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GNNSynergy: A Multi-view Graph Neural
Network for Predicting Anti-cancer Drug Synergy

Zhifeng Hao, Jianming Zhan, Yuan Fang, Min Wu, and Ruichu Cai∗

Abstract—Drug combinations play very important roles in cancer therapy, as they can enhance curative efficacy and overcome drug
resistance. Due to the increasing size of combinatorial space, experimental screening for all the drug combinations becomes infeasible
in practice. Therefore, there is a great need to develop accurate computational approaches that can predict potential drug combinations
to direct the experimental screening. In this paper, we propose a novel method called GNNSynergy to learn drug embeddings for drug
synergy prediction. Given a specific cancer cell line, we propose a multi-view graph neural network framework which considers the
current cell line as main view while other cell lines from the same tissue as sub-views. In each view, we first construct different graphs
to describe drug synergistic and antagonistic interactions, and adopt graph neural network as encoder to learn drug embeddings. We
further combine both the main view and sub-views via an attention mechanism to derive the final drug embeddings for drug synergy
prediction. We perform extensive experiments on DrugComb database and the experimental results demonstrate that our proposed
GNNSynergy significantly outperforms state-of-the-art methods for novel synergistic drug combination prediction.

Index Terms—Drug combination, Cancer cell lines, Multi-view, Attention mechanism, Graph neural network.
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1 INTRODUCTION

D RUG combination, as an important concept for improv-
ing efficacy of complex disease treatment [1, 2], has

received a lot of attention in the cancer therapeutics. Com-
pared to drug monotherapy, combination therapy can help
to reduce or even eliminate drug resistance. In addition to
cancers, drug combinations have also been actively studied
for the treatment of other diseases, such as AIDS [3], fungal
and bacterial infections [4, 5, 6, 7].

Drug combinations can be identified by clinical experi-
ments or high-throughput screening methods (HTS). As the
number of drugs approved by FDA has been continuously
growing, the number of possible pairwise drug combina-
tions has become too huge. Even though HTS can produce
a large number of measurements in reasonable time [8, 9], it
is still impracticable to exhaust all these drug combinations.
Nevertheless, HTS experiments have generated quite a
number of known drug combinations across a couple of cell
lines for various cancer types [8, 10]. Such data generated
by HTS methods enables computational pre-screening for
synergistic drug pairs, which would be a useful complement
to wet-lab experiments.

Various machine learning methods have been proposed
for synergistic drug combination prediction [11, 12, 13],
including traditional machine learning methods and deep
learning models. Traditional machine learning methods
manually extract features from drug chemical structures,

• Zhifeng Hao, Jianming Zhan and Ruichu Cai are currently with
School of Computer Science, Guangdong University of Technology,
Guangdong, China 510006. E-mail: zfhao@fosu.edu.cn, {zhanjimmy520,
cairuichu}@gmail.com.

• Yuan Fang is currently with School of Computing and Information
Systems, Singapore Management University, Singapore 178902. E-mail:
yfang@smu.edu.sg.

• Min Wu is currently with the Institute for Infocomm Research (I2R),
A*Star, Singapore 138632. Email: wumin@i2r.a-star.edu.sg.

• ∗ Corresponding author

Manuscript received April 19, 2005; revised August 26, 2015.

cell-line gene expression profiles and dose response curves,
and then feed the extracted features to Random Forest
[14, 15] and XGBoost [16] to predict synergy scores across
different cell lines. An ensemble method called EPSDC [17]
was proposed to predict drug combinations from multiple
data sources by integrating various base prediction models
(e.g., SVM, Naive Bayes, etc). Deep learning methods also
take the drug chemical descriptors and cell-line gene expres-
sion profiles as inputs, and directly feed them into different
network structures, e.g., deep feed-forward network [18, 19]
and Transformer [20], to learn latent drug features automat-
ically for drug synergy prediction. Kim et al [21] used drug
encoder and cell line encoder to exact the features, and fed
these features into a feed forward network for drug synergy
prediction. Hu et al [22] proposed a deep neural network
model termed DTSyn based on a multi-head attention mech-
anism to identify novel drug combinations. Both traditional
machine learning and deep learning methods above can
predict the synergy score between two drugs in a specific
cell line by using cell line profiles as features. However, most
of the existing works did not take into account the data for
other similar cell lines from the same tissue to improve their
predictions.

Moreover, known drug combinations can be modeled
as a network/graph, where nodes are drugs and edges
show their synergistic effects. It is denoted as a drug-
drug synergy (DDS) graph, which enables modeling the
long-range dependencies between drugs. However, above
machine learning methods fail to consider such graph-
structured DDS data for drug synergy prediction. Mean-
while, some network-based methods [23, 24, 25] have been
proposed for drug synergy prediction. The authors in [23]
quantified the relationship between drug targets and disease
proteins in human protein-protein interaction (PPI) net-
works to predict novel drug combination pairs. A method
called NEWMIN was proposed in [24] to predict drug
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combinations via SkipGram-based network embedding in
multiplex network (i.e., 6 drug-drug similarity networks).
In [25], the authors developed a method called ISDCSMP
to prioritize synergistic drug combinations via integrating
multi-source information in a heterogeneous network. These
three recent studies also did not exploit DDS graph data for
drug combination prediction.

Recently, graph neural networks (GNN) [26] have been
successfully applied to tackle various bioinformatics tasks,
including disease gene prediction [27], drug discovery [28],
synthetic lethality prediction [29], etc. GNN methods have
also been proposed for cell-line-specific drug synergy pre-
diction [30, 31, 32]. For example, Jiang et al learned drug
embeddings via graph neural network from a heteroge-
neous network with protein-protein interactions and drug-
target interactions. Wang et al proposed a method called
DeepDDS using graph neural network to obtain the drug
embeddings from drug molecular graphs [31]. Different
from [30, 31], the aforementioned DDS graph can also be
fed into GNN to learn drug embedding for drug synergy
prediction. However, there are two main challenges to apply
GNN on DDS graph for this important task. First, drug
pairs have different synergistic effects [19], i.e., synergism
(positive Loewe scores) and antagonism (negative Loewe
scores). If a single DDS graph contains different drug re-
lationships, it would be very challenging to apply GNN
methods on this DDS graph as most of them tend to work
in a homogeneous graph where nodes and edges belong to
the same relationship. Second, there are multiple cell lines
from the same tissue and it may help to boost the model
performance by integrating the data from other cell lines.
How to effectively integrate multiple cell lines for drug
synergy prediction remains a challenge.

To address the above challenges, we propose a novel
multi-view graph neural network method named GNNSyn-
ergy to predict drug synergy. We build individual model to
predict drug synergy scores for each cancer cell line (i.e.,
cell-line-specific model). Given a specific cell line, we pro-
pose a multi-view framework which considers the current
cell line as main view while other cell lines from the same
tissue as sub-views. In each view (i.e. cell line), we first
construct two DDS graphs to describe different types of
drug synergistic effects, and design graph neural networks
as encoders to learn drug embeddings. We further combine
both the main view and sub-views to derive the final
drug embeddings for drug synergy prediction. Experimen-
tal results on DrugComb dataset show that our proposed
GNNSynergy model significantly outperforms state-of-the-
art methods for drug synergy prediction.

Note that Kim et al [21] also used other cell lines to
build their prediction model for the target cell line. They
applied transfer learning for the understudied target cell
line where the labelled data is insufficient. Our setting for
GNNSynergy is clearly different from [21]. We perform
supervised learning for each cell line and then conduct
multi-view (multiple cell line) integration for drug feature
learning. Overall, our main contributions in this paper are
summarized as follows.

• We construct multiple drug-drug synergy (DDS)
graphs to describe different types of synergistic ef-

fects. Drug embeddings are then learnt from these
DDS graphs for drug synergy prediction via graph
neural networks.

• We design a multi-view framework for drug synergy
prediction, which can effectively integrate the data
from other relevant cell lines within the same tissue.
To the best of our knowledge, this is the first attempt
to tackle this problem with multi-view graph neural
networks.

• Our experimental results demonstrate that our pro-
posed GNNSynergy significantly outperforms eight
state-of-the-art methods.

2 RELATED WORK

In this section, we first introduce existing machine learning
methods for drug synergy prediction. We also introduce the
recent development of graph neural network techniques for
various bioinformatics tasks.

2.1 Machine Learning for Drug Synergy Prediction

Traditional machine learning methods have been shown to
be very effective for drug synergy prediction. In [33], Li
et al. proposed a probability ensemble approach (PEA) for
drug combination prediction. In particular, they calculated
the synergy score of a drug pair by integrating 6 molecular
and pharmacological features with a Bayesian network.
TreeCombo predicted the synergy scores of drug pairs with
extreme gradient boosted trees (i.e., XGBoost) by taking
chemical and physical descriptors of drugs and gene ex-
pression levels of cell lines as features [16]. Li et al. proposed
to integrate cross-cell and cross-drug information and feed
them into random forest for drug synergy prediction [14].
Similarly, TAIJI also utilized random forest, as well as the
data from drug pharmacological and molecular properties,
to predict drug synergy [15].

Recently, deep learning methods have been proposed
for synergistic drug combination prediction. DeepSynergy
[18], as the first deep learning method for drug synergy
prediction, implemented a feed-forward network taking
drug chemical features and cell line gene expression profiles
as inputs. MatchMaker [19] further improved DeepSynergy,
and trained two parallel feed-forward networks to learn
latent drug representations for drug synergy prediction in a
specific cell line. TranSynergy [20] proposed a self-attention
Transformer for drug synergy prediction. It focused on
incorporating the information from the gene-gene interac-
tions, cell-line gene dependency, and drug-target interac-
tions to predict the synergistic drug combinations.

2.2 Graph Neural Networks

Graph neural networks are deep neural networks modeling
the graph data [26]. Various GNN models including graph
convolutional network (GCN) [34] and graph attention net-
work (GAT) [35] have been used for drug discovery [28],
disease prediction [27], microbe-drug association predic-
tion [36], synthetic lethality prediction [29], etc. Multi-view
graph neural networks have also been proposed to fuse
multiple data sources in various tasks. Zhang et al. proposed
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Fig. 1: Data preparation and DDS Graph Construction. (A) Drug synergy data and cell line data are collected from
DrugComb database. (B) Two DDS graphs are constructed for each cell line to describe synergistic and antagonistic effects
of drug pairs. Nodes represent drugs, and an edge represents the interaction (synergism or antagonism) between two
nodes/drugs.

a multi-view graph convolutional network to integrate mul-
tiple modalities of brain images for Parkinson’s disease
prediction [37]. Fu et al. proposed a generic multi-view
graph convolution network framework termed as MVGCN
for link prediction in biomedical bipartite networks [38].
MVGCN shows very good generalization capacity on six
benchmark datasets involving three different link prediction
tasks in bipartite networks. Multi-view graph auto-encoder
was proposed for drug-drug interaction prediction [39]
and synthetic lethality prediction [40]. So far, there are no
existing studies working on multi-view GNN to integrate
multiple cell lines for drug synergy prediction.

3 METHODS

In this section, we first introduce data preparation and DDS
graph construction, and then present the details of our
GNNSynergy model.

3.1 Data Preparation and DDS Graph Construction
In this study, we use the data from DrugComb database
[41], which originally consists of 4,015 drugs and 466,033
drug combinations in 112 cell lines from 11 different tissues.
After removing redundant drug pairs, we collect 268,547
drug pairs in 81 cell lines from 11 tissues as shown in Fig.
1(A). We first select all the drug combination pairs in a
specific cell line. For these selected drug combination pairs,
they are classified as synergism, additivity or antagonism in
[41]. Since additivity means no significant interactions, we
construct 2 drug-drug synergy (DDS) graphs for synergism
and antagonism only, based on their synergy scores as
shown in Fig. 1(B). The synergism graph contains drug pairs
with Loewe scores greater than a pre-defined threshold t.
The antagonism graph contains drug pairs with scores less
than −t. t is set as 0 in our experiments.

Above DDS graphs are the main inputs of our GNNSyn-
ergy model. We also take the chemical features of drugs as
inputs. In particular, we follow MatchMaker [19] and use
541 chemical descriptors for drugs, which are calculated by
ChemoPy Python library [42]. We further perform a feature

normalization process and remove those features with zero
values. Finally, we use 424 chemical features for drugs,
and these selected chemical descriptors are listed in our
supplementary materials. In this work, we focus on predict-
ing the drug synergy scores in each cell line, which is a
typical regression task. Next, we will introduce the detailed
structure of our GNNSynergy model.

3.2 Overview of GNNSynergy
Fig. 2 shows the overall architecture of our proposed
GNNSynergy model for cell-line-specific drug synergy pre-
diction. Given a specific cell line C , we consider it as our
main view, while all the other cell lines C1, · · · , Ck within
the same tissue are considered as sub-views. First, we lever-
age the single-view encoder to learn the drug embeddings
for each cell line, including the main view C and sub-views
C1, · · · , Ck. Second, we conduct a weighted concatenation
to integrate the drug embeddings from all the sub-views.
In particular, the weight αj here is a trainable attention
score to show the similarity between the sub-view Cj and
main view C . Third, we combine the drug embeddings
from both main view and sub-views as the final embedding.
Lastly, we design a decoder for the final drug embeddings
to reconstruct the drug synergy score matrix. Next, we will
introduce each step in details.

3.3 Single-View Encoder for Drug Embedding Learning
As shown in Fig. 2(B), we construct 2 DDS graphs for each
cell line to represent synergism and antagonism, respec-
tively, and 2 GCNs are employed as feature encoders. Here,
we use standard graph convolution [34] as follows.

H(l) = σ(ÂH(l−1)W(l)), (1)

Â = D− 1
2 ÃD− 1

2 , (2)

where Ã = I+A is the adjacency matrix of the input graph
with self-loop and I is the identity matrix. D ∈ Rn×n is a
degree matrix with Dii =

∑n
j=1 Ãij and W(l) ∈ Rn×d is a

layer-specific trainable weight matrix. σ(·) is the activation
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Fig. 2: The architecture of GNNSynergy for cell-line-specific drug synergy prediction. (A) Multi-view encoder integrates
multiple cell lines to learn the final drug embeddings, and (B) single-view encoder learns drug embeddings for each cell
line.

function (e.g., sigmoid or ReLU). H(l−1) and H(l) are the
input and the output for the lth layer of the GCN. When l =
1, the input H(0) is the initial node features.

In this paper, the initial features for drugs are derived
from their chemical structures, denoted as Xd. We use 1-
layer GCN with ReLU as activation function for feature
encoding. For example, the GCN output for the synergism
graph A1 is computed in Equation 3.

H1 = ReLU(Â1XdW1), (3)

where H1 ∈ Rn×d, n is the number of drugs, d is the di-
mension of drug embedding, and W1 is a learnable weight
matrix. Similarly, the GCN outputs for antagonism graph
A2 are denoted as H2, respectively.

To learn the drug embeddings for a specific cell line,
we further concatenate the embeddings from the two DDS
graphs, namely, H1 and H2. Then, the concatenated em-
beddings are fed into a multi-layer perceptron (MLP) for
dimension reduction as shown in Equation 4.

H = MLP (H1||H2), (4)

where MLP (X) is the output of a 4-layer MLP with input
X as shown in Fig. 2, and || is the concatenation operation.

As aforementioned, we have a specific cell line as main
view, and others in the same tissue as sub-views. Hence,

we denote the drug embeddings learned from main view
as Hm, and those from sub-views as Hs. For example, the
drug embeddings from the sub-view Cj are denoted as Hs

j

(1 ≤ j ≤ k) as shown in Fig. 2(A).

3.4 Multi-View Encoder for Cell Line Integration
Different cell lines from the same tissue may share simi-
lar patterns, and thus data fusion from multiple cell lines
(multi-views) would improve the performance of drug syn-
ergy prediction. Given k sub-views (i.e., cell lines C1, · · · ,
Ck), we pretrain the single-view encoder for each cell line,
and then derive their drug embeddings Hs

1, · · · , Hs
k. We first

combine these k sub-views via a weighted concatenation in
Equation 5.

Xs =
k

||
j=1

αjH
s
j , (5)

where αj is the attention score that shows the similarity
between the sub-view Cj and the main view C . In particular,
the attention scores are initialized with Gaussian random
weights, and then optimized during the model training.

As we may have several cell lines in a tissue, the di-
mension of Xs in Equation 5 is k × d, and it would thus be
much higher than that of Hm (i.e., the drug embedding from
the main view). Hence, we implement another multi-layer
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perceptron (MLP) to derive the drug embedding Zs with
reduced dimensionality in Equation 6. Here, Ws

1, Ws
2 and

Ws
3 are trainable weight matrices for the MLP in the multi-

view encoder. Eventually, we concatenate the embedding
Hm from the main view and the embedding Zs from the
sub-views as the final drug embedding Z through our multi-
view encoder in Equation 7.

Zs = MLP (Xs)

= ReLU(ReLU(XsWs
1)W

s
2)W

s
3, (6)

Z = Hm||Zs. (7)

3.5 Decoder and Overall Loss
After we obtain the final drug embedding matrix Z, we can
reconstruct a synergy score matrix S via a weighted inner-
product decoder in Equation 8.

S = ZWdeZ
T , (8)

where Wde is a trainable matrix. Then, we leverage this
score matrix S for drug synergy prediction. Meanwhile, we
also calculate the mean square error between S and the
ground-truth Y (i.e., the synergy score matrix for the main
view C) as our model loss L in Equation 9.

L = MSE(Y, S)

=
1

2N

n∑
i=1

n∑
j=1

Mij(Yij − Sij)
2, (9)

where N is total number of training samples and M ∈ Rn×n

is a mask matrix for training data, i.e., Mij = 1 if the drug
pair (di, dj) is involved in the training set and 0 otherwise.
Here, the MSE loss in Equation 9 is optimized to learn
various model parameters in our GNNSynergy. Meanwhile,
the single-view encoder for each cell line is pretrained by
minimizing another MSE loss, where the predicted synergy
score matrix S is calculated based on the single-view drug
embedding H obtained by Equation 4 (instead of Z). We
aim to accelerate the training process and reduce the model
training complexity through this pre-training step. Both the
MSE loss of single-view encoder and the overall MSE loss
are derivable and we adopt the Adam optimizer [43] to
minimize them in this paper.

4 RESULTS

In this section, we first introduce the experimental setup,
and then demonstrate the empirical evaluation of the pro-
posed GNNSynergy model.

4.1 Experimental Setup
4.1.1 Datasets
We used DrugComb database version v1.4 [41] for model
training and evaluation. DrugComb is available at https:
//drugcomb.fimm.fi/. In particular, DrugComb integrates
the data from four sources, namely, (i) the NCI ALMANAC
dataset [44], (ii) the ONEIL dataset [8], (iii) the FORCINA
dataset [45] and (iv) the CLOUD dataset [10]. Originally,
DrugComb v1.4 consists of 466,033 drug combinations for
112 cancer cell lines in 11 different tissues. Given a drug

pair within a specific cell line, it may have multiple entries
in DrugComb with the same or different synergy scores.
We first removed its duplicates with the same score, and
then took the average score for the remaining entries as its
final synergy score. Eventually, we worked on the processed
DrugComb database with 268,547 drug pairs in 81 cell lines
from 11 tissues as shown in Fig. 1(A).

4.1.2 Baselines
In our experiments, we compared our proposed GNNSyn-
ergy model with eight state-of-the-art methods. In particu-
lar, Elastic Nets, Random Forest, Gradient Boosting Ma-
chines (GBM) are common feature-based machine learning
models, which were adopted as baselines for drug synergy
prediction in [18]. TreeCombo [16] leveraged extreme gra-
dient boosted trees (XGBoost) for drug synergy prediction.
comboLTR [46] was recently proposed based on latent
tensor reconstruction. DeepSynergy [18], MatchMaker [19]
and TranSynergy [20] are deep learning based methods for
drug synergy prediction. For a fair comparison, we used the
same set of features (i.e., 424 features for each drug and 972
features for each cell line) for all the baseline methods.

4.1.3 Implementation details
For our GNNSynergy, we used 1-layer GCN with output
feature dimensionality d = 128 and dropout rate ρ = 0.5.
We used 4-layer MLPs (i.e., 1 input layer, 2 hidden layers
and 1 output layer) in both single-view and multi-view
encoders. The input layer of MLPs in single-view encoder
has 2d = 256 neurons, and it has 2d×k neurons in multi-view
encoder with k sub-view cell lines. For MLPs in single-view
encoder, their 2 hidden layers and 1 output layer had 128,
256 and 128 neurons, respectively, and the dropout rates
for 2 hidden layers were set as 0.2 and 0.6. For MLPs in
multi-view encoder, their 2 hidden layers and 1 output layer
had 640, 256 and 128 neurons, respectively, and the dropout
rates for 2 hidden layers were set as 0.6 and 0. Note that we
pre-trained the single-view encoder for each cell line with a
learning rate of 1e-3, while the learning rate to optimize the
overall GNNSynergy model was set as 1e-5. Lastly, we set
the maximum number of training epochs to 2,000, and we
considered the early-stop mechanism that the optimization
will stop if the validation loss does not decline within the
recent 300 epochs. In subsection 4.3, we will show the effects
of some parameters above. We also empirically tuned the
hyper-parameters for the baseline methods, and please find
the details in our supplementary materials.

We conducted the 5-fold cross-validation (CV) to eval-
uate the performance of various methods. More impor-
tantly, the drug combination pairs were partitioned into
five non-overlapping subgroups of equal size at random.
We chose a subgroup as test set while the remaining four
subgroups as training set. We further split the training
data into two parts, i.e., training set and validation set,
so that training set, validation set and test set have 60%,
20% and 20% of total samples, respectively. We calculated 5
metrics between predicted and ground-truth synergy scores,
including Mean Square Error (MSE), Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), Pearson cor-
relation coefficients and Spearman correlation coefficients.
We implemented the deep learning methods using Pytorch
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version 1.6, an open source python machine learning library,
and traditional machine learning methods (Elastic Nets,
Random Forest, TreeCombo and GBM) using scikit-learn
version 0.23.2. We trained all the models on the NVIDIA
Tesla K80 GPU. Note that the processed datasets, source
codes and the supplementary materials are available at
https://github.com/ZJMHub/GNNSynergy.

4.2 Comparison with Baselines

In this section, we show the performance comparison be-
tween our GNNSynergy and various baseline methods on
DrugComb dataset in terms of 5 evaluation metrics. Note
that we calculated the performance for various methods on
each cell line first and took the average over all the 81 cell
lines as the final performance. In particular, MSE, RMSE
and MAE measure the errors between predicted and real
synergy scores, showing better performance if they have
lower values. On the opposite, the Pearson and Spearman
correlation coefficients measure the correlation between pre-
dicted and real synergy scores, showing better performance
with higher values.

TABLE 1: Performance comparison among various methods
under 5-fold CV.

Method MSE RMSE MAE Pearson Spearman
Elastic Nets 170.617 12.887 9.220 0.441 0.425

Random Forests 167.111 12.738 9.018 0.443 0.430
GBM 168.604 12.784 8.969 0.448 0.429

TreeCombo 166.987 12.696 8.880 0.463 0.455
DeepSynergy 137.283 11.555 7.973 0.575 0.533
TranSynergy 132.172 11.211 7.529 0.586 0.561
comboLTR 121.962 10.876 7.659 0.636 0.581

MatchMaker 104.148 10.129 6.655 0.686 0.649
GNNSynergy 95.462 9.613 6.422 0.714 0.667

As shown in Table 1, GNNSynergy significantly outper-
forms all the baselines in terms of all the 5 metrics. The MSE,
RMSE and MAE of the GNNSynergy model are 95.462, 9.613
and 6.422, significantly lower than those of the baselines.
Among the baseline methods, MatchMaker [19] achieves
the best results. Compared to MatchMaker, GNNSynergy
demonstrates an improvement of 4.08% and 2.77% in terms
of Pearson and Spearman correlations, respectively. Besides,
we can observe that deep learning methods (DeepSyn-
ergy, MatchMaker and TranSynergy) perform better than
those traditional machine learning methods. Moreover, our
GNNSynergy leverages the graph structural information of
known drug combination pairs and the data from multiple
cell lines, which can further improve the performance for
drug synergy prediction.

4.3 External Validation Experiment

We further conducted an external validation experiment for
all the methods. In particular, we used the data from one
study (e.g., NCI ALMANAC [44]) to train the model and
and then tested on the data from another independent study
(e.g., ONEIL [8]). We selected the cell lines that appear
in both the NCI ALMANAC dataset and ONEIL dataset
so that both training and test sets are available for each
selected cell line. Eventually, we selected 8 cell lines from
5 tissues for independent test, including cell lines SW-620,

TABLE 2: Performance comparison of various methods on
an independent validation set.

Method MSE RMSE MAE Pearson Spearman
Elastic Nets 284.125 16.715 12.420 0.297 0.341

Random Forests 271.625 16.382 12.321 0.306 0.305
GBM 272.000 16.413 12.392 0.273 0.272

TreeCombo 273.375 16.446 12.310 0.292 0.287
DeepSynergy 263.750 16.086 11.228 0.368 0.370
TranSynergy 261.125 16.062 11.418 0.337 0.356
comboLTR 295.996 17.143 11.962 0.307 0.283

MatchMaker 240.000 15.555 10.791 0.442 0.438
GNNSynergy 220.375 14.611 10.288 0.491 0.470

HT29,HCT116,NCIH23,SK-OV-3,OVCAR3,UACC62, and T-
47D.

As shown in Table 2, GNNSynergy still achieves the
best performance in the independent validation experiment.
The MSE, RMSE and MAE of the GNNSynergy are 220.375,
14.611 and 10.288, respectively, far below the error scores
of MatchMaker (the second best performer). It can also be
observed that traditional machine learning models do not
perform as well as deep learning models, and some models
perform poorly, such as comboLTR, which may be due to
the overfitting issue.

4.4 Parameter Sensitivity Analysis

We present the sensitivity analysis for the parameters in our
GNNSynergy, including the dropout probability ρ and the
dimensionality of the latent space d in GCN.

In Fig. 3(a), the performance of GNNSynergy is relatively
stable when ρ is set as different values in the stage of single-
view training. Thus, we recommend to set ρ in the range
[0.4, 0.6]. In Fig. 3(b), we could observe that the medium
values for d e.g., d = 27 is more favorable. In our study,
we used d = 27 = 128. Note that we have some other
parameters, e.g., dropout probabilities in MLPs. Please refer
to our supplementary materials (i.e., Fig. S3) and find their
effects on the model performance.

(a) GCN dropout probability ρ (b) GCN dimensionality d

Fig. 3: Parameter sensitivity analysis for GNNSynergy.

4.5 Model Ablation Study

In this section, the ablation study shows the performance
comparison between GNNSynergy and its variants.

First, we explore the impact of utilizing different val-
ues of pre-defined threshold t. As mentioned above, we
constructed the DDS graphs according to the threshold t.
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As shown in Fig. 4, ‘t = 0’ refers to utilize synergy graph
(Loewe scores > 0) and antagonism graph (Loewe scores <
0) as input. The variant ‘t = 5’ refers to use synergy graph
(Loewe scores > 5) and antagonism graph (Loewe scores < -
5) and similarly for ‘t = 10’. As shown in Fig. 4, GNNSynergy
achieves comparable performance when t is set as different
values, i.e., the value of t does not affect the performance
of GNNSynergy much. Meanwhile, we can observe that
GNNSynergy achieves the slightly better performance when
t = 0. The variant ‘t = 5’ also slightly outperforms the
variant ‘t = 10’, indicating that our GNNSynergy utilizing
more drug pairs for training tends to slightly improve its
performance for drug synergy prediction.

Fig. 4: Impact of different threshold t.

Second, we compare GNNSynergy with its variant using
the single-view encoder only. As shown in Fig. 5, ‘Multi-
view’ refers to GNNSynergy and ‘Single-view’ refers to this
variant with the single-view encoder only. We can clearly
observe that multi-view data integration improves the pre-
diction performance, i.e., achieves lower error scores and
higher correlation scores. The result in Fig. 5 demonstrates
that data integration from multiple cell lines can help learn
better drug embeddings for cell-line-specific drug synergy
prediction.

Fig. 5: Performance comparison between Single-view and
Multi-view.

Third, we compare different variants/strategies to de-
rive the weighted concatenation in Equation 5. The vari-
ant ‘Equal Weights’ assigns the same weights for all the
sub-view cell lines (i.e., the weights are fixed). ‘Attention
Weights’ refers to our GNNSynergy with the attention
weights that are learned through model training. As shown
in Fig. 6, the attention scores assigned for sub-view cell
lines can help to improve the model performance. Note
that the variant ‘Equal Weights’ still outperforms the best-
performing baseline MatchMaker, demonstrating that data
fusion from multiple cell lines indeed benefits.

Fourth, we compare different options to select sub-view
cell lines. Note that we consider a specific cell line as main
view and the other k cell lines within the same tissue as

Fig. 6: Comparison between two weighting schemes for
multi-view integration.

sub-views in our multi-view framework. We denote this
strategy as ‘Cell lines by tissue’. Here, we also explore two
more strategies to select sub-view cell lines: (1) consider
all the remaining 80 cell lines as sub-views (denoted as
‘All cell lines’), and (2) randomly select k cell lines from
80 cell lines (denoted as ‘Random cell lines’). Fig. 7 shows
the performance comparison among these three strategies
for sub-view selection. Obviously, ‘Cell lines by tissue’, i.e.,
selecting other cell lines within the same tissue as sub-views,
achieves the best performance. This result demonstrates that
integrating relevant cell lines (e.g., cell lines in the same
tissue) would be helpful for learning drug embeddings and
predicting the synergy scores.

Fig. 7: Impact of different criteria for selecting cell lines.

4.6 Impact of Different Drug Features

The ChemoPy Python library [42] can derive 1135 descriptors
for drugs, including 633 2D descriptors and 502 3D descrip-
tors. After removing features with no values, we obtained
the 541 2D and 472 3D descriptors for drugs as shown in
Table 3. A detailed description for these descriptors can be
found in our supplementary materials. In this subsection,
we discuss the impact of 2D features and 3D features on the
model performance, and the results are shown in Table 3.

TABLE 3: Performance comparison among different drug
features.

Method MSE RMSE MAE Pearson Spearman
w/ 2D features 95.462 9.613 6.422 0.714 0.667
w/ 3D features 96.431 9.640 6.418 0.709 0.662

combined features 94.234 9.604 6.415 0.711 0.672

From the results, we can observe that GNNSynergy
achieves good performance using either 2D features or 3D
features as input, which shows that both 2D and 3D features
are important. After combining 2D and 3D features for
drugs, we can observe that GNNSynergy can achieve the
best performance.
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Fig. 8: Tissue-specific prediction performances of GNNSynergy and MatchMaker.

4.7 Investigation of Model Performance among Tissues
We further investigate the performance of our GNNSynergy
model on individual tissues. In particular, we demonstrate
the performance of our GNNSynergy and the best baseline
MatchMaker on 11 different tissues, namely, large intestine,
lung, ovary, skin, breast, kidney, brain, hamatopoietic and
lymphoid, prostate, bone and soft tissue. The number of cell
lines and drug combination pairs in each tissue can be found
in Table S1 in our supplementary materials.

As shown in Fig. 8, our GNNSynergy outperforms
MatchMaker in most tissues except bone. Moreover,
GNNSynergy can achieve a Pearson correlation higher than
0.7 in 9 out of 11 tissues. For example, GNNSynergy
achieves a Pearson correlation of 0.766 in large intestine
cancer cells and 0.759 for breast cancer cells. Note that both
GNNSynergy and MatchMaker achieve poor performances
in bone and soft tissues. Bone has two cell lines (A-673 and
TC-71) and soft tissue has only one cell line (RD), and thus
our multi-view framework would not help much with only
one sub-view cell line in bone and no sub-view in soft tissue.
More importantly, we have very limited number of drug
combination pairs in some cell lines, e.g., TC-71 in bone has
42 samples and RD in soft tissue has 80 samples. With such
small number of samples, usually it is very challenging for
us to train good models.

5 CONCLUSION

Drug combination therapies play an important role in cancer
treatment. In this paper, we presented a multi-view graph
neural network model named GNNSynergy for drug combi-
nation prediction. We first built multiple drug-drug synergy
(DDS) graphs to describe different types of drug interactions
and then learned drug embeddings from these DDS graphs.
We further designed a multi-view framework to integrate
the drug embeddings learned from similar cell lines for drug
synergy prediction. Experimental results demonstrated that
our proposed GNNSynergy outperformed state-of-the-art
methods. However, there are still some limitations in the
current GNNSynergy model. First, we employed the drug

chemical structures as features only. We plan to collect
additional drug data (e.g., drug-target interactions and ad-
verse drug-drug interactions) to learn more robust repre-
sentations for drugs. Second, GNNSynergy, as well as other
baselines, achieved poor performances for the understud-
ied cell lines [21] with limited number of drug combina-
tion pairs. We will consider transfer learning and domain
adaptation techniques [47] to address this issue in the fu-
ture. Third, GNNSynergy cannot make predictions for new
drugs/nodes, which are not tested or recorded in current
database (e.g., DrugComb). We will apply inductive graph
methods (e.g., GraphSAGE [48]) to improve our model.
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