ENTITY LINKING ON MICROBLOGS WITH SPATIAL AND TEMPORAL SIGNALS

Yuan Fang *
Ming-Wei Chang

Institute for Infocomm Research, Singapore
Microsoft Research, USA

10/26/2014

* Work done while a student at Univ of Illinois at Urbana-Champaign and intern at Microsoft Research.
Problem

Entity Linking in Microblogs: Map entity mentions in a short message (e.g. a tweet, facebook messages) into predefined entities (e.g. entries in Wikipedia).

US secretary of state **Clinton** is hospitalized due to …

- http://en.wikipedia.org/wiki/United_States
Why is entity linking in microblogs important?

- Motivation: intelligence gathering (market/disaster/politics)
- But word-based matching is ineffective due to **ambiguity**
 - Noisy & informal: in-depth NLP analysis is difficult
 - Short: insufficient contexts

“Washington”?
“Spurs”?
Why is entity linking in microblogs important?

- Motivation: intelligence gathering (market/disaster/politics)
- But word-based matching is ineffective due to **ambiguity**
 - Noisy & informal: in-depth NLP analysis is difficult
 - Short: insufficient contexts

![Which "washington"?](chart)

1) Different peaks \rightarrow Different entities?
2) A single peak \rightarrow A mixture of entities?
Proposed Approach

Leveraging spatiotemporal signals to improve entity linking
Observation & Intuition

• Intuition 1: Spatiotemporal signals
 • Entity prior changes over time or space

• Intuition 2: Easier surface forms
 • Inter-tweet interactions

“spurs” → SA Spurs
91% in US vs. 8% in UK

“Clinton” vs. “Hillary Clinton”
Proposal: Spatiotemporal entity linking

\[e^* = \arg \max_{e \in E} p(e|m,a,t,l) \]

\[= \arg \max_{e \in E} p(e,m,a,t,l) \]

\[= \arg \max_{e \in E} p(m,a|t,l,e) p(t,l,e) \]

\[= \arg \max_{e \in E} p(m,a|e) p(e|t,l) \]

\[= \arg \max_{e \in E} p(e|m,a) p(e|t,l)/p(e) \]

\(m \): target message (e.g. a tweet)
\(a \): anchor text (surface form)
\(t \): time – when \(m \) was published
\(l \): location – where \(m \) was published

Cond Indep Assumption

Intuition: update entity priors

if \(e \)’s prior at \(t, l \) is higher than its unconditioned prior, we make \(e^* = e \) more likely.
Predicting the entity

\[e^* = \arg \max_{e \in E} p(e|m, a)p(e|t, l)/p(e) \]

- \(m \): target message (e.g. a tweet)
- \(a \): anchor text (surface form)
- \(t \): time – when \(m \) was published
- \(l \): location – where \(m \) was published

some existing model without using spatiotemporal signals

Wikipedia pageview statistics
Challenges: Estimating $p(e|t, l)$

Challenge 1
Lack of large-scale entity annotations

- Use an existing model to tag **unlabeled tweets** (with time/location)
- **Aggregate tweets** tagged with e at time t/location l
- **Update prior** $p(e|t, l)$ based on the aggregated tweets
- **Update the model** with the estimated $p(e|t, l)$

Block Coordinate Ascent
Challenges: Estimating $p(e|t, l)$

We **discretize** t, l into bins over time and location
- Time bins: some fixed interval (per day, hour, etc.)
- Location bins: latitude / longitude grids

Granularity of bins
- Too small \rightarrow not enough samples in a bin
- Too large \rightarrow spatiotemporal signals become less helpful

Solution: fine granularity + **smoothing**
Smoothing over bins

• Study how a tweet is written
 • There is an ϵ probability to spontaneously write a tweet
 • There is an $1-\epsilon$ chance of imitate a tweet in a near by time/location bin
 • Imitating from which time/location bin follows a polynomial decay

$$p(e|\delta) = \epsilon \cdot \rho_{e\delta} + (1 - \epsilon) \sum_{\delta'} \beta_{\delta'|\delta} p(e|\delta')$$

$\rho_{e\delta}$: estimate with existing algorithm in bin δ

$\beta_{\delta'|\delta} \propto (d + |\delta - \delta'|)^{\lambda}$ (polynomial decay)
Conditional independence assumption

- Data scarcity more severe if we use bins over \((t, l)\) jointly
- Assume conditional independence
 - Binning over time / location independently

\[
e^* = \arg \max_{e \in E} \frac{p(e|t)p(e|l)}{p(e)p(e|m,a)}p(e|m,a)
\]
Empirical Study

Quantitative Results and Case Study
Dataset

• Tweets
 • One month: Dec 2012
 • Focus on tweets from verified users
 • Only keep tweets in English and with locations in the United States
 • Discard retweets

• 1.8 million tweets in total
 • Entity priors over time/locations are bootstrapped from them
Evaluation methodology

- **IE-driven evaluation**
 - Uniformly sample 500 tweets (250 dev + 250 test)
 - Metric: macro F-score [NAACL13]

- **IR-driven evaluation**
 - Important for many applications
 - e.g. sentiment analysis for a product
 - Select ten query entities
 - Sample 100 tweets for each query entity
 - Total 1000 tweets
 - Labeled each to indicate whether it mentions the query entity or not
 - Metric: macro F-score, but only consider the query entity

Ten entities

- Newtown, Connecticut
- Big Bang (South Korean band)
- Les Misérables (2012 film)
- Winter solstice
- San Antonio Spurs
- Hillary Rodham Clinton
- Catherine, Duchess of Cambridge
- Washington (state)
- Hanukkah
- Django unchained (2012 film)
Algorithm settings

• Baseline: E2E [NAACL 2013]
 • State-of-the-art
 • Learn to jointly detect mention and disambiguate entities
 • SVM trained with independent data
 • Convert output to probability by minimizing cross entropy on dev set

• Baseline: LP (link probability)
 • Link probability in Wikipedia articles
 • Choose mention detection threshold by minimizing cross entropy on dev set

• Our algorithm
 • Tune parameters on dev set
A) Are the baselines good enough?

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Recall</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wikiminer</td>
<td>78.9</td>
<td>24.7</td>
<td>37.6</td>
</tr>
<tr>
<td>Illinois</td>
<td>77.3</td>
<td>34.9</td>
<td>48.1</td>
</tr>
<tr>
<td>LP</td>
<td>49.7</td>
<td>47.0</td>
<td>48.3</td>
</tr>
<tr>
<td>E2E</td>
<td>85.5</td>
<td>42.8</td>
<td>57.0</td>
</tr>
</tbody>
</table>
B) Are spatiotemporal signals useful?

<table>
<thead>
<tr>
<th></th>
<th>IE-driven</th>
<th>IR-driven</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2E</td>
<td>57.0</td>
<td>58.4</td>
</tr>
<tr>
<td>+ Time</td>
<td>64.9</td>
<td>71.4</td>
</tr>
<tr>
<td>+ Location</td>
<td>65.0</td>
<td>76.1</td>
</tr>
<tr>
<td>+ Both</td>
<td>68.6</td>
<td>79.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>IE-driven</th>
<th>IR-driven</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>48.3</td>
<td>48.5</td>
</tr>
<tr>
<td>+ Time</td>
<td>52.4</td>
<td>59.7</td>
</tr>
<tr>
<td>+ Location</td>
<td>50.3</td>
<td>61.8</td>
</tr>
<tr>
<td>+ Both</td>
<td>49.0</td>
<td>53.3</td>
</tr>
</tbody>
</table>

(a) Macro F-scores

(b) Precision

(c) Recall
C) Graph-based smoothing

(a) Base system: E2E

(b) Base system: LP
D) Case Study: More informative time profiling

Target entity: Washington (state)

Time profiling for keyword "washington"

Are all these peaks for Washington state?

Time profiling for "washington" entities

(1) Washington (state): legalization of marijauna
(2) Washington, D.C.: fiscal cliff + winter weather alert
(3) Washington redskins: Game for division title
Conclusion & future work

• We demonstrated that
 • Spatiotemporal signals are critical in advancing entity linking
 • Aggregation of many (individually) noisy tweets help

• Future work
 • A more general framework to incorporate more non-text meta data
 • Online updating of spatiotemporal model
 • Of course, improve the base model!

We made some improvement to the base model $p(e|m, a)$