u2 (Def. 1). In other words, v′ 6= v, τ(v′) = τM (u2),
and 〈u2, u1〉 ∈ VM if and only if 〈v′, v〉 ∈ V . If C(u2|D1)
is empty, we stop searching further and immediately back-
track to another node in C(u1|D0). Otherwise, C(u2|D1) is
not empty, and for each node in v′ ∈ C(u2|D1) we have
D2 = D1 ∪ {v′}, from which we can recursively compute
D3, D4, . . . , D|VM |. We then report the subgraph induced by
D|VM | as an instance of M on G, and backtrack to compute
other instances.

4.2 Metagraph Symmetry
The above approaches all deal with general metagraphs.
However, we observe that symmetric metagraphs like M1–
M4 in Figure 2 are very common, forming the vast majority
of all metagraphs containing two user nodes. Thus, how
to efficiently handle symmetric metagraphs become crucial.
To begin with, we present a formal definition of metagraph
symmetry below.

Definition 3 (Metagraph symmetry). Consider a metagraph
M = (VM , EM , τM). M is a symmetric metagraph if there
exists a non-empty set ΨM containing pairs of distinct nodes
of the same type in VM , such that the edge set EM remains
unchanged even if, for each pair (u, u′) ∈ ΨM , we exchange
u and u′ in all edges incident to u or u′. We also say that
such u and u′ are symmetric to each other in M . �

For example, the metagraphM5 in Figure 4 is symmetric,
since there exists a set {(u1, u5), (u2, u6)}, such that if we
exchange u1 and u5 (resp. u2 and u6) in all edges incident
to u1 or u5 (resp. u2 or u6), the set of edges in M5 remain
the same.

Previous approaches [16], [17], [18], [19] often incur
a large amount of redundant computation on symmetric
metagraphs. To illustrate, after matching u1, u2, . . . , u4 in
M5, previous approaches need to compute the matchings
C(u5|D4) and C(u6|D5) from scratch, even though u5

(resp. u6) is symmetric to u1 (resp. u2). Take u6 as an
example, they have to examine every node in V if its type is
the same as u6, and if it appropriately connects to the graph
induced by D5. Since u2 is symmetric to u6, potentially we
do not need to examine every node in V , but rather only
those matched by u2.

4.3 Symmetry-based Matching
To leverage the symmetry of metagraphs, we propose a
novel approach to compute the matchings of a node u from
its symmetric node u′ in M . For example, in Figure 4, the
instances of u5 and u6 can be computed from the instances

Algorithm 2: Compute Instances of Metagraph
Input: a graph G; a metagraph M
Output: the set I(M) of instances of M

1 decompose M into a set B of components based on symmetry
2 simplify M as M+ using B
3 compute a matching order o for components of M+

4 I(M)←MatchingByComponent(G, M , o, 1, ∅)
5 return I(M).

of u1 and u2, since u5 (resp. u6) is symmetric to u1 (resp.
u2). However, we cannot treat each pair of symmetric nodes
independently. For example, in Figure 4, the matchings of
u2 cannot be re-used by u6 without considering u1 and u5

in conjunction, since u2 is adjacent to u1 but not u5 (which
u6 is adjacent to).

To cope with the above issue, we decompose the node
set VM into disjoint connected components, so that each
component can be handled independently. In particular, if
a node u is not symmetric to any other node on M , u
forms a singleton component S, i.e., S = {u}. Otherwise,
we partition the symmetric nodes into several connected
components, such that for each component S, we have
(i) each node u ∈ S has the same number of symmetric
nodes on M , (ii) each node u ∈ S is not symmetric to
any other node u′ ∈ S, and (iii) S is the largest such set.
For example, we can decompose M5 in Figure 4 into 4
components, namely S1 = {u4}, S2 = {u1, u2}, S3 = {u3}
and S4 = {u5, u6}. We say that a component S is symmetric
to another component S′, if for each node u in S, there exists
a node u′ in S′ such that u is symmetric to u′ on M . For
instance, the components S2 and S4 described above are
symmetric to each other.

The above decomposition ensures that each component
is independently symmetric to some other component.
Thus, if a component S is matched prior to its symmetric
component S′, we can save the cost for S′ by re-using the
instances of S. Alg. 2 outlines our proposed approach by
utilizing symmetric components. We still follow the back-
tracking framework, but instead of trying one node at time,
we match one component at a time. Thus, we first need to
decompose a metagraph M into several components. Next,
we simplifyM into a smaller graphM+, to avoid redundant
computation on symmetric components. Finally, we design
a matching ordering over the components in M+. In what
follows, we elaborate on each step.
Metagraph decomposition. To decompose M into compo-
nents, we first construct a component for each node u which
is not symmetric to any node in M , and remove u from M .
Then, in the residual graph M ′, we construct the symmetric
components. In particular, we process the nodes in M ′

iteratively. In each iteration, we randomly choose a node
u and construct a component S initially containing only u,
as well as a component S′ for each u′ that is symmetric to
u. Then, we iteratively add more nodes into S (resp. each
S′) such that the rules of components specified earlier are
not violated. When no more nodes can be added into S, we
remove S from M ′ and continue to construct components
in the residual graph M ′′ until M ′′ is empty.
Metagraph simplification. Now we simplify the metagraph
by representing it with its components. Specifically, we

7

replace the nodes in M by the components containing them,
and add an edge between components S and S′ if there
exists nodes u ∈ S and u′ ∈ S′ such that u and u′ are
adjacent to each other on M . To further simplify, among
each set of symmetric components, we only retain one of
them and remove the rest. Denote M+ as the resulting
simplified metagraph. In Figure 4, M5 is converted into
M+

5 with three components S1–S3, where S2 (retained) is
symmetric to S4 = {u5, u6} (removed).

Matching order. To reduce the search space, the matching
order of nodes is important. Previous approaches [16], [20]
select the next node such that the number of intermediate
instances can be minimized. For example, starting from a
metagraph M (1) containing only one edge 〈u1, u2〉 from
M , we can extend M (1) by adding an edge 〈u2, u3〉 from
M , resulting in a larger intermediate metagraph M (2).
We can thus estimate the number of instances of M (2)

as f(M (2)) = |I(M (1))| · |I(〈u2,u3〉)|
|I(u2)| . In general, M (i+1)

can be obtained by adding an edge 〈u, u′〉 from M to
M (i), and the number of its instances can be estimated as
f(M (i+1)) = f(M (i)) · |I(〈u,u′〉)|

|I(u)| . Thus, in each step, we
pick the next node to minimize the number of estimated
instances of the intermediate metagraph. We can generalize
this approach to order the components of M+: when a node
of a component is chosen, we select that component as the
next to match.

Matching simplified metagraphs. The matching algorithm
for a simplified metagraph follows the backtracking frame-
work in Alg. 3. Compared with previous methods that
match a node at a time, our approach matches one com-
ponent at a time. Given the set D of already matched
nodes, the matchings of a component S are the matchings
of its constituent nodes, denoted as C(S|D). We can save
significant computation when S is a symmetric component.
Let B be the set containing S and the symmetric components
of S. Subsequently, we can compute the matchings for all
components in B, denoted by C(B|D), based on C(S|D).
That is, we do not need to compute C(S′|D) for any S′ 6= S
and S′ ∈ B. We simply choose |B| number of distinct
matchings from C(S|D). For each choice of |B| matchings,
we inspect whether the connectivity between components
satisfies Def. 1. If so, we add the choice to C(B|D).

Complexity analysis. Consider a metagraph M =
(VM , EM , τM) and a graph G = (V,E, τ). In Alg. 2, the
decomposition and computation of matching order (lines 1–
3) require at most one scan of VM for each node, leading
to the time complexity of O(|VM |2), where |VM | is often
very small. Next, we consider the cost of matching (line 4).
Assuming a generalM without symmetry, Alg. 3 starts from
the instance set I(M (1)), and then repeatedly inspects the
neighbors of a chosen node for a depth of at most |VM | − 2.
Since I(M (1)) ≤ |E|, the time complexity of matching is
upper bounded by O(|E| · d|VM |−2), where d is the maximal
node degree in G. Again, |VM | is typically very small.
Furthermore, for a symmetric M , the depth of inspection
is even smaller given a smaller simplified metagraph.

Adaptation to dynamic graphs. Real-world graphs often
evolve over time. When a large graph changes, it is in-
feasible to re-compute the instances from scratch. Instead,

Algorithm 3: MatchingByComponent
Input: a graph G; a metagraph M ; a matching order o; the index

of matching component k; the set D of matched nodes;
Output: the set I′(M) of instances with D

1 if |D| = |VM | then
2 return the instance induced by D.
3 end
4 S ← k-th component in the matching order o
5 B ← the set including S and its symmetric components, if any
6 compute the set C(B|D)
7 I′(M)← ∅
8 for each S′ ∈ B do
9 D′ ← the merge of D and the matching of S′ from C(B|D)

10 I∗ ←MatchingByComponent(G, M , o, k + 1, D′)
11 add I∗ into I′(M)
12 end
13 return I′(M).

the instances can be updated incrementally by refining the
affected ones [21], which are often of a small number in
practice. In particular, when edges are deleted from the
graph, we only need to remove the instances that contain
those edges. On the other hand, when adding edges to
the graph, for each new edge we enumerate the instances
containing the new edge, within a distance of not more than
the maximum size of metagraphs.

5 GENERAL REPRESENTATION FOR LEARNING

While metagraphs are initially motivated by the problem
of semantic proximity search, in this section, we investigate
their generalization to other machine learning problems on
heterogeneous graphs. We first introduce the concept of
anchored metagraphs, a further differentiation of metagraphs
to better describe the nodes and their interactions. Next,
we examine a general node and edge representation based
on anchored metagraphs, towards solving various machine
learning problems including semantic proximity search.

5.1 Anchored Metagraphs
Metagraphs form the building blocks of our proximity mea-
sure. As discussed in Section 2, they can effectively relate
two nodes on a heterogeneous graph and work well for
many semantic classes of proximity. However, they are not
fine-grained enough to discriminate the role of individual
nodes within the same metagraph.

Consider a graph that connects Peter and Steven in
Figure 5(a). Although both of them are represented by
author nodes, Peter and Steven likely play two distinct
(latent) roles. In particular, Peter is likely a professor, as he
not only co-authors papers with Steven, but also manages a
grant and serves on the admission committee. On the other
hand, Steven is likely a graduate student. Additionally, Peter
and Steven possibly form the advisor–advisee relationship.
Unfortunately, if we only know that both co-occur in the
same metagraph as shown in Figure 5(b), we cannot tell
apart the professor and student as there is no differentiation
between the two author nodes in the metagraph.

In other words, the metagraph definition in Section 2
is unable to capture the semantics of two nodes of the
same type when their roles are not commensurate with each
other. Apart from advisor–advisee, many other examples

8

result y
(paper)

result x
(paper)

Peter
(author)

Steven
(author)

project z
(grant)

admission
(service)

paper

paper

author

author

grant

service

(a) Object graph (b) Metagraph

Fig. 5: Object graph and metagraph for co-authors.

paper

paper

author
[head]

author
[tail]

grant

service

paper

paper

author
[tail]

author
[head]

grant

service

(a) Who is Peter’s advisee? (b) Who is Steven’s advisor?

𝐴ଵ 𝐴ଶ

Fig. 6: Anchored metagraphs for co-authors.

with distinct roles exist, such as landlord–tenant, physician–
patient, and client–vendor. More generally, it is inadequate
to describe individual nodes or their interactions with the
frequency of occurring or co-occurring in a given meta-
graph. The underlying weakness is the lack of granularity
to differentiate nodes within a metagraph.

Towards finer-granularity, we propose anchored meta-
graphs, where different nodes are explicitly “anchored”
within a metagraph. We use the problem of semantic prox-
imity search as an example. As illustrated in Figure 6, to
search for Peter’s advisees, the left author node specifies
or “anchors” the head node to abstract the query Peter,
whereas the right one anchors the tail node to abstract the
answer Steven. In contrast, to search for Steven’s advisor,
the opposite happens in Figure 6(b). Thus, the same meta-
graph can be anchored in different ways to capture different
semantics and directions of the search. In particular, the
head and tail anchors provide the necessary granularity
to discriminate nodes within a metagraph. Note that, for
simplicity and practicality, we only discuss the case with
two anchors or roles. However, we emphasize that it is
also straightforward to anchor multiple nodes with multiple
latent roles. A formal definition is presented below.

Definition 4 (Anchored metagraph). An anchored metagraph is
represented as a triple A = (M,h, t), where M =
(VM , EM , τM) is a metagraph, and h, t ∈ VM respectively
define the head and tail nodes in M for some h 6= t. �

The above definition implies that the same metagraph
can generate more than one anchored metagraphs. For
instance, the metagraph in Figure 5(b) corresponds to two
different anchored metagraphs A1 and A2, shown in Fig-
ure 6(a) and (b). In other words, anchored metagraphs are
more granular and expressive than metagraphs.

We further note that anchored metagraphs can subsume
metagraphs as a special case, when two nodes play com-
mensurate or balanced roles within a metagraph. Using

the metagraph user–employer–user as an example, there
is only one corresponding anchored metagraph, because
user[head]–employer–user[tail] and user[tail]–employer–
user[head] are isomorphic, meaning that they are in fact
identical to each other. Therefore, anchored metagraphs can
be adopted universally, regardless of whether there exist
different latent roles.

5.2 Node and Edge Representations

The frequency of a node’s occurrences in an anchored meta-
graphs at a specific anchor can be treated as a feature for this
node. Likewise, the frequency of two nodes’ co-occurrences
in an anchored metagraph at specific anchors is a feature for
the (potential) edge between the two nodes.

Consider a collection A = {A1, A2, . . .}, where each
Ai = (Mi, hi, ti) is an anchored metagraph. Note that it
is possible to have Mi = Mj for some i 6= j since the same
metagraph can generate multiple anchored metagraphs. We
can subsequently encode any node and any pair of nodes
using these anchored metagraphs.

Node representation. We can represent any node v on the
graph using two vectors ahv and atv , each with |A| elements.
The i-th elements, ahv [i] and atv[i], record the number of
instances of Mi containing v at its head and tail anchors
in Ai, respectively. That is,

ahv [i] , |{S ∈ I(Mi) : v ∈ VS , φ(v) = hi}|, (8)

atv[i] , |{S ∈ I(Mi) : v ∈ VS , φ(v) = ti}|. (9)

Recall that φ is the bijection between the nodes in an
instance and the nodes in a metagraph, as introduced in
Definition 1.

The two vectors are mirror images of each other: ahv [i] =
atv[j] if Mi = Mj and hi = tj , a result immediately
follows from their definitions. As an example, consider
A = {A1, A2} shown in Figure 6. Since they are derived
from the same metagraph, M1 = M2 and h1 = t2. As-
suming the only matching instance in Figure 5(a), we have
ahPeter = (1, 0) and atPeter = (0, 1). The implication of the
mirror image is that, if we only study each node in isolation,
such as a node classification task where a label needs to
be assigned to each node, without loss of generality, it is
equivalent to use either ahv or atv as long as we adhere to the
same form for all the nodes consistently. However, when we
study two nodes in conjunction, such as a proximity search
task where there is a distinction of query and answer nodes,
both forms are necessary depending on the node. We will
further elaborate on this use case in Section 5.3.

Edge representation. We can encode the edge representa-
tion between any two nodes v and u on the graph. Note that
it is irrelevant whether an actual edge exists between v and
u, as the goal here is to derive an effective representation
for differentiating various states between v and u, including
the absence and presence of edges, as well as different types
of edges if present. Consider a vector avu of |A| elements.
Its i-th elements, avu[i], captures the number of instances of
Mi containing both v and u such that v is the head and u is
the tail anchor. That is,

avu[i], |{S∈I(Mi) : (v, u)∈V 2
S , φ(v)=hi, φ(u)= ti}|. (10)

9

In general, avu 6= auv , due to the requirement to align
the head and tail anchors. Therefore, the proposed edge
representation based on anchored metagraphs is also able to
model the direction of the edges between nodes. In contrast,
metagraph-based representation can only model undirected
edges since mvu ≡ muv . In particular, avu degenerates into
mvu if the head and tail anchors are symmetric to each other
in every metagraph.

Matching. As evident in Eq. 8, 9 and 10, the node and
edge representations can be derived from the instances of
the original metagraph I(Mi), as well as the head hi and
tail ti which can be understood as indices that point to the
head and tail nodes. Thus, for any matched instance, the
head and tail nodes can be easily located by indexing into
the instance with hi or ti in O(1) time, without requiring
any additional matching. In other words, the matching
algorithm in Section 4 can still be applied as is.

Remark. Our node and edge representations are derived
solely based on matching instances on the graph, without
requiring any task-specific supervision. Essentially, the same
representations can be used universally in different down-
stream tasks, including supervised tasks such as semantic
proximity search, node classification or relationship predic-
tion, as well as unsupervised tasks such as node clustering.

5.3 Use Case: General Semantic Proximity

The proposed node representation can be immediately used
for node-centric machine learning tasks, such as node clas-
sification and clustering. Likewise, the edge representation
can be used for edge-centric tasks such as link prediction.
In either scenario, standard supervised and unsupervised
learning algorithms can be applied.

Apart from standard learning tasks, as one of the main
use case in this paper, we introduce a more general form of
semantic proximity based on the proposed node and edge
representations. Similar to Definition 2, two nodes are more
likely to satisfy the desired class of proximity if they “share”
or co-occur in many characteristic anchored metagraphs.
Furthermore, to ensure that such co-occurrences are not
by chance, each of the two nodes should appear in fewer
anchored metagraphs individually. However, in the general
case, we must also differentiate the head and tail anchors in
order to support potentially distinct roles played by query
and answer nodes.

Definition 5 (General semantic proximity). The general semantic
proximity between a query node q and a candidate answer
node v is

Π(q, v;w) ,
2 a>qvw

ahq
>
w + atv

>w
, (11)

for some non-negative vector w of |A| elements. �

This definition notably does not satisfy the symmetry
property in Theorem 1 in the general case, which is an
expected behavior when query and answer nodes play
different roles. Nonetheless, as a special case, Π subsumes π
and thus satisfy symmetry if the head and tail anchors are
symmetric to each other in every metagraph.

TABLE 2: Summary of datasets.

Graph # Nodes # Edges # Types # Metagraphs
LinkedIn 65 925 220 812 4 153
Facebook 5 025 100 356 10 934

DBLP 172 136 968 822 5 74

6 EXPERIMENTS

The goal of our experiments is twofold. First, the proposed
metagraph-based approach can effectively model semantic
proximity. Second, the proposed metagraph matching algo-
rithm is efficient.

6.1 Experimental Setup

Datasets. We conducted extensive experiments on two
real-world datasets collected by previous studies, namely
LinkedIn [9] and Facebook [8], as summarized in Table 2
and elaborated below.
• LinkedIn. The graph contains objects of four types: user,
employer, location and college. The relationships be-
tween some user pairs are labeled into different semantic
classes. We chose two major classes, namely, College friend
and Coworker1.

• Facebook. The graph includes the following types:
user, concentration, degree, school, hometown,
last-name, location, employer, work-location and
work-project.2 Given no explicit labels, we generated
the ground truth based on rules mimicking natural classes
of proximity. Specifically, we considered two classes: (i)
Family, two users sharing the same last-name as well
as the same location or hometown; (ii) Classmate, two
users sharing the same school as well as same degree or
concentration. Notwithstanding the rules, we dictated
a 5% chance to assign a random class as noises.

Training and testing. A user q can be used as a query node if
there exists at least another user v such that the relationship
between q and v belongs to the desired class of proximity in
our ground truth. We randomly split these queries into two
subsets: 20% reserved as training and the rest as testing. We
repeated such splitting for 10 times, and report the results
averaged over the 10 splits.

In each split, based on the training queries, we further
generated training examples (q, x, y) such that q and x
belong to the desired class while q and y do not. For testing,
we constructed an ideal ranking for each test query node
and desired class, which is compared against the ranking
generated by various proximity algorithms. In particular,
we adopted NDCG and MAP [14] to evaluate the quality of
the rankings at top 10 nodes.
Metagraphs. As discussed in Section 2, we applied GRAMI
[13] to mine the set of metagraphs. Preprocessing was done
to prune less viable metagraphs. First, a viable metagraph
must have at least two “core” nodes, which are user nodes
in our case, since our ground truth is designed for the
proximity between such node pairs. Additionally, the core
nodes should be symmetric to each other in their containing

1. Including those labeled as “colleague” and “excolleague”.
2. Other types are not used due to their sparsity or irrelevance.

10

metagraph, since our target proximity such as coworker
and classmate are symmetric. In general, the symmetry-
based pruning is not always necessary, as we shall see
in Section 7.1 where asymmetric relationships are being
dealt with. Second, a metagraph must contain at least two
different types in order to capture the heterogeneity. Third,
we removed metagraphs with “dangling” nodes, which are
non-core nodes with degree one, as such nodes often do
not explain the interactions between core nodes. Finally, we
restricted metagraphs to have at most 5 nodes, which are
found to be adequate in expressing complex interactions.

We apply logarithms on the metagraph indices (Eq. 1 and
2). That is, a raw count f would transform into log(f + 1),
as raw counts often generate sublinear returns.

6.2 Empirical Results on Semantic Proximity Search

Comparison to baselines. We first evaluate our proposed
method against baseline methods, as follows.
• MGP: The proposed metagraph-based proximity.

• MPP: Metapath-based proximity, by restricting the set of
metagraphs to paths only.

• MGP-U: Metagraph-based proximity with uniform
weights. That is, we do not differentiate the importance
of metagraphs to any semantic class.

• MGP-B: Proximity based on the single best metagraph.

• SRW: Supervised random walks [7], a supervised variant
of personalized PageRank [2]. The general principle is to
learn different weights for edges, so that the transition
matrix is biased to make certain nodes more likely to be
visited in accordance with the training data.
In our experiments, we varied the number of training

examples from 10 to 1000. Note that this has no effect on
MGP-U, as it simply uses a uniform weighting indepen-
dent of the training data. Moreover, for our methods, no
dual-stage training is employed, which will be investigated
separately next.

We report the NDCG and MAP of the rankings produced
by these algorithms in Figure 7 and 8, respectively. The
first key finding is that, MGP performs consistently better
than all other algorithms, by more than 10% in many cases.
As our second finding, we observe a steady increase in the
performance of MGP when the number of training examples
grows, indicating that our learning is effective.
Evaluation of dual-stage training. We further investigate
the efficacy of dual-stage training. Treating the ranking
accuracy (NDCG and MAP) and time of using only the seed
metagraphs K0 as 0%, and those of using all metagraphsM
as 100%, we compute the relative percentage in accuracy
and time when we vary the number of candidates |K|.

We present the outcomes in Fig. 9. As we increase
the number of candidates, we expect an increase in both
accuracy and time. In particular, the rate of increase in
accuracy is much faster than in time. Using only 50 and
150 candidates on LinkedIn and Facebook, respectively, the
increase in accuracy is approaching 100% (i.e., as good as
using all metagraphs). Meanwhile, the time cost is far from
reaching 100% (i.e., requiring much less time than using all
metagraphs). Comparing with using all the metagraphs, we

sacrifice the ranking accuracy by only 1% in absolute values,
on average. In contrast, we can reduce the overall matching
time by an average of 83%. In summary, our dual-stage
training can significantly reduce overall matching time with
only a minuscule impact on the ranking accuracy.

6.3 Empirical Results on Metagraph Matching
We further examine the efficiency of metagraph matching.
In particular, we compare the proposed symmetry-based
algorithm, denoted by SymISO, with three state-of-the-art
baselines: BoostISO [19], TurboISO [18] and QuickSI [16]. To
further illustrate the importance of node matching orders in
SymISO, we also compare to a weaker scheme of SymISO
that uses a random matching order, dubbed SymISO-R.

We illustrate the average running time per metagraph for
all the algorithms in Figure 10, where the size of metagraphs
varies. Observe that SymISO consistently outperforms the
best baseline, namely BoostISO, by 52% on average among
metagraphs of all sizes. When the number of nodes in
a metagraph increases, the performance margins between
SymISO and the baselines become larger, since more redun-
dant computation can be avoided due to larger symmetric
components. In particular, on metagraphs with merely three
nodes, SymISO is better by only about 10%. Furthermore,
SymISO is also faster than SymISO-R in all cases, suggesting
the usefulness of our matching order.

7 FURTHER EXPERIMENTS ON REPRESENTATION

We present additional empirical results on general repre-
sentations based on anchored metagraphs. Specifically, the
proposed representations perform consistently well across
common learning tasks and classifiers.

7.1 Experiment Setup

Dataset. We used DBLP [22], which naturally contains not
only balanced roles such as colleagues, but also imbalanced
roles such as advisors and advisees. The graph includes the
types of paper, author, year, venue and keyword. Some
of the author pairs are labeled as “adivsor–advisee” or
“colleague”. We leveraged these labels as the ground truth
for three learning tasks, to be further elaborated later. We
only retained paper nodes connected to at least one author
node appearing in the ground truth. A summary of the
graph is shown in Table 2.
Metagraphs. Metagraphs were filtered and processed in the
same way as in Section 6.1, except that we kept asymmetric
metagraphs and restricted the metagraph size to 6. Gen-
erally, a metagraph of size 5 or 6 is complex enough to
capture rich semantics, as our experiments in Section 7.3 will
further demonstrate. In total 74 metagraphs remained, from
which we enumerated all possible combinations of head and
tail anchors on each metagraph, and obtained 101 anchored
metagraphs. Note that the number of combinations of head
and tail is relatively small since they can only be assigned
to core nodes, and some combinations result in isomorphic
anchored metagraphs.
Downstream tasks. We considered four machine learning
tasks, as follows.

11

(a) College

10 100 1000
0.3

0.4

0.5

0.6

Training examples |Ω|

N
D

C
G

(b) Coworker

10 100 1000
0.3

0.4

0.5

0.6

Training examples |Ω|

N
D

C
G

(c) Family

10 100 1000
0.3

0.5

0.7

0.9

Training examples |Ω|

N
D

C
G

(d) Classmate

10 100 1000
0.3

0.5

0.7

0.9

Training examples |Ω|

N
D

C
G

MGP
MPP
MGP-U
MGP-B
SRW

Fig. 7: Evaluation of metagraph-based proximity and baselines with NDCG.

(a) College

10 100 1000
0.1

0.2

0.3

0.4

Training examples |Ω|

M
A

P

(b) Coworker

10 100 1000
0.1

0.2

0.3

0.4

Training examples |Ω|

M
A

P

(c) Family

10 100 1000
0.2

0.4

0.6

0.8

Training examples |Ω|
M

A
P

(d) Classmate

10 100 1000
0.2

0.4

0.6

0.8

Training examples |Ω|

M
A

P

MGP
MPP
MGP-U
MGP-B
SRW

Fig. 8: Evaluation of metagraph-based proximity and baselines with MAP.

(a) College

0 20 40 all
0%

20%

40%

60%

80%

100%

Candidates |K|

Pe
rc

en
ta

ge
in

cr
ea

se

(b) Coworker

0 20 40 all
0%

20%

40%

60%

80%

100%

Candidates |K|

Pe
rc

en
ta

ge
in

cr
ea

se

(c) Family

0 60 120 all
0%

20%

40%

60%

80%

100%

Candidates |K|

Pe
rc

en
ta

ge
in

cr
ea

se

(d) Classmate

0 60 120 all
0%

20%

40%

60%

80%

100%

Candidates |K|

Pe
rc

en
ta

ge
in

cr
ea

se NDCG
MAP
Time

Fig. 9: Impact of dual-stage training (special values of |K|: 0 if only use seed metagraphs; “all” if use all metagraphs).

(a) LinkedIn

3 4 5
101

102

103

104

105

metagraph nodes

Ti
m

e
(m

s)

(b) Facebook

3 4 5
101

102

103

104

105

metagraph nodes

SymISO
SymISO-R
BoostISO
TurboISO
QuickSI

Fig. 10: Average matching time per metagraph.

• Semantic proximity search. We search for the advisor(s) of a
given author query node. Note that this is an asymmetric
search given the the imbalanced roles of advisor and
advisee. Training, testing and evaluation followed the set
up in Section 6.1, using 1 000 training examples.

• Binary node classification. We classify a given author node
as an advisor (Yes) or otherwise (No). An author node
belongs to the Yes class if and only if it has at least one
advisee. We split the nodes in the ground truth into 80%
training and 20% testing data, repeated for 50 times, and
report their average AUC (under the ROC curve) and F-

score on the test sets.

• Node clustering. Similar to the node classification task
above, we aim to separate advisors and non-advisors.
However, we assume an unsupervised setting, where
the nodes are clustered into two groups without any
training data. We repeat the clustering with 100 random
initializations and report their average results in terms of
NMI and Rand index.

• Multi-class relationship prediction. We predict the relation-
ship between two given author nodes, among three
possibilities: IsAdvisor, IsAdvisee and IsColleague. Note that
the IsColleague relationships are undirected, whereas the
other two are directed. We split the node pairs in the
ground truth into 80% training and 20% testing data,
repeated for 10 times, and report their average micro and
macro-averaged F-scores on the test sets.

7.2 Empirical Comparisons with Baselines

Baselines. We compared the following representations on
the four tasks.

• MG+: The anchored metagraph-based representation,
which is our proposed solution.

12

• DeepWalk [23]: an pioneering work on distributed repre-
sentations for (homogeneous) graphs.

• node2vec [24]: a more advanced variant of DeepWalk that
samples a mixture of depth and breadth-first walks. The
mixture can be adjusted with parameters p and q, and we
ran a grid search over p, q ∈ {0.5, 1, 2}2 to choose the best
setting. When p = q = 1, it reduces to DeepWalk.

• GraphSAGE [25]: A state-of-the-art, general graph rep-
resentation learning framework that supports various
neighborhood aggregators. While we tried multiple ag-
gregators including mean, LSTM, pooling and GCN-
based aggregation, we only report the mean aggregator
due to its superior performance on most tasks. Finally,
we adopted its unsupervised variant to align with MG+.

• metapath2vec [26]: A state-of-the-art heterogeneous
graph embedding algorithm. Some domain knowledge
is required to select a metapath to guide random walks.
We tried two common metapaths used on bibliographic
graphs, author-paper-author and author-paper-venue-
paper-author, and only report the results of the latter
given its superior performance.

• hin2vec [27]: A state-of-the-art heterogeneous graph em-
bedding algorithm, which does not require the selection
of a metapath.
Apart from various graph representations, we further

compared with a classic graph algorithm called supervised
random walk (SRW) [7], as already explained in Section 6.1.
Note that SRW is a supervised method and thus cannot be
applied to the unsupervised node clustering task.

For graph embedding baselines, we derive the edge
representation from the concatenation of the two nodes’ em-
beddings. Other common choices include taking their sum
or Hadamard product, which cannot model directed edges
and show inferior empirical results. For all representation-
based methods including MG+, we applied the proposed
learning to rank approach (Section 3.2) for semantic prox-
imity search, k-means algorithm for node clustering, and
logistic regression with elastic net for node classification and
relationship prediction. We select hyperparameters via five-
fold cross validation on the training sets.
Empirical results. We report the evaluation of MG+ and
various baselines on the four tasks in Table 3. We observe
that MG+ significantly outperforms all the baselines in all
four tasks. Among the baselines, on the one hand, DeepWalk
and node2vec tend to give weak results as they cannot
leverage the rich semantics in heterogeneous graphs. On
the other hand, metapath2vec and hin2vec, which accounts
for the heterogeneity, generally outperform DeepWalk and
node2vec. Moreover, the performances of GraphSAGE and
SRW often falls in-between of the aforementioned two
groups. Note that while MG+ is the consistent winner, no
single baseline emerges as the consistent runner-up.

7.3 Analysis of Metagraphs
We further investigate the impact of varying meta-structures
on the four tasks, in two aspects.
Nature of the structures. We compare MG+ to two reduced
schemes: MG and MP, denoting non-anchored represen-
tations based on metagraphs and metapaths, respectively.

TABLE 3: Evaluation on the four tasks. Best results are
bolded and marked with */† if significantly different from
the runner-up at the 0.01/0.05 level under t-test.

(a) Semantic (b) Node
proximity search classification
NDCG MAP AUC F-score

DeepWalk 0.532 0.358 0.781 0.489
node2vec 0.535 0.352 0.788 0.494

GraphSAGE 0.902 0.766 0.858 0.636
metapath2vec 0.651 0.470 0.778 0.463

hin2vec 0.922 0.792 0.893 0.685
SRW 0.868 0.747 0.796 0.526
MG+ 0.949* 0.875* 0.909* 0.699†

(c) Node (d) Relationship
clustering prediction

Rand NMI Micro-F Macro-F
DeepWalk 0.031 0.006 0.540 0.420
node2vec 0.025 0.005 0.569 0.452

GraphSAGE 0.152 0.134 0.870 0.808
metapath2vec 0.002 0.001 0.836 0.694

hin2vec 0.020 0.124 0.547 0.447
SRW - - 0.367 0.306
MG+ 0.176* 0.145* 0.891* 0.864*

(a)

NDCG
MAP

0.2

0.4

0.6

0.8

1.0

MP MG MG+

(b)

AUC F
0.2

0.4

0.6

0.8

1.0

(c)

Rand NMI
0.00

0.05

0.10

0.15

0.20

(d)

Micro-F
Macro-F

0.2

0.4

0.6

0.8

1.0

Fig. 11: Performance comparison of various metagraph
schemes. (a) Semantic proximity search. (b) Node classifi-
cation. (c) Node clustering. (d) Relationshihp prediction.

Without anchors, MG cannot distinguish different roles of
nodes, whereas MP is a further simplification that only
utilizes metapaths. Not surprisingly, MG+ consistently out-
performs both MG and MP+, as reported in Fig. 11. Between
MG and MP, MG often works better as metagraphs are more
expressive and thus able to capture richer semantics.

We further examine a case study on the task of re-
lationship prediction through confusion matrices. In both
Table 4(a) and (b), the majority of the classification er-
rors happen between IsAdvisor and IsAdvisee classes, which
means both MP and MG are unable to differentiate the two
directed relationships. While there is some improvement
in MG over MP, the reduction of errors happens with the
undirected IsColleague class, due to the more expressive
metagraphs compared to metapaths. Nevertheless, the in-
creased expressive power of metagraphs does not help with
modeling directed relationships.

Size of structures. Next, we impose a size limit on the
metagraphs to study the impact. In Fig. 12, we varied the
size limit of metagraphs from 4 to 6. In most tasks, the
performance becomes stable when we increase the size limit
to 6, i.e., the performance lift from 5 to 6 becomes much
smaller than the lift from 4 to 5. In semantic proximity

13

TABLE 4: Confusion matrices of relationship prediction
using MP, MG, MG+. A = IsAdvisor, E = IsAdvisee, C =
IsColleague.

(a) MP

Predicted
A E C

Tr
ue

A 113 289 38

E 126 288 33

C 22 30 128

(b) MG

Predicted
A E C

Tr
ue

A 114 308 17

E 134 297 15

C 14 17 149

(c) MG+

Predicted
A E C

Tr
ue

A 398 30 11

E 36 402 9

C 21 23 136

(a)

NDCG
MAP

0.2

0.4

0.6

0.8

1.0

Up to size 4 Up to size 5 Up to size 6

(b)

AUC F
0.2

0.4

0.6

0.8

1.0

(c)

Rand NMI
0.00

0.05

0.10

0.15

0.20

(d)

Micro-F
Macro-F

0.2

0.4

0.6

0.8

1.0

Fig. 12: Performance comparison of various metagraph sizes
using MG+. (a) Semantic proximity search. (b) Node classi-
fication. (c) Node clustering. (d) Relationshihp prediction.

search, although the lift from size 5 to 6 is still substantial,
the absolute performance is approaching the ceiling of 1.0.
Thus, further increasing the size limit in this task would
have marginal benefits too. Therefore, metagraphs of up
to size 5 or 6 are often expressive enough to capture most
complex semantics between nodes. It is worth noting that an
existing study [28] on meta-structures also reaches a similar
conclusion, where metagraphs of larger size may bring in
remotely connected nodes with weaker semantic ties.

7.4 Empirical Results on Metagraph Matching
Finally, we compare our proposed matching algorithm
SymISO with two state-of-the-art baselines CFLMatch [29]
and BoostISO [19]. Note that the experiments in Section 6.3
are focused on symmetric metagraphs only since the seman-
tic classes involved therein are all symmetric. In this section,
we aim to evaluate both symmetric and asymmetric meta-
graphs, since our tasks involve asymmetric semantics. We
illustrate the average running time per metagraph in Fig. 13,
where we examine the size of metagraphs in Fig. 13(a),
and the symmetry in Fig. 13(b). In all cases, our proposed

(a) Size

≤ 4 5 6101

103

105

107

metagraph nodes

Ti
m

e
(m

s)

(b) Symmetry

Symmetric Asymmetric
101

103

105

107

Metagraph symmetry

SymISO
CFLMatch
BoostISO

Fig. 13: Average matching time per metagraph.

SymISO outperforms the baselines. In particular, compared
to CFLMatch, our performance edge on symmetric meta-
graphs is indeed larger than asymmetric ones.

8 RELATED WORK

Meta-structures. While the less general concept of metapath
has been proposed [6], metagraphs are more expressive and
effective than metapaths in capturing interactions between
nodes. Given the increased complexity and variety of meta-
graphs, we cannot handle metagraphs in the same way as
metapaths. First, the metapath-based PathSim [6] relies on
manually selecting the useful metapaths. It becomes difficult
given the much larger number of metagraphs and arbitrary
classes of proximity. Thus, we propose a supervised learning
approach. While another work [30] also employs learning
for metapaths, it is only designed for a different task of
clustering. Second, metagraphs are much more difficult
to match than metapaths. Thus, we develop a symmetry-
based matching algorithm to improve efficiency. Finally, a
recent work [28] proposes a directed acyclic graph as a
meta-structure. However, they do not handle the general
case where roles of nodes need to be differentiated. Similar
structures have also been employed for other applications
lately such as social influence analysis [31].
Proximity search. Most earlier research [2], [3], [5], [6]
only measures a “generic” form of proximity on graphs.
Different senses of proximity have also emerged, such as
hub and authority [32], probabilistic precision and recall
[33], [34], as well as importance and specificity [35], [36].
However, these senses are only formed due to specific
patterns in the link structures (i.e., non-semantic). Although
there exist semantic-oriented studies on graphs, such as
social circle learning [8] and relationship profiling [9], they
do not support online query processing and thus cannot be
easily adapted for proximity search. There also exist several
random walk approaches [7], [37], [38], which learn from
example ranking preferences [14] to bias transition probabil-
ities between nodes of different types or features. However,
they are equivalent to adjusting a linear combination of path
probabilities only [2].
Subgraph matching. A plethora of techniques [10], [16],
[17], [18], [19], [29] have been proposed for subgraph match-
ing, which follow the backtracking framework as discussed
in Section 4. Their major issue is the extremely huge search
space on a large graph. To prune the search space, Shang
et al. [16] have proposed a special ordering of nodes for
matching instead of a random ordering. Subsequently, Han
et al. [18] and Ren et al. [19] have introduced more improve-
ments to further reduce and reuse redundant computation.
However, they do not account for graph symmetry, which
leads to substantial redundant computations.
Graph representation. Inspired by the success of word em-
bedding approaches, advances in learning representations
in an unsupervised fashion have been extended to graph
data [39]. Earlier work such as DeepWalk [23], node2vec
[24] and LINE [40] only deal with homogeneous graphs,
without accounting for the complex semantics carried by
a heterogeneous graph. A few studies on heterogeneous
graphs exist, including state-of-the-art metapath2vec [26]

14

and hin2vec [27]. Both works utilize the guidance of metap-
aths, which are less expressive structures than metagraphs.
More recently, end-to-end graph neural networks, such as
GCN [41], GraphSAGE [25] and GAT [42], have emerged to
learn graph representations in a supervised fashion. Com-
paring to these existing studies, our proposed representa-
tions have a few advantages. First, anchored metagraphs
are able to capture direction-aware semantics through head
and tail anchors that can model different roles. Second, our
method tends to be more universal. Previous unsupervised
methods [23], [24], [26] depend on skip-gram models to op-
timize node co-occurrences, and end-to-end methods [25],
[41], [42] optimize task-specific goals. In contrast, anchored
metagraphs capture a wide variety of fine-grained semantics
and interations between nodes, instead of depending on
only co-occurrences or task-specific supervisions. Third, our
method is often more interpretable, since each dimension
corresponds to one anchored metagraph that carries seman-
tics and can be easily visualized.

9 CONCLUSION

In this paper, we proposed metagraph-based learning on
heterogeneous graphs. Motivated by the problem of seman-
tic proximity search, we identified and employed metagraphs
to characterize arbitrary semantic classes, which can be
learned in a supervised manner. We further generalized
metagraphs to anchored metagraphs, in order to model nodes
with distinct roles within the same metagraph. In particular,
anchored metagraphs can be used to construct universal
node and edge representations, to support various machine
learning tasks such as semantic proximity search, node clas-
sification and link prediction. Finally, we also improved the
efficiency of metagraph matching by eliminating redundant
computations on symmetric components, which are present
in the majority of our metagraphs. Empirical results on three
real-world graphs consistently demonstrated the superior
performance of metagraph-based learning.

ACKNOWLEDGEMENT

This research was supported by the Singapore Ministry of
Education (MOE) Academic Research Fund (AcRF) Tier 1
grant (Approval No. 18-C220-SMU-006).

REFERENCES

[1] Y. Sun, “Mining heterogeneous information networks,” Ph.D. dis-
sertation, University of Illinois at Urbana-Champaign, 2012.

[2] G. Jeh and J. Widom, “Scaling personalized web search,” in WWW,
2003, pp. 271–279.

[3] ——, “SimRank: a measure of structural-context similarity.” in
KDD, 2002, pp. 538–543.

[4] Y. Fang, W. Lin, V. W. Zheng, M. Wu, K. C. Chang, and X. Li,
“Semantic proximity search on graphs with metagraph-based
learning,” in ICDE, 2016, pp. 277–288.

[5] Y. Koren, S. C. North, and C. Volinsky, “Measuring and extracting
proximity in networks,” in KDD, 2006, pp. 245–255.

[6] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “PathSim: Meta
path-based top-k similarity search in heterogeneous information
networks,” PVLDB, vol. 4, no. 11, 2011.

[7] L. Backstrom and J. Leskovec, “Supervised random walks: Pre-
dicting and recommending links in social networks,” in WSDM,
2011, pp. 635–644.

[8] J. J. McAuley and J. Leskovec, “Learning to discover social circles
in ego networks,” in NIPS, 2012, pp. 548–556.

[9] R. Li, C. Wang, and K. C. Chang, “User profiling in an ego
network: co-profiling attributes and relationships,” in WWW, 2014,
pp. 819–830.

[10] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J. ACM,
vol. 23, no. 1, pp. 31–42, 1976.

[11] X. Yan and J. Han, “gSpan: Graph-based substructure pattern
mining,” in ICDM, 2002, pp. 721–724.

[12] M. Kuramochi and G. Karypis, “Finding frequent patterns in a
large sparse graph,” in ICDM, 2004, pp. 345–356.

[13] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis,
“GRAMI: frequent subgraph and pattern mining in a single large
graph,” PVLDB, vol. 7, no. 7, pp. 517–528, 2014.

[14] T.-Y. Liu, Learning to rank for information retrieval. Springer, 2011.
[15] R. J. P. van Berlo, W. Winterbach, M. J. L. de Groot, A. Bender,

P. J. T. Verheijen, M. J. T. Reinders, and D. de Ridder, “Efficient
calculation of compound similarity based on maximum common
subgraphs and its application to prediction of gene transcript
levels,” IJBRA, vol. 9, no. 4, pp. 407–432, 2013.

[16] H. Shang, Y. Zhang, X. Lin, and J. X. Yu, “Taming verification hard-
ness: an efficient algorithm for testing subgraph isomorphism,”
PVLDB, vol. 1, no. 1, pp. 364–375, 2008.

[17] J. Lee, W. Han, R. Kasperovics, and J. Lee, “An in-depth compar-
ison of subgraph isomorphism algorithms in graph databases,”
PVLDB, vol. 6, no. 2, pp. 133–144, 2012.

[18] W. Han, J. Lee, and J. Lee, “Turboiso: towards ultrafast and
robust subgraph isomorphism search in large graph databases,”
in SIGMOD, 2013, pp. 337–348.

[19] X. Ren and J. Wang, “Exploiting vertex relationships in speeding
up subgraph isomorphism over large graphs,” PVLDB, vol. 8,
no. 5, pp. 617–628, 2015.

[20] W. Lin, X. Xiao, J. Cheng, and S. S. Bhowmick, “Efficient al-
gorithms for generalized subgraph query processing,” in CIKM,
2012, pp. 325–334.

[21] W. Fan, J. Li, J. Luo, Z. Tan, X. Wang, and Y. Wu, “Incremental
graph pattern matching,” in SIGMOD, 2011, pp. 925–936.

[22] C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo,
“Mining advisor-advisee relationships from research publication
networks,” in KDD, 2010, pp. 203–212.

[23] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: online learning
of social representations,” in KDD, 2014, pp. 701–710.

[24] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in KDD, 2016, pp. 855–864.

[25] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NIPS, 2017, pp. 1024–1034.

[26] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable
representation learning for heterogeneous networks,” in KDD,
2017, pp. 135–144.

[27] T. Fu, W. Lee, and Z. Lei, “Hin2vec: Explore meta-paths in het-
erogeneous information networks for representation learning,” in
CIKM, 2017, pp. 1797–1806.

[28] Z. Huang, Y. Zheng, R. Cheng, Y. Sun, N. Mamoulis, and X. Li,
“Meta structure: Computing relevance in large heterogeneous
information networks,” in KDD, 2016, pp. 1595–1604.

[29] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang, “Efficient subgraph
matching by postponing cartesian products,” in SIGMOD, 2016,
pp. 1199–1214.

[30] Y. Sun, B. Norick, J. Han, X. Yan, P. S. Yu, and X. Yu, “Integrating
meta-path selection with user-guided object clustering in hetero-
geneous information networks,” in KDD, 2012, pp. 1348–1356.

[31] J. Zhang, J. Tang, Y. Zhong, Y. Mo, J. Li, G. Song, W. Hall, and
J. Sun, “Structinf: Mining structural influence from social streams,”
in AAAI, 2017, pp. 73–80.

[32] J. M. Kleinberg, “Authoritative sources in a hyperlinked environ-
ment,” J. ACM, vol. 46, no. 5, pp. 604–632, 1999.

[33] G. Agarwal, G. Kabra, and K. C. Chang, “Towards rich query in-
terpretation: walking back and forth for mining query templates,”
in WWW, 2010, pp. 1–10.

[34] Y. Fang and K. C. Chang, “Searching patterns for relation extrac-
tion over the Web: rediscovering the pattern-relation duality,” in
WSDM, 2011, pp. 825–834.

[35] V. Hristidis, H. Hwang, and Y. Papakonstantinou, “Authority-
based keyword search in databases,” TODS, vol. 33, no. 1, 2008.

[36] Y. Fang, K. C. Chang, and H. W. Lauw, “RoundTripRank: Graph-
based proximity with importance and specificity,” in ICDE, 2013,
pp. 613–624.

15

[37] S. Chakrabarti and A. Agarwal, “Learning parameters in entity
relationship graphs from ranking preferences,” in PKDD, 2006,
pp. 91–102.

[38] A. Agarwal, S. Chakrabarti, and S. Aggarwal, “Learning to rank
networked entities,” in KDD, 2006, pp. 14–23.

[39] H. Cai, V. W. Zheng, and K. C. Chang, “A comprehensive survey of
graph embedding: Problems, techniques, and applications,” IEEE
TKDE, vol. 30, no. 9, pp. 1616–1637, 2018.

[40] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE:
large-scale information network embedding,” in WWW, 2015, pp.
1067–1077.

[41] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in ICLR, 2017.

[42] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in ICLR, 2018.

Yuan Fang received his Ph.D. degree in Com-
puter Science from University of Illinois at
Urbana-Champaign in 2014. He is currently an
Assistant Professor in the School of Informa-
tion Systems, Singapore Management Univer-
sity. His research focuses on graph-based ma-
chine learning and data mining, as well as their
applications for the Web and social media.

Wenqing Lin received his Ph.D. degree in Com-
puter Science from Nanyang Technological Uni-
versity in 2015. Currently he is a Senior Re-
searcher at Tencent in Shenzhen, China. His
research interests include graph databases and
data mining.

Vincent W. Zheng received his Ph.D. degree in
Computer Science from Hong Kong University of
Science and Technology in 2011. He is a senior
tech lead in WeBank, China. Previously, he was
a senior research scientist at the Advanced Dig-
ital Sciences Center, Singapore, and a research
affiliate at the University of Illinois at Urbana-
Champaign. He research interests include graph
mining, information extraction, ubiquitous com-
puting and machine learning.

Min Wu received his Ph.D. degree in Computer
Science from Nanyang Technological University
in 2011. He is currently a Senior Scientist at
the Data Analytics Department, Institute for In-
focomm Research, Singapore. His research in-
terests include graph mining, machine learning,
as well as bioinformatics.

Jiaqi Shi received his Master’s degree in Data
Sciences from ESSEC Business School in 2019.
He is currently a Research Engineer in the
School of Information Systems, Singapore Man-
agement University. His research interests in-
clude graph mining, machine learning and infor-
mation systems.

Kevin Chen-Chuan Chang is a Professor in
the Department of Computer Science, University
of Illinois at Urbana-Champaign. His research
addresses large-scale information access, for
search, mining, and integration across struc-
tured and unstructured big data including Web
data and social media. He also co-founded Ca-
zoodle for deepening vertical data-aware search
over the Web.

Xiao-Li Li is the Department Head and a Prin-
cipal Scientist of the Data Analytics Department,
Institute for Infocomm Research, Singapore. He
also holds adjunct associate professorship at
Nanyang Technological University. His research
interests include data mining, machine learning,
bioinformatics and information retrieval.

