ENTITY LINKING ON MICROBLOGS WITH SPATIAL AND TEMPORAL SIGNALS

Yuan Fang * Ming-Wei Chang Institute for Infocomm Research, Singapore Microsoft Research, USA

10/26/2014

* Work done while a student at Univ of Illinois at Urbana-Champaign and intern at Microsoft Research.

Problem

Entity Linking in Microblogs: Map entity mentions in a short message (e.g. a tweet, facebook messages) into predefined entities (e.g. entries in Wikipedia).

<u>US</u> secretary of state <u>Clinton</u> is hospitalized due to ...

http://en.wikipedia.org/wiki/Hillary_Rodham_Clinton
http://en.wikipedia.org/wiki/United_States

PER LOC ORG FILM PRODUCT TVSHOW HOLIDAY

Why is entity linking in microblogs important?

- Motivation: intelligence gathering (market/disaster/politics)
- But word-based matching is ineffective due to ambiguity
 - Noisy & informal: in-depth NLP analysis is difficult
 - Short: insufficient contexts

"Washington"?

"Spurs"?

Why is entity linking in microblogs important?

- Motivation: intelligence gathering (market/disaster/politics)
- But word-based matching is ineffective due to ambiguity
 - Noisy & informal: in-depth NLP analysis is difficult
 - Short: insufficient contexts

Different peaks → Different entities?
 A single peak → A mixture of entities?

Proposed Approach

Leveraging spatiotemporal signals to improve entity linking

Observation & Intuition

- Intuition 1: Spatiotemporal signals
 - Entity prior changes over time or space

- Intuition 2: Easier surface forms
 - Inter-tweet interactions

"spurs" → SA Spurs 91% in US vs. 8% in UK

"Clinton" vs. "Hillary Clinton"

Proposal: Spatiotemporal entity linking

$$e^* = \arg \max_{e \in E} p(e|m, a, t, l)$$

= $\arg \max_{e \in E} p(e, m, a, t, l)$
= $\arg \max_{e \in E} p(m, a|t, l, e) p(t, l, e)$
= $\arg \max_{e \in E} p(m, a|e) p(e|t, l)$
= $\arg \max_{e \in E} p(e|m, a) p(e|t, l)/p(e)$

- *m*: target message (e.g. a tweet)
- a: anchor text (surface form)
- *t*: time **when** *m* was published
- I: location **where** *m* was published

Cond Indep Assumption Intuition: update entity priors

if e's prior at t, l is higher than its unconditioned prior, we make $e^* = e$ more likely.

Predicting the entity

m: target message (e.g. a tweet)

- a: anchor text (surface form)
- *t*: time **when** *m* was published
- I: location where *m* was published

Challenges: Estimating p(e|t, l)

- Use an existing model to tag unlabeled tweets (with time/logistion)
- Aggregate tweets tagged with *e* at time *t*/location *l*
- Update prior p(e|t, l) based on the aggregated tweets
- Update the model with the estimated p(e|t, l)

Block Coordinate Ascent

Challenges: Estimating p(e|t, l)

Challenge 2 How to handle continuous *t*, *l*?

We **discretize** *t*, *l* into bins over time and location

- Time bins: some fixed interval (per day, hour, etc.)
- Location bins: latitude / longitude grids

Granularity of bins

- Too small \rightarrow not enough samples in a bin
- Too large \rightarrow spatiotemporal signals become less helpful

Solution: fine granularity + **smoothing**

Smoothing over bins

- Study how a tweet is written
 - There is an ϵ probability to spontaneously write a tweet
 - There is an $1-\epsilon$ chance of imitate a tweet in a near by time/location bin
 - Imitating from which time/location bin follows a polynomial decay

$$p(e|\delta) = \epsilon \cdot \rho_{e\delta} + (1 - \epsilon) \sum_{\delta'} \beta_{\delta'|\delta} p(e|\delta')$$

 $\rho_{e\delta}$: estimate with existing algorithm in bin δ $\beta_{\delta'|\delta} \propto (d + |\delta - \delta'|)^{\lambda}$ (polynomial decay)

Conditional independence assumption

- Data scarcity more severe if we use bins over (t, l) jointly
- Assume conditional independence
 - Binning over time / location independently

$$e^* = \arg \max_{e \in E} \frac{p(e|t)}{p(e)} \frac{p(e|l)}{p(e)} p(e|m,a)$$

Empirical Study

Quantitative Results and Case Study

Dataset

Tweets

- One month: Dec 2012
- Focus on tweets from verified users
- Only keep tweets in English and with locations in the United States
- Discard retweets
- 1.8 million tweets in total
 - Entity priors over time/locations are bootstrapped from them

Evaluation methodology

IE-driven evaluation

- Uniformly sample 500 tweets (250 dev + 250 test)
- Metric: macro F-score [NAACL13]

IR-driven evaluation

- Important for many applications
 - e.g. sentiment analysis for a product
- Select ten query entities
 - Sample 100 tweets for each query entity
 - Total 1000 tweets
 - · Labeled each to indicate whether it mentions the query entity or not
- Metric: macro F-score, but only consider the query entity

Ten entities Newtown, Connecticut Big Bang (South Korean band) Les Misérables (2012 film) Winter solstice San Antonia Spurs Hillary Rodham Clinton Catherine, Duchess of Cambridge Washington (state) Hanukkah Django unchained (2012 film)

Algorithm settings

Baseline: E2E [NAACL 2013]

- State-of-the-art
- Learn to jointly detect mention and disambiguate entities
- SVM trained with independent data
- Convert output to probability by minimizing cross entropy on dev set

Baseline: LP (link probability)

- Link probability in Wikipedia articles
- Choose mention detection threshold by minimizing cross entropy on dev set
- Our algorithm
 - Tune parameters on dev set

A) Are the baselines good enough?

	Precision	Recall	F1
Wikiminer	78.9	24.7	37.6
Illinois	77.3	34.9	48.1
LP	49.7	47.0	48.3
E2E	85.5	42.8	57.0

B) Are spatiotemporal signals useful?

	IE-driven	IR-driven
E2E	57.0	58.4
+ Time	64.9	71.4
+ Location	65.0	76.1
+ Both	68.6	79.0

	IE-driven	IR-driven
LP	48.3	48.5
+ Time	52.4	59.7
+ Location	50.3	61.8
+ Both	49.0	53.3

(a) Macro F-scores

C) Graph-based smoothing

D) Case Study: More informative time profiling

Target entity: Washington (state)

Are all these peaks for washington state?

(3) 0.8 Normalized Probability 0.6 0.4 0.2 0 6 11 16 21 26 31 Day Washington, D.C. Washington Redskins Washington (state)

Time profiling for "washington" entities

(1) Washington (state): legalization of marijauna
 (2) Washington, D.C.: fiscal cliff + winter weather alert
 (3) Washingont redskins: Game for division title

Conclusion & future work

- We demonstrated that
 - Spatiotemporal signals are critical in advancing entity linking
 - Aggregation of many (individually) noisy tweets help
- Future work
 - A more general framework to incorporate more non-text meta data
 - Online updating of spatiotemporal model
 - Of course, improve the base model!

We made some improvement to the base model p(e|m, a)