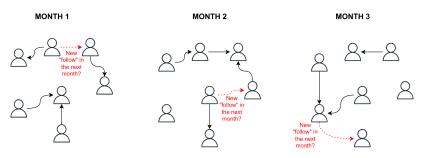


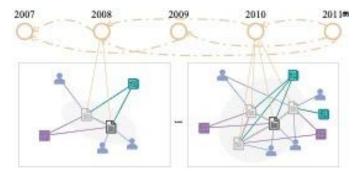
Retrieval Augmented Generation for Dynamic Graph Modeling

Yuxia Wu Singapore Management University yieshah2017@gmail.com Lizi Liao Singapore Management University lzliao@smu.edu.sg Yuan Fang Singapore Management University yfang@smu.edu.sg

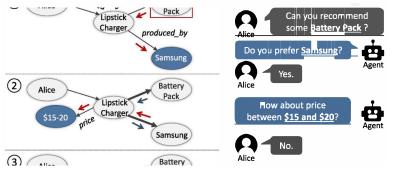
☐ Applications



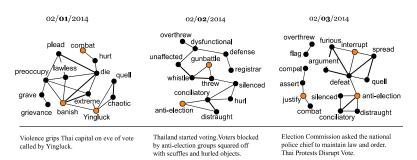
Social network



Citation network



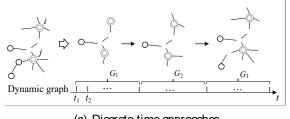
Conversation



Event graph

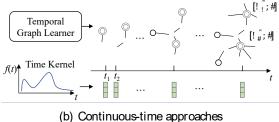
☐ Related works

- ➤ GNN-based:
 - Discrete-time approaches: capture graph snapshots at specific intervals
 - Continuous-time approaches: model events as they occur, offering a more granular perspective
- > Transformer-based:
 - Capture long-range dependencies within temporal sequences

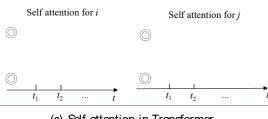


(a) Discrete-time approaches

Discard the fine-grained temporal information within the snapshot



Difficult in capturing long-term dependency within historical graph data

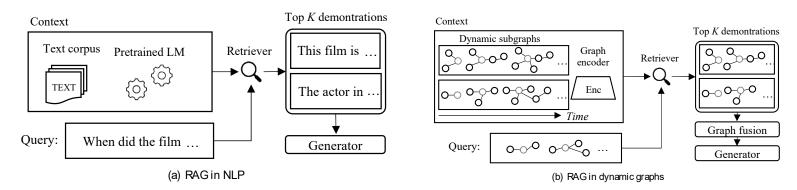


(c) Self-attention in Transformer

Difficult in generalizing across different contexts and adapting to emerging patterns

☐ Motivation: Retrieval-Augmented Generation (RAG)

RAG has the potential to broaden the contextual understanding of dynamic graphs by retrieving and incorporating relevant examples from across the graph's temporal and contextual space



> RAG in NLP:

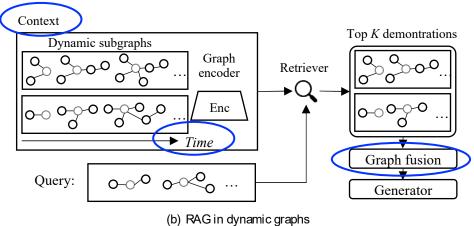
Pre-trained LM → Encode text and retrieve related demonstrations → Concatenated to enhance the generation task

➤ RAG in graph:

Graph encoder → Encode dynamic graphs and retrieve related demonstrations → Fusion to enhance generation task

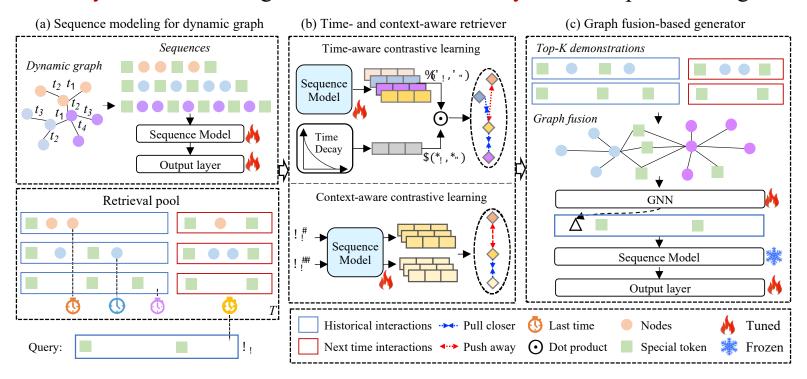
☐ Challenges:

- Selecting high-quality demonstrations
 - Identifying contextually and temporally relevant demonstrations
 - Existing methods (BM25) rely on historical interactions similarities, struggling with inductive scenarios
- > Integrating the retrieved demonstrations
 - Simply concatenating query and demonstrations \rightarrow lengthy inputs and overlook structural patterns



Proposed Method: RAG4DyG

□RAG4DyG: Retrieval-Augmented Generation for Dynamic Graph Modeling



Proposed Method: Preliminaries

☐ Training samples (Retrieval pool):

• Input sequence:

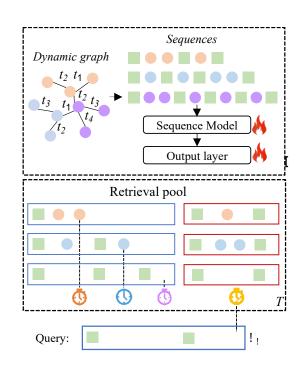
$$G_8 = [hist], E_8 [time_1], E_8^{1,1}, E_8^{1,2}, \dots, [time_t], E_8^{C_1}, \dots,$$

• Output sequence:

$$\sim_8 = [pred], [time_T+1], P_8^{(+1,1)}, \dots, [expred],$$

□ Problem Formulation:

Query sequence (input sequence) \rightarrow Retrieve *K* demonstrations \rightarrow Augmented input \rightarrow Prediction



Proposed Method: Time- and Context-Aware Retriever

Contextual similarity: $s(x_q, x_p) = f(x_q)^{\top} f(x_p),$ query candidate

☐ Time-aware Contrastive Learning:

Demonstrations closer in time to the query are more relevant than those further away.

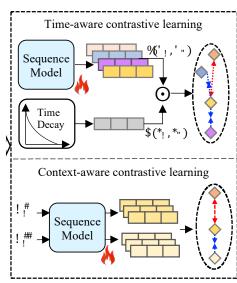
- Time decay function : $\mu(t_q, t_p) = \exp(-\lambda |t_q t_p|),$
- Reweight contextual similarity: $h(x_q, x_p) = s(x_q, x_p)\mu(t_q, t_p)$
- Contrastive loss: $\mathcal{L}_{tcl} = -\log \frac{\exp(h(x_q, x_p^+))/\tau}{\sum_{j=1}^{2N} \mathbb{1}_{j \neq q} \exp(h(x_q, x_j))/\tau},$

□ Context-aware Contrastive Learning:

• Two types of augmentations: masking and cropping:

• Contrastive loss:
$$\mathcal{L}_{ccl} = -\log \frac{\exp(s(x_q', x_q'')/\tau)}{\sum_{j=1}^{2N} \mathbb{1}_{j \neq q} \exp s(x_q', x_j')/\tau},$$

Training objective of retrieval: $\mathcal{L}_{ret} = \mathcal{L}_{tcl} + \alpha \mathcal{L}_{ccl}$



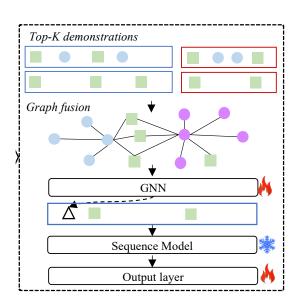
Proposed Method: Graph Fusion-based Generator

- ☐ Fuse top-k demonstrations with query:
 - Concatenation: lengthy context, neglect structural pattern
 - MLP: map to shorter sequence, neglect structural pattern X
 - Graph fusion: fuse the demonstrations into a summary graph 🗸
- **□ GNN Processing:**

$$e_{\text{fus}} = \text{MeanPooling}(\text{GCN}(G_{\text{fus}})),$$

☐ Prepend the graph readout from the GNN to the query

$$\tilde{x}_q = [e_{\text{fus}} \parallel x_q],$$



Experiments:

☐ Datasets:

Six datasets from different domains:

Table 1: Dataset statistics.

Dataset	UCI	Hepth	MMConv	Wikipedia	Enron	Reddit
Domain	Social	Citation	Conversation	Behavior	Social	Hyperlink
# Nodes	1,781	4,737	7,415	9,227	42,711	11,901
# Edges	16,743	14,831	91,986	157,474	797,907	62,919

Experiment:

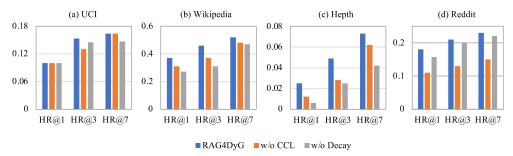
Table 2: Performance comparison for dynamic link prediction with mean and standard deviation across 10 runs. Best results are bolded; runners-up are <u>underlined</u>. * indicates that our model significantly outperforms the best baseline based on the two-tail t-test (p < 0.05).

Datasets	Models	DySAT	EvolveGCN	DyRep	JODIE	TGAT	TGN	TREND	GraphMixer	IDOL	SimpleDyG	RAG4DyG
	Recall@5	0.009±0.003	0.072 ± 0.046	0.009±0.008	0.018±0.019	0.022±0.004	0.014±0.010	0.083±0.015	0.097±0.019	0.093±0.029	$\underline{0.109} \pm 0.014$	0.111 ±0.013
UCI	NDCG@5	0.010±0.003	0.064 ± 0.045	$0.011 {\scriptstyle \pm 0.018}$	$0.022 {\pm} 0.023$	0.061 ± 0.007	0.041 ± 0.017	$0.067 {\pm} 0.010$	$\underline{0.104} \pm 0.013$	$0.075 {\pm} 0.022$	$\underline{0.104} \pm 0.010$	0.122 *±0.014
	Jaccard	0.010±0.001	0.032 ± 0.026	0.010±0.005	0.012±0.009	$0.020 {\pm} 0.002$	0.011±0.003	0.039 ± 0.020	$0.042 {\pm} 0.005$	$0.014 {\pm} 0.002$	$\underline{0.092} \pm 0.014$	0.097 ±0.010
	Recall@5	0.008±0.004	0.008±0.002	0.009±0.006	0.010±0.008	0.011±0.007	0.011±0.006	0.010±0.008	0.009±0.002	0.007±0.002	0.013±0.006	0.019* ±0.002
Hepth	NDCG@5	0.007±0.002	0.009 ± 0.004	0.031±0.024	0.031±0.021	0.034±0.023	0.030±0.012	0.031±0.003	0.011±0.008	0.011±0.003	0.035 ± 0.014	0.045 *±0.003
	Jaccard	0.005±0.001	0.007 ± 0.002	$0.010 {\pm} 0.006$	0.011±0.008	0.011±0.006	0.008±0.001	0.010±0.002	$0.010 {\pm} 0.003$	$0.006 {\pm} 0.001$	$\underline{0.013} \pm 0.006$	0.019* ±0.002
	Recall@5	0.108±0.089	0.050±0.015	0.156±0.054	0.052±0.039	0.118±0.004	0.085±0.050	0.134±0.030	0.206 ±0.001	0.169±0.006	0.170±0.010	0.194±0.005
MMConv	NDCG@5	0.102±0.085	0.051 ± 0.021	0.140±0.057	0.041 ± 0.016	0.089±0.033	0.096±0.068	0.116±0.020	0.172 ± 0.029	0.115±0.039	$\underline{0.184} \pm 0.012$	0.208 *±0.005
	Jaccard	0.095±0.080	0.032 ± 0.017	0.067 ± 0.025	0.032 ± 0.022	$0.058 \scriptstyle{\pm 0.021}$	0.066±0.038	0.060±0.018	$0.085 {\pm} 0.016$	$0.015 {\pm} 0.002$	$\underline{0.169} \pm 0.010$	0.194* ±0.005
	Recall@5	0.003±0.005	0.012±0.01	0.003±0.002	0.017±0.005	0.006±0.004	0.016±0.018	0.022±0.012	0.010±0.007	0.022±0.008	0.356±0.016	0.369*±0.006
Wikipedia	NDCG@5	0.002±0.003	0.008±0.007	0.002±0.002	0.015±0.003	0.005±0.005	0.015±0.022	0.016±0.018	0.007 ± 0.006	$0.015 {\pm} 0.005$	0.398 ±0.03	$\underline{0.389} \pm 0.008$
	Jaccard	0.001±0.001	0.004 ± 0.004	0.001±0.001	0.007 ± 0.002	0.002±0.002	0.007±0.009	0.007 ± 0.021	$0.004 {\pm} 0.002$	0.004±0.001	0.320 ± 0.027	0.328 ±0.007
	Recall@5	0.002±0.004	0.004±0.011	0.021±0.001	0.005±0.005	0.020±0.002	0.001±0.001	0.023±0.003	0.021±0.002	0.024±0.014	0.094±0.005	0.100 *±0.003
Enron	NDCG@5	0.001±0.002	0.007±0.020	0.036±0.002	0.061±0.039	0.036±0.001	0.003±0.001	0.027±0.001	0.037±0.001	0.025±0.011	0.114 ± 0.005	0.119* ±0.004
	Jaccard	0.001±0.001	0.003±0.009	0.019±0.001	0.011±0.007	0.020±0.001	0.001±0.001	0.012±0.001	$0.020 {\pm} 0.002$	0.008±0.003	0.068 ± 0.003	0.071* ±0.002
	Recall@5	0.001±0.002	0.006±0.002	0.019±0.004	0.013±0.003	0.001±0.001	0.001±0.001	0.002±0.003	0.001±0.001	0.003±0.002	0.101±0.019	0.119* ±0.006
Reddit	NDCG@5	0.001±0.002	0.012±0.003	0.020±0.004	0.015±0.002	0.001±0.001	0.002±0.001	0.003±0.002	$0.003{\scriptstyle\pm0.001}$	0.005±0.003	0.134 ± 0.012	0.143 ±0.005
	Jaccard	0.001±0.001	$0.003 \scriptstyle{\pm 0.001}$	0.013±0.004	0.007±0.002	0.001±0.001	0.001±0.002	0.001±0.001	$0.002 {\pm} 0.001$	0.002±0.001	0.088 ± 0.012	0.096 ±0.003

- RAG4DyG generally outperforms all baselines across different datasets under the three metrics
- RAG4DyG exhibits significant advantages in inductive scenarios such as the Hepth and Reddit datasets.

UNIVERSITY

Experiment: Ablation Study



- w/o CCL: exclude the context-aware contrastive learning
- w/o Decay: exclude the time decay

Figure 3: Ablation study for retrieval results.

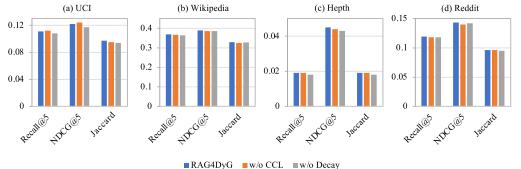


Figure 4: Ablation study for link prediction results.

- The full model outperforms the two variants
- The w/o Decay exhibits the worst performance across both tasks, emphasizing the critical role of time decay in capturing temporal relevance

Experiment: Effect of Different Retrieval Methods

Table 3: Retrieval	performance of various retrieval r	nethods.
--------------------	------------------------------------	----------

Method	UCI			Wikipedia			Hepth			Reddit		
	HR@1	HR@3	HR@7	HR@1	HR@3	HR@7	HR@1	HR@3	HR@7	HR@1	HR@3	HR@7
BM25	0.100	0.136	0.200	0.369	0.405	0.488	-	-	-	-	-	-
Jaccard	0.100	0.109	0.146	0.369	0.445	0.430	-	-	-	-	-	-
RAG4DyG	0.100	0.155	0.164	0.369	0.455	0.523	0.025	0.049	0.073	0.180	0.218	0.228

[&]quot;-" denotes that the method is unable to perform retrieval. The reason is explained in the corresponding description of this table in Sec. 5.3.

Table 4: Generative performance of various retrieval methods.

Method	UCI			Wikipedia				Hepth		Reddit		
	Recall@5	NDCG@5	Jaccard	Recall@5	NDCG@5	Jaccard	Recall@5	NDCG@5	Jaccard	Recall@5	NDCG@5	Jaccard
BM25	0.111±0.007	0.121±0.009	0.093±0.004	0.368±0.01	0.389±0.012	0.325±0.01	-	-	-	-	-	-
Jaccard	0.104±0.009	$0.113 \scriptstyle{\pm 0.011}$	$0.088 \scriptstyle{\pm 0.010}$	0.368±0.013	0.388±0.014	0.321±0.011	-	-	-	-	-	-
RAG4DyG	0.111±0.013	$\boldsymbol{0.122} {\scriptstyle \pm 0.014}$	$\boldsymbol{0.097} \scriptstyle{\pm 0.010}$	0.369±0.006	$\boldsymbol{0.389} {\scriptstyle \pm 0.008}$	$\boldsymbol{0.328} {\scriptstyle \pm 0.007}$	0.019±0.002	$\boldsymbol{0.045} {\scriptstyle \pm 0.003}$	$\boldsymbol{0.019} {\scriptstyle \pm 0.002}$	0.119±0.006	$\boldsymbol{0.143} {\scriptstyle \pm 0.005}$	0.096±0.003
GroundTruth	0.121±0.010	0.129±0.010	0.107±0.012	0.390±0.008	0.400±0.007	0.340±0.006	0.028±0.004	0.062±0.007	0.028±0.004	0.121±0.008	0.145±0.008	0.099±0.005

- BM25: calculates a relevance score (TF-IDF) between the query sequence and each candidate sequence in the retrieval pool
- Jaccard: calculates the set similarity by comparing the size of their intersection to the size of their union
- "GroundTruth": an upper bound on the performance when using ground-truth retrieval results on the testing data
- Retrieval performance: Ours shows comparable performance and can handle inductive scenarios (Hepth, Reddit)
- Generative performance: Our method performs better compared to other retrieval strategies.

Experiment: Effect of the K and Fusion Strategies

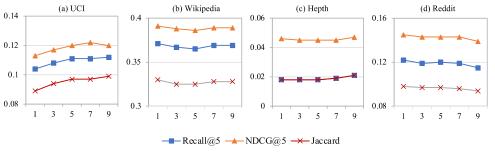


Figure 5: Effect of the number of demonstrations K.

- Higher *K* yields better prediction performance: more demonstrations provide richer contextual information
- Too large K may introduce more noise, which can harm the performance.

Table 5: Effect of different fusion strategies.

Fusion strategy	UCI			Wikipedia				Hepth		Reddit		
	I	NDCG@5	Jaccard	Recall@5	NDCG@5	Jaccard	Recall@5	NDCG@5	Jaccard	Recall@5	NDCG@5	Jaccard
Concatenation	0.033±0.019	0.036±0.018	0.029±0.016	0.210±0.019	0.232±0.021	0.206±0.019	0.001±0.002	0.007±0.002	0.002±0.002	0.001±0.001	0.003±0.003	0.001±0.001
MLP	0.102±0.018	0.106±0.017	$0.089 {\pm} 0.016$	0.356±0.006	0.371±0.009	0.321±0.007	0.006±0.002	$0.015 {\pm} 0.002$	$0.006 {\pm} 0.002$	0.108±0.006	$0.132 {\pm} 0.005$	0.090±0.003
GraphFusion	0.111 ±0.013	0.122 ±0.014	0.097 ±0.010	0.369±0.006	0.389 ±0.008	0.328 ±0.007	0.019±0.002	0.045 ±0.003	0.019 ±0.002	0.119±0.006	0.143 ±0.005	0.096 ±0.003

- "Concatenation" leads to lower performance compared with other strategies
- "MLP" maps the concatenated demonstrations into a shorter feature space, neglecting the structural pattern
- "GraphFusion" highlights the importance of considering both the content and the structure of the demonstrations for fusion.

Summary:

- We a novel retrieval-augmented generation approach for dynamic graph modeling
- We introduce a time- and context- aware contrastive learning module for demonstration retrieval and a graph fusion module to effectively integrate retrieved demonstrations.
- We conduct extensive experiments to validate our approach, demonstrating the effectiveness of RAG4DyG across various domains.

- Thank you for your listening!
- Q & A