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❑ Applications

 

Motivation: Dynamic Graph Modeling
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❑ Related works

➢GNN-based: 

•  Discrete-time approaches: capture graph snapshots at specific intervals

•  Continuous-time approaches: model events as they occur, offering a more granular perspective

➢Transformer-based:

• Capture long-range dependencies within temporal sequences 

Motivation: Dynamic Graph Modeling
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Discard the fine-grained temporal 

information within the snapshot
Difficult in capturing long-term 

dependency within historical graph data
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(b) Continuous-time approaches
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(c) Self-attention in Transformer

Figure 1: Dynamic graph model ing can be summarized as fol lows: (a) Discrete-time methods treat the dynamic graph as a series

of snapshots, ignoring the timing detai ls within each. (b) Continuous-time methods factor in the timing of interactions, using

them along with a graph learning process to update node representations - C
8 at each timeC. (c) Transformer-based models

handle node sequences continuously, uti l izing self -attention to recognize long-term dependencies.

In pursuit of addressing theselimitations, wehavebeen intrigued

by thesuccessful application of Transformer [41] and itsvariants in

natural language processing (NLP) [3, 16, 22] and computer vision

(CV) [8, 25]. Thesuccess isunderpinned by two distinct advantages

inherent to theTransformer architecture: as shown in Figure 1(c),

it can naturally support a continuous sequence of data without the

need for discrete snapshots, and its self-attention mechanism can

capturelong-term dependency [41],which areimportant factors for

dynamic graph modeling. Transformer also presents a potentially

better alternative to capturing topological information, as it is less

a ected by theover-smoothing and over-squashing issuesassoci-

ated with message-passing GNNs. Hence, in thiswork, weexplore

the feasibility of theTransformer architecture for dynamic graph

modeling. In fact, we have observed a growing body of research

trying to modify the Transformer for static graphs [17, 34, 50].

Nonetheless, these studies primarily focus on integrating graph

structural knowledge into the vanilla Transformer model, which

generally still leveragemessage-passing GNNsasauxiliary mod-

ules to re ne positional encoding and attention matrices based

on graph-derived information [28]. More recently, Ying et al. [50]

havedemonstrated that thepureTransformer architectureholds

promise for graphs. However, all thesepreviousTransformer-based

approaches only focuson static graphs, leaving unanswered ques-

tionsabout the feasibility for dynamic graphs, as follows.

The rst challenge lies in the need to preserve the historical

evolution throughout theentire timeline. However, due to the cal-

culation of pairwiseattention scores, existing Transformer-based

graph models can only deal with a small receptive eld, and would

face serious scalability issues on even a moderately large graph.

Notably, their primary application is limited to small-size graphs

such asmolecular graphs [34]. However, many dynamic graphs on

theWeb such as social networks or citation graphs aregenerally

much larger for the vanilla Transformer to handle. To this end, we

adopt a novel strategy wherein we treat thehistory of each nodeas

a temporal ego-graph, serving as the receptive eld of theego-node.

The temporal ego-graph ismuch smaller than theentire graph, yet

it retains the full interaction history of theego-node in thedynamic

graph. Thus, weareable to preserve the temporal dynamics of ev-

ery user across theentire timeline, while simultaneously ensuring

scalability. Subsequently, this temporal ego-graph can be tokenized

into a sequential input tailored for theTransformer. Remarkably,

through this simple tokenization process, no modi cation to the

original Transformer architecture is required.

The second challenge lies in the need to align temporal infor-

mation across input sequences. Speci cally, on dynamic graphs

di erent input sequencesconvergewithin acommon timedomain—

whether through absolute points in time (e.g., 10am on 12October

2023) or relative time intervals (e.g., a one-hour window), with

uniformity across all sequences generated from di erent nodes’

history. In contrast, sequences for natural language or static graphs

lack such auniversal time domain, and can be regarded as largely

independent of each other. Thus, vanilla sequenceswithout tem-

poral alignment lack away to di erentiate variable time intervals

and frequency information. For example, a bursty stream of inter-

actions, happening over a short one-hour interval, has a distinct

evolution pattern fromasteady streamcontaining thesamenumber

of interactions, but happening over aperiod of oneday.

Therefore, it becomes imperative to introduceamechanism that

infuses temporal alignment among distinct input sequences gener-

ated from theego-graphs. To address this challenge, wecarefully

design special temporal tokens to align di erent input sequences

in the time domain. The temporal tokens serve as indicators of

distinct time steps that are globally recognized across all nodes,

thereby unifying di erent input sequences. While achieving the

global alignment, local sequences from each node still retain the

chronological order of the interactions in-between the temporal

tokens, unlike traditional discrete-timeapproacheswhere temporal

information within each snapshot is lost.

Based on theabove insights, weproposeaSimple Transformer

architecture for Dynamic Graph modeling, named SimpleDyG.

Theword “simple” is a reference to the useof the original Trans-

former architecturewithout any modi cation, where thecapability

of dynamic graph modeling is simply and solely derived from con-

structing and modifying the input sequences. In summary, the

contribution of our work is threefold. (1) We explore the poten-

tial of theTransformer architecture for modeling dynamic graphs.

Weproposea simple yet surprisingly e ectiveTransformer-based

approach for dynamic graphs, called SimpleDyG, without com-

plex modi cations. (2) We introduce a novel strategy to map a

dynamic graph into a set of sequences to improve the scalability,

by considering thehistory of each nodeasa temporal ego-graph.

Furthermore, wedesign special temporal tokens to achieveglobal

temporal alignment across nodes, yet preserving the chronological

order of interactionsat a local level. (3)Weconduct extensiveexper-

iments and analyses across four real-worldWeb graphs, spanning

diversedomainson theWeb. Theempirical results demonstrate not

only the feasibility, but also thesuperiority of SimpleDyG.
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❑ Motivation: Retrieval-Augmented Generation (RAG) 

➢RAG in NLP: 

     Pre-trained LM → Encode text and retrieve related demonstrations → Concatenated to enhance the generation task

➢RAG in graph: 

    Graph encoder → Encode dynamic graphs and retrieve related demonstrations → Fusion to enhance generation task

Motivation: Dynamic Graph Modeling
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RAG has the potential to broaden the contextual understanding of dynamic graphs by retrieving and 

incorporating relevant examples from across the graph’s temporal and contextual space 
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Figure 1: I l lustration of RAG in NLP and dynamic graph model ing. (a) In NLP, RAG leverages pre-trained language models

to encode text and retr ieve semantical ly simi lar or related demonstrations, which are fur ther concatenated to enhance the

generation task. (b) Our work addresses the chal lenges of complex temporal and structural character istics of dynamic graphs,

incorporating RAG through time- and context-aware retr ieval and graph fusion modules.

to identify relevant examples and a graph fusion module to con-

struct asummary graph from theretrieved samples. Thecontrastive

learning strategy incorporatesa timedecay function to prioritize

temporally relevant samples, while context-awareaugmentation

techniques such asmasking and cropping enhance themodel’sabil-

ity to capturecomplex structural patterns. Thegraph fusion module

applies aGNN-based readout mechanism to enrich the representa-

tion before feeding it into thesequencegeneration model. Theseso-

lutionsempower RAG4DyGtoe ectively leverageretrieveddemon-

strations to enhance dynamic graph modeling. Through extensive

experimentation on various real-world datasets, wedemonstrate

that RAG4DyGoutperforms state-of-the-art methods in both trans-

ductive and inductivescenarios, o ering improved accuracy and

adaptability in dynamic graph scenarios. In transductive settings,

where test nodeshaveappeared during training, our model e ec-

tively leverageshistorical data to re nepredictions. In inductiveset-

tings, involving previously unseen nodes, the retrieval mechanism

enables themodel to generalize by providing relevant contextual

examples asguidance.

To sum up, our main contributions are as follows. (1) We pro-

poseanovel retrieval-augmented generation approach for dynamic

graph modeling named RAG4DyG, which employs a retriever to

broaden historical interactions with contextually and temporally

relevant demonstrations. (2) We introduce a time- and context-

awarecontrastive learning module that incorporates temporal and

structural information for demonstration retrieval and agraph fu-

sion module to e ectively integrate retrieved demonstrations. (3)

Weconduct extensiveexperiments to validateour approach, demon-

strating thee ectivenessof RAG4DyGacrossvarious domains.

2 Related Work

Dynamic Graph Model ing. Existing approaches for dynamic

graphs can becategorized into discrete-time and continuous-time

methods. Discrete-timemethods regard adynamic graph asa se-

quence of static graph snapshots captured at various time steps.

Each snapshot represents thegraph structureat aspeci c timestep.

Thesemethods typically adopt GNNs to model the structural infor-

mation of each snapshot, and then incorporate a sequencemodel

[29, 32] to capture the changes across snapshots. However, these

approaches neglect ne-grained time information within a snap-

shot. In contrast, continuous-timemethodsmodel graph evolution

asacontinuous process, capturing all time steps for moreprecise

temporal modeling. These methods often integrate GNNs with

specially designed temporal modules, such as temporal random

walk [38], temporal graph attention [31, 43], MLP-mixer [3] and

temporal point processes [16, 36, 39]. Recently, researchers have

proposed asimpleand e ectivearchitecturecalled SimpleDyG [40],

which reformulates dynamic graph modeling asasequencemod-

eling task. Speci cally, it maps thedynamic graph into aseries of

nodesequencesand feeds them into agenerativesequencemodel.

Subsequently, predicting futureevents can be framed asasequence

generation problem. However, while thesemethodsprovidevalu-

able insights, they areoften limited in their ability to adapt to new

and evolving patterns in dynamic graphs.

Our work distinguishes itself from prior dynamic graph learn-

ing methods through two key innovations. First, while existing ap-

proachespredominantly focuson localized temporal contextsor the

historical interactions of target nodes, our proposed RAG4DyGem-

ploys retrieval-augmented generation mechanisms to retrieveand

integrate broader contextual signals from theentiredynamic graph.

This approach facilitates amore comprehensive understanding of

dynamic interactions, uncovering complex patterns beyond the

immediate historical scopeof individual nodes. Second, RAG4DyG

incorporates a time- and context-aware contrastive learning mod-

ule for retrieving similar demonstrations, along with agraph fusion

strategy to integrate them with the query sequence, enhancing

adaptability to new patterns and evolving graph structures.

Retr ieval Augmented Generation. Recently, theRAGparadigm

hasattracted increasing attention [10]. Speci cally, RAG rst lever-

ages the retriever to search and extract relevant documents from

somedatabases, which then serveasadditional context to enhance

thegeneration process.Related studieshavedemonstrated thegreat

potential of RAG in various tasks such as language processing

[18, 19], recommendation systems [4, 44], and computer vision

[20, 25]. In the graph modeling eld, existing RAGe orts have pri-

marily focused on static [27] and text-attributed graphs to enhance

thegeneration capabilities of Large LanguageModels (LLMs), sup-

porting graph-related tasks such ascodesummarization [26] and
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to encode text and retr ieve semantical ly simi lar or related demonstrations, which are fur ther concatenated to enhance the
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to identify relevant examples and a graph fusion module to con-

struct asummary graph from theretrieved samples. Thecontrastive

learning strategy incorporatesa timedecay function to prioritize

temporally relevant samples, while context-awareaugmentation

techniquessuch asmasking and cropping enhance themodel’sabil-

ity to capturecomplex structural patterns. Thegraph fusion module

applies aGNN-based readout mechanism to enrich the representa-

tion before feeding it into thesequencegeneration model. Theseso-

lutionsempower RAG4DyGtoe ectively leverageretrieveddemon-

strations to enhance dynamic graph modeling. Through extensive

experimentation on various real-world datasets, wedemonstrate

that RAG4DyGoutperforms state-of-the-art methods in both trans-

ductiveand inductivescenarios, o ering improved accuracy and

adaptability in dynamic graph scenarios. In transductive settings,

where test nodeshaveappeared during training, our model e ec-

tively leverageshistorical data to re nepredictions. In inductiveset-

tings, involving previously unseen nodes, the retrieval mechanism

enables themodel to generalize by providing relevant contextual

examples asguidance.

To sum up, our main contributions are as follows. (1) We pro-

poseanovel retrieval-augmented generation approach for dynamic

graph modeling named RAG4DyG, which employs a retriever to

broaden historical interactions with contextually and temporally

relevant demonstrations. (2) We introduce a time- and context-

awarecontrastive learning module that incorporates temporal and

structural information for demonstration retrieval and agraph fu-

sion module to e ectively integrate retrieved demonstrations. (3)

Weconduct extensiveexperiments to validateour approach, demon-

strating thee ectivenessof RAG4DyGacrossvarious domains.

2 Related Work

Dynamic Graph Model ing. Existing approaches for dynamic

graphs can becategorized into discrete-time and continuous-time

methods. Discrete-timemethods regard a dynamic graph asa se-

quence of static graph snapshots captured at various time steps.

Each snapshot represents thegraph structureat aspeci c timestep.

Thesemethods typically adopt GNNs to model the structural infor-

mation of each snapshot, and then incorporate a sequencemodel

[29, 32] to capture the changes across snapshots. However, these

approaches neglect ne-grained time information within a snap-

shot. In contrast, continuous-timemethodsmodel graph evolution

asacontinuous process, capturing all timesteps for moreprecise

temporal modeling. These methods often integrate GNNs with

specially designed temporal modules, such as temporal random

walk [38], temporal graph attention [31, 43], MLP-mixer [3] and

temporal point processes [16, 36, 39]. Recently, researchers have

proposed asimpleand e ectivearchitecturecalled SimpleDyG [40],

which reformulates dynamic graph modeling asasequencemod-

eling task. Speci cally, it maps thedynamic graph into a series of

nodesequencesand feeds them into agenerativesequencemodel.

Subsequently, predicting futureeventscan be framed asasequence

generation problem. However, while thesemethodsprovidevalu-

able insights, they areoften limited in their ability to adapt to new

and evolving patterns in dynamic graphs.

Our work distinguishes itself from prior dynamic graph learn-

ing methods through two key innovations. First, while existing ap-

proachespredominantly focuson localized temporal contextsor the

historical interactions of target nodes, our proposed RAG4DyGem-

ploys retrieval-augmented generation mechanisms to retrieveand

integrate broader contextual signals from theentiredynamic graph.

This approach facilitates amore comprehensive understanding of

dynamic interactions, uncovering complex patterns beyond the

immediate historical scope of individual nodes. Second, RAG4DyG

incorporates a time- and context-awarecontrastive learning mod-

ule for retrieving similar demonstrations, along with agraph fusion

strategy to integrate them with the query sequence, enhancing

adaptability to new patterns and evolving graph structures.

Retr ieval Augmented Generation. Recently, theRAGparadigm

hasattracted increasing attention [10]. Speci cally, RAG rst lever-

ages the retriever to search and extract relevant documents from

somedatabases, which then serveas additional context to enhance

thegeneration process. Related studieshavedemonstrated thegreat

potential of RAG in various tasks such as language processing

[18, 19], recommendation systems [4, 44], and computer vision

[20, 25]. In the graph modeling eld, existing RAGe orts have pri-

marily focused on static [27] and text-attributed graphs to enhance

thegeneration capabilities of Large LanguageModels (LLMs), sup-

porting graph-related tasks such ascodesummarization [26] and



❑ Challenges:

➢ Selecting high-quality demonstrations

• Identifying contextually and temporally relevant demonstrations 

• Existing methods (BM25) rely on historical interactions similarities, struggling with inductive scenarios

➢ Integrating the retrieved demonstrations

• Simply concatenating query and demonstrations → lengthy inputs and overlook structural patterns

Motivation: Dynamic Graph Modeling
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to identify relevant examples and a graph fusion module to con-

struct asummary graph from theretrieved samples. Thecontrastive

learning strategy incorporatesa timedecay function to prioritize

temporally relevant samples, while context-awareaugmentation

techniquessuch asmasking and cropping enhance themodel’sabil-

ity to capturecomplex structural patterns. Thegraph fusion module

applies aGNN-based readout mechanism to enrich the representa-

tion before feeding it into thesequencegeneration model. Theseso-

lutionsempower RAG4DyGtoe ectively leverageretrieveddemon-

strations to enhance dynamic graph modeling. Through extensive

experimentation on various real-world datasets, wedemonstrate

that RAG4DyGoutperforms state-of-the-art methods in both trans-

ductiveand inductivescenarios, o ering improved accuracy and

adaptability in dynamic graph scenarios. In transductive settings,

where test nodeshaveappeared during training, our model e ec-

tively leverageshistorical data to re nepredictions. In inductiveset-

tings, involving previously unseen nodes, the retrieval mechanism

enables themodel to generalize by providing relevant contextual

examples asguidance.

To sum up, our main contributions are as follows. (1) We pro-

poseanovel retrieval-augmented generation approach for dynamic

graph modeling named RAG4DyG, which employs a retriever to

broaden historical interactions with contextually and temporally

relevant demonstrations. (2) We introduce a time- and context-

awarecontrastive learning module that incorporates temporal and

structural information for demonstration retrieval and agraph fu-

sion module to e ectively integrate retrieved demonstrations. (3)

Weconduct extensiveexperiments to validateour approach, demon-

strating thee ectivenessof RAG4DyGacrossvarious domains.

2 Related Work

Dynamic Graph Model ing. Existing approaches for dynamic

graphs can becategorized into discrete-time and continuous-time

methods. Discrete-timemethods regard a dynamic graph asa se-

quence of static graph snapshots captured at various time steps.

Each snapshot represents thegraph structureat aspeci c timestep.

Thesemethods typically adopt GNNs to model the structural infor-

mation of each snapshot, and then incorporate a sequencemodel

[29, 32] to capture the changes across snapshots. However, these

approaches neglect ne-grained time information within a snap-

shot. In contrast, continuous-timemethodsmodel graph evolution

asacontinuous process, capturing all timesteps for moreprecise

temporal modeling. These methods often integrate GNNs with

specially designed temporal modules, such as temporal random

walk [38], temporal graph attention [31, 43], MLP-mixer [3] and

temporal point processes [16, 36, 39]. Recently, researchers have

proposed asimpleand e ectivearchitecturecalled SimpleDyG [40],

which reformulates dynamic graph modeling asasequencemod-

eling task. Speci cally, it maps thedynamic graph into a series of

nodesequencesand feeds them into agenerativesequencemodel.

Subsequently, predicting futureeventscan be framed asasequence

generation problem. However, while thesemethodsprovidevalu-

able insights, they areoften limited in their ability to adapt to new

and evolving patterns in dynamic graphs.

Our work distinguishes itself from prior dynamic graph learn-

ing methods through two key innovations. First, while existing ap-

proachespredominantly focuson localized temporal contextsor the

historical interactions of target nodes, our proposed RAG4DyGem-

ploys retrieval-augmented generation mechanisms to retrieveand

integrate broader contextual signals from theentiredynamic graph.

This approach facilitates amore comprehensive understanding of

dynamic interactions, uncovering complex patterns beyond the

immediate historical scope of individual nodes. Second, RAG4DyG

incorporates a time- and context-awarecontrastive learning mod-

ule for retrieving similar demonstrations, along with agraph fusion

strategy to integrate them with the query sequence, enhancing

adaptability to new patterns and evolving graph structures.

Retr ieval Augmented Generation. Recently, theRAGparadigm

hasattracted increasing attention [10]. Speci cally, RAG rst lever-

ages the retriever to search and extract relevant documents from

somedatabases, which then serveas additional context to enhance

thegeneration process. Related studieshavedemonstrated thegreat

potential of RAG in various tasks such as language processing

[18, 19], recommendation systems [4, 44], and computer vision

[20, 25]. In the graph modeling eld, existing RAGe orts have pri-

marily focused on static [27] and text-attributed graphs to enhance

thegeneration capabilities of Large LanguageModels (LLMs), sup-

porting graph-related tasks such ascodesummarization [26] and
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textual graph question answering [12, 13, 17]. However, exploiting

RAG techniques for dynamic graphs and graphs without textual

information remains largely unexplored.

3 Prel iminaries

In this section, we introduce the sequencemodeling of dynamic

graphs and theproblem formulation.

Sequence Mapping of Dynamic Graphs. Wedenote adynamic

graph as⌧= (+,⇢, ,T ) comprising a set of nodes+, edges⇢, a
node featurematrix if available, and a timedomain T . Tomap a

dynamic graph into sequences, we follow SimpleDyG [40]. Speci -

cally, let ⇡ = { (G8,~8)}
"
8=1 denote theset of training samples, where

each sample is a pair (G8,~8), representing the input and output

sequences for a target nodeE8 2 + . The input G8 isachronologically

ordered sequence of nodes that havehistorically interacted with

E8, while theoutput ~8 is theground truth interactions that occur

following the sequenceG8. In notations, wehave

G8 = [hist] ,E8, [time_1],E1,18 ,E1,28 , . . . , [ time_t],EC,1
8 , . . . ,

[time_T],E) ,1
8 , . . . , [eohist] , (1)

~8 = [pred], [time_T+1] ,E
) +1,1
8 , . . . , [eopred], (2)

where [hist] , [eohist] , [pred] , [eopred] are special tokens denoting

the input and output sequence, and [time_1] , . . . , [ time_T+1] are

special time tokens representing di erent time steps.

Problem Formulation. Dynamic graph modeling aims to learn

amodel that can predict the future interactions of a target node

E8, given its historical interactions. That is, given G8 in Eq. (1), the

task is to predict ~8 in Eq. (2). In our RAG framework, we regard

the training samples ⇡ as a retrieval pool. Given a target node

E@2 + , its input sequenceG@is referred to as thequery sequence.

We rst retrieve  demonstrations ' @= { (G: ,~: )}
 
: =1

for each

query sequenceG@based on their contextual and temporal rele-

vance. Next, the retrieved demonstrations ' @areused to enrich the

input sequenceG@, which encompasses the historical interactions

of the target nodeE@. The augmented input { ' @,G@} is designed to

enhance thepredictions of futureevents in~@.

4 Proposed Model: RAG4DyG

TheRAG4DyGframework enhancesdynamicgraphmodeling by in-

corporating retrieval-augmented generation techniques to improve

predictiveaccuracy and adaptability. As illustrated in Fig.2, it rst

adopts SimpleDyG [40] to model dynamic graphs as sequences of

nodeinteractions, leveraging aTransformer-basedmodel to capture

temporal dependencies and predict future interactions (Fig.2(a)). To

enrich themodeling process, a time- and context-aware retriever

retrieves relevant demonstrations from a retrieval pool ⇡ for a

given query sequenceG@. This retriever optimizes two contrastive

objectives: a time-aware loss, which employs a temporal decay

function ` (C@,C?) to prioritize temporally relevant samples, and

acontext-aware loss, which utilizes sequence augmentation tech-

niques such asmasking and cropping to capturestructural patterns

(Fig.2(b), Sec.4.1). Once the top- demonstrations are retrieved,

they are fused into a summary graph⌧5DB, which captures the

underlying structural relationships among the retrieved samples. A

GNN then processes this graph to generate an enriched representa-

tion that is prepended to the query sequence, providing additional

context for improvedevent prediction (Fig.2(c), Sec.4.2). By integrat-

ing retrieval and graph fusion, RAG4DyGe ectively incorporates

temporal and contextual relevance, surpassing existing methods in

both transductiveand inductivedynamic graph scenarios.
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❑ Training samples (Retrieval pool): 

• Input sequence:

• Output sequence: 
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textual graph question answering [12, 13, 17]. However, exploiting

RAG techniques for dynamic graphs and graphs without textual

information remains largely unexplored.

3 Prel iminaries

In this section, we introduce the sequencemodeling of dynamic

graphs and theproblem formulation.

Sequence Mapping of Dynamic Graphs. Wedenote adynamic

graph as⌧= (+,⇢, ,T ) comprising a set of nodes+, edges⇢, a
node featurematrix if available, and a timedomain T . Tomap a

dynamic graph into sequences, we follow SimpleDyG [40]. Speci -

cally, let ⇡ = { (G8,~8)}
"
8=1 denote theset of training samples, where

each sample is a pair (G8,~8), representing the input and output

sequences for a target nodeE8 2 + . The input G8 isachronologically

ordered sequence of nodes that havehistorically interacted with

E8, while theoutput ~8 is theground truth interactions that occur

following the sequenceG8. In notations, wehave

G8 = [hist] ,E8, [time_1],E1,18 ,E1,28 , . . . , [ time_t],EC,1
8 , . . . ,

[time_T],E) ,1
8 , . . . , [eohist] , (1)

~8 = [pred], [time_T+1] ,E
) +1,1
8 , . . . , [eopred], (2)

where [hist] , [eohist] , [pred] , [eopred] are special tokens denoting

the input and output sequence, and [time_1] , . . . , [ time_T+1] are

special time tokens representing di erent time steps.

Problem Formulation. Dynamic graph modeling aims to learn

amodel that can predict the future interactions of a target node

E8, given its historical interactions. That is, given G8 in Eq. (1), the

task is to predict ~8 in Eq. (2). In our RAG framework, we regard

the training samples ⇡ as a retrieval pool. Given a target node

E@2 + , its input sequenceG@is referred to as thequery sequence.

We rst retrieve  demonstrations ' @= { (G: ,~: )}
 
: =1

for each

query sequenceG@based on their contextual and temporal rele-

vance. Next, the retrieved demonstrations ' @areused to enrich the

input sequenceG@, which encompasses the historical interactions

of the target nodeE@. The augmented input { ' @,G@} is designed to

enhance thepredictions of futureevents in~@.

4 Proposed Model: RAG4DyG

TheRAG4DyGframework enhancesdynamicgraphmodeling by in-

corporating retrieval-augmented generation techniques to improve

predictiveaccuracy and adaptability. As illustrated in Fig.2, it rst

adopts SimpleDyG [40] to model dynamic graphs as sequences of

nodeinteractions, leveraging aTransformer-basedmodel to capture

temporal dependencies and predict future interactions (Fig.2(a)). To

enrich themodeling process, a time- and context-aware retriever

retrieves relevant demonstrations from a retrieval pool ⇡ for a

given query sequenceG@. This retriever optimizes two contrastive

objectives: a time-aware loss, which employs a temporal decay

function ` (C@,C?) to prioritize temporally relevant samples, and

acontext-aware loss, which utilizes sequence augmentation tech-

niques such asmasking and cropping to capturestructural patterns

(Fig.2(b), Sec.4.1). Once the top- demonstrations are retrieved,

they are fused into a summary graph⌧5DB, which captures the

underlying structural relationships among the retrieved samples. A

GNN then processes this graph to generate an enriched representa-

tion that is prepended to the query sequence, providing additional

context for improvedevent prediction (Fig.2(c), Sec.4.2). By integrat-

ing retrieval and graph fusion, RAG4DyGe ectively incorporates

temporal and contextual relevance, surpassing existing methods in

both transductiveand inductivedynamic graph scenarios.
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textual graph question answering [12, 13, 17]. However, exploiting

RAG techniques for dynamic graphs and graphs without textual

information remains largely unexplored.

3 Prel iminaries

In this section, we introduce the sequencemodeling of dynamic

graphsand theproblem formulation.

SequenceMapping of Dynamic Graphs. Wedenote adynamic

graph as⌧= (+,⇢, ,T ) comprising a set of nodes+, edges⇢, a
node featurematrix if available, and a timedomain T . Tomap a

dynamic graph into sequences, we follow SimpleDyG [40]. Speci -

cally, let ⇡ = { (G8,~8)}
"
8=1 denote theset of training samples, where

each sample is a pair (G8,~8), representing the input and output

sequencesfor a target nodeE8 2 +. The input G8 isachronologically

ordered sequence of nodes that havehistorically interacted with

E8, while theoutput ~8 is theground truth interactions that occur

following thesequenceG8. In notations, wehave

G8 = [hist],E8, [ time_1],E1,18 ,E1,28 , . . . , [ time_t],EC,1
8 , . . . ,

[time_T] ,E) ,1
8 , . . . , [eohist] , (1)

~8 = [pred], [time_T+1],E
) +1,1
8 , . . . , [eopred], (2)

where [hist] , [eohist] , [pred] , [eopred] arespecial tokens denoting

the input and output sequence, and [time_1] , . . . , [time_T+1] are

special time tokens representing di erent timesteps.

Problem Formulation. Dynamic graph modeling aims to learn

amodel that can predict the future interactions of a target node

E8, given itshistorical interactions. That is, givenG8 in Eq. (1), the

task is to predict ~8 in Eq. (2). In our RAG framework, we regard

the training samples ⇡ as a retrieval pool. Given a target node
E@2 +, its input sequenceG@is referred to as thequery sequence.

We rst retrieve  demonstrations ' @= { (G: ,~: )}
 
: =1

for each

query sequenceG@based on their contextual and temporal rele-

vance. Next, the retrieved demonstrations ' @areused to enrich the

input sequenceG@, which encompasses the historical interactions

of the target nodeE@. Theaugmented input { ' @,G@} is designed to

enhance thepredictions of futureevents in~@.

4 Proposed Model: RAG4DyG

TheRAG4DyGframework enhancesdynamicgraphmodeling by in-

corporating retrieval-augmented generation techniques to improve

predictiveaccuracy and adaptability. As illustrated in Fig.2, it rst

adopts SimpleDyG [40] to model dynamic graphs assequences of

nodeinteractions, leveraging aTransformer-basedmodel to capture

temporal dependenciesand predict future interactions (Fig.2(a)). To

enrich themodeling process, a time- and context-aware retriever

retrieves relevant demonstrations from a retrieval pool ⇡ for a

given query sequenceG@. This retriever optimizes two contrastive

objectives: a time-aware loss, which employs a temporal decay

function ` (C@,C?) to prioritize temporally relevant samples, and

acontext-aware loss, which utilizes sequenceaugmentation tech-

niques such asmasking and cropping to capturestructural patterns

(Fig.2(b), Sec.4.1). Once the top- demonstrations are retrieved,

they are fused into a summary graph⌧5DB, which captures the

underlying structural relationships among the retrieved samples. A

GNN then processes this graph to generate an enriched representa-

tion that isprepended to thequery sequence, providing additional

context for improvedevent prediction (Fig.2(c), Sec.4.2). By integrat-

ing retrieval and graph fusion, RAG4DyGe ectively incorporates

temporal and contextual relevance, surpassing existing methods in

both transductiveand inductivedynamic graph scenarios.
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textual graph question answering [12, 13, 17]. However, exploiting

RAG techniques for dynamic graphs and graphs without textual

information remains largely unexplored.

3 Prel iminaries

In this section, we introduce the sequencemodeling of dynamic

graphsand theproblem formulation.

SequenceMapping of Dynamic Graphs. Wedenote adynamic

graph as⌧= (+,⇢, ,T ) comprising a set of nodes+, edges⇢, a
node featurematrix if available, and a timedomain T . Tomap a

dynamic graph into sequences, we follow SimpleDyG [40]. Speci -

cally, let ⇡ = { (G8,~8)}
"
8=1 denote theset of training samples, where

each sample is a pair (G8,~8), representing the input and output

sequencesfor a target nodeE8 2 +. The input G8 isachronologically

ordered sequence of nodes that havehistorically interacted with

E8, while theoutput ~8 is theground truth interactions that occur

following thesequenceG8. In notations, wehave

G8 = [hist],E8, [ time_1],E1,18 ,E1,28 , . . . , [ time_t],EC,1
8 , . . . ,

[time_T] ,E) ,1
8 , . . . , [eohist] , (1)

~8 = [pred], [time_T+1],E
) +1,1
8 , . . . , [eopred], (2)

where [hist] , [eohist] , [pred] , [eopred] arespecial tokens denoting

the input and output sequence, and [time_1] , . . . , [time_T+1] are

special time tokens representing di erent timesteps.

Problem Formulation. Dynamic graph modeling aims to learn

amodel that can predict the future interactions of a target node

E8, given itshistorical interactions. That is, givenG8 in Eq. (1), the

task is to predict ~8 in Eq. (2). In our RAG framework, we regard

the training samples ⇡ as a retrieval pool. Given a target node
E@2 +, its input sequenceG@is referred to as thequery sequence.

We rst retrieve  demonstrations ' @= { (G: ,~: )}
 
: =1

for each

query sequenceG@based on their contextual and temporal rele-

vance. Next, the retrieved demonstrations ' @areused to enrich the

input sequenceG@, which encompasses the historical interactions

of the target nodeE@. Theaugmented input { ' @,G@} is designed to

enhance thepredictions of futureevents in~@.

4 Proposed Model: RAG4DyG

TheRAG4DyGframework enhancesdynamicgraphmodeling by in-

corporating retrieval-augmented generation techniques to improve

predictiveaccuracy and adaptability. As illustrated in Fig.2, it rst

adopts SimpleDyG [40] to model dynamic graphs assequences of

nodeinteractions, leveraging aTransformer-basedmodel to capture

temporal dependenciesand predict future interactions (Fig.2(a)). To

enrich themodeling process, a time- and context-aware retriever

retrieves relevant demonstrations from a retrieval pool ⇡ for a

given query sequenceG@. This retriever optimizes two contrastive

objectives: a time-aware loss, which employs a temporal decay

function ` (C@,C?) to prioritize temporally relevant samples, and

acontext-aware loss, which utilizes sequenceaugmentation tech-

niques such asmasking and cropping to capturestructural patterns

(Fig.2(b), Sec.4.1). Once the top- demonstrations are retrieved,

they are fused into a summary graph⌧5DB, which captures the

underlying structural relationships among the retrieved samples. A

GNN then processes this graph to generate an enriched representa-

tion that isprepended to thequery sequence, providing additional

context for improvedevent prediction (Fig.2(c), Sec.4.2). By integrat-

ing retrieval and graph fusion, RAG4DyGe ectively incorporates

temporal and contextual relevance, surpassing existing methods in

both transductiveand inductivedynamic graph scenarios.

❑ Problem Formulation: 

 Query sequence (input sequence) → Retrieve 𝐾 demonstrations → 

Augmented input→ Prediction



Proposed Method: Time- and Context-Aware Retriever 
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❑ Time-aware Contrastive Learning :

       Demonstrations closer in time to the query are more relevant than those further away.

❑ Context-aware Contrastive Learning: 

• Time decay function :
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textual graph question answering [12, 13, 17]. However, exploiting

RAG techniques for dynamic graphs and graphs without textual

information remains largely unexplored.

3 Prel iminaries

In this section, we introduce the sequencemodeling of dynamic

graphs and theproblem formulation.

Sequence Mapping of Dynamic Graphs. Wedenote adynamic

graph as⌧= (+,⇢, ,T ) comprising a set of nodes+, edges⇢, a
node featurematrix if available, and a timedomain T . Tomap a

dynamic graph into sequences, we follow SimpleDyG [40]. Speci -

cally, let ⇡ = { (G8,~8)}
"
8=1 denote theset of training samples, where

each sample is a pair (G8,~8), representing the input and output

sequences for a target nodeE8 2 + . The input G8 isachronologically

ordered sequence of nodes that havehistorically interacted with

E8, while theoutput ~8 is theground truth interactions that occur

following the sequenceG8. In notations, wehave

G8 = [hist] ,E8, [time_1],E1,18 ,E1,28 , . . . , [ time_t],EC,1
8 , . . . ,

[time_T],E) ,1
8 , . . . , [eohist] , (1)

~8 = [pred], [time_T+1] ,E
) +1,1
8 , . . . , [eopred], (2)

where [hist] , [eohist] , [pred] , [eopred] are special tokens denoting

the input and output sequence, and [time_1] , . . . , [ time_T+1] are

special time tokens representing di erent time steps.

Problem Formulation. Dynamic graph modeling aims to learn

amodel that can predict the future interactions of a target node

E8, given its historical interactions. That is, given G8 in Eq. (1), the

task is to predict ~8 in Eq. (2). In our RAG framework, we regard

the training samples ⇡ as a retrieval pool. Given a target node

E@2 + , its input sequenceG@is referred to as thequery sequence.

We rst retrieve  demonstrations ' @= { (G: ,~: )}
 
: =1

for each

query sequenceG@based on their contextual and temporal rele-

vance. Next, the retrieved demonstrations ' @areused to enrich the

input sequenceG@, which encompasses the historical interactions

of the target nodeE@. The augmented input { ' @,G@} is designed to

enhance thepredictions of futureevents in~@.

4 Proposed Model: RAG4DyG

TheRAG4DyGframework enhancesdynamicgraphmodeling by in-

corporating retrieval-augmented generation techniques to improve

predictiveaccuracy and adaptability. As illustrated in Fig.2, it rst

adopts SimpleDyG [40] to model dynamic graphs as sequences of

nodeinteractions, leveraging aTransformer-basedmodel to capture

temporal dependencies and predict future interactions (Fig.2(a)). To

enrich themodeling process, a time- and context-aware retriever

retrieves relevant demonstrations from a retrieval pool ⇡ for a

given query sequenceG@. This retriever optimizes two contrastive

objectives: a time-aware loss, which employs a temporal decay

function ` (C@,C?) to prioritize temporally relevant samples, and

acontext-aware loss, which utilizes sequence augmentation tech-

niques such asmasking and cropping to capturestructural patterns

(Fig.2(b), Sec.4.1). Once the top- demonstrations are retrieved,

they are fused into a summary graph⌧5DB, which captures the

underlying structural relationships among the retrieved samples. A

GNN then processes this graph to generate an enriched representa-

tion that is prepended to the query sequence, providing additional

context for improvedevent prediction (Fig.2(c), Sec.4.2). By integrat-

ing retrieval and graph fusion, RAG4DyGe ectively incorporates

temporal and contextual relevance, surpassing existing methods in

both transductiveand inductivedynamic graph scenarios.

query candidate

• Reweight contextual similarity:

❑ Contextual similarity:

• Contrastive loss:

• Contrastive loss:

• Two types of augmentations: masking and cropping:

❑ Training objective of retrieval: 
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❑ Fuse top-k demonstrations with query:

❑ GNN Processing: 

❑ Prepend the graph readout from the GNN to the query 
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textual graph question answering [12, 13, 17]. However, exploiting

RAG techniques for dynamic graphs and graphs without textual

information remains largely unexplored.

3 Prel iminaries

In this section, we introduce the sequencemodeling of dynamic

graphs and theproblem formulation.

Sequence Mapping of Dynamic Graphs. Wedenote adynamic

graph as⌧= (+,⇢, ,T ) comprising a set of nodes+, edges⇢, a
node featurematrix if available, and a timedomain T . Tomap a

dynamic graph into sequences, we follow SimpleDyG [40]. Speci -

cally, let ⇡ = { (G8,~8)}
"
8=1 denote theset of training samples, where

each sample is a pair (G8,~8), representing the input and output

sequences for a target nodeE8 2 + . The input G8 isachronologically

ordered sequence of nodes that havehistorically interacted with

E8, while theoutput ~8 is theground truth interactions that occur

following the sequenceG8. In notations, wehave

G8 = [hist] ,E8, [time_1],E1,18 ,E1,28 , . . . , [ time_t],EC,1
8 , . . . ,

[time_T],E) ,1
8 , . . . , [eohist] , (1)

~8 = [pred], [time_T+1] ,E
) +1,1
8 , . . . , [eopred], (2)

where [hist] , [eohist] , [pred] , [eopred] are special tokens denoting

the input and output sequence, and [time_1] , . . . , [ time_T+1] are

special time tokens representing di erent time steps.

Problem Formulation. Dynamic graph modeling aims to learn

amodel that can predict the future interactions of a target node

E8, given its historical interactions. That is, given G8 in Eq. (1), the

task is to predict ~8 in Eq. (2). In our RAG framework, we regard

the training samples ⇡ as a retrieval pool. Given a target node

E@2 + , its input sequenceG@is referred to as thequery sequence.

We rst retrieve  demonstrations ' @= { (G: ,~: )}
 
: =1

for each

query sequenceG@based on their contextual and temporal rele-

vance. Next, the retrieved demonstrations ' @areused to enrich the

input sequenceG@, which encompasses the historical interactions

of the target nodeE@. The augmented input { ' @,G@} is designed to

enhance thepredictions of futureevents in~@.

4 Proposed Model: RAG4DyG

TheRAG4DyGframework enhancesdynamicgraphmodeling by in-

corporating retrieval-augmented generation techniques to improve

predictiveaccuracy and adaptability. As illustrated in Fig.2, it rst

adopts SimpleDyG [40] to model dynamic graphs as sequences of

nodeinteractions, leveraging aTransformer-basedmodel to capture

temporal dependencies and predict future interactions (Fig.2(a)). To

enrich themodeling process, a time- and context-aware retriever

retrieves relevant demonstrations from a retrieval pool ⇡ for a

given query sequenceG@. This retriever optimizes two contrastive

objectives: a time-aware loss, which employs a temporal decay

function ` (C@,C?) to prioritize temporally relevant samples, and

acontext-aware loss, which utilizes sequence augmentation tech-

niques such asmasking and cropping to capturestructural patterns

(Fig.2(b), Sec.4.1). Once the top- demonstrations are retrieved,

they are fused into a summary graph⌧5DB, which captures the

underlying structural relationships among the retrieved samples. A

GNN then processes this graph to generate an enriched representa-

tion that is prepended to the query sequence, providing additional

context for improvedevent prediction (Fig.2(c), Sec.4.2). By integrat-

ing retrieval and graph fusion, RAG4DyGe ectively incorporates

temporal and contextual relevance, surpassing existing methods in

both transductiveand inductivedynamic graph scenarios.

• Concatenation: lengthy context, neglect structural pattern

• MLP: map to shorter sequence, neglect structural pattern 

•  Graph fusion: fuse the demonstrations into a summary graph 



Experiments:

❑ Datasets:

10

Six datasets from different domains: 



Experiment: 

• RAG4DyG generally outperforms all baselines across different datasets under the three metrics 

• RAG4DyG exhibits significant advantages in inductive scenarios such as the Hepth and Reddit datasets. 
11



Experiment: Ablation Study

• The full model outperforms the two variants

• The w/o Decay exhibits the worst performance 
across both tasks, emphasizing the critical role of 
time decay in capturing temporal relevance 

12

▪ w/o CCL:  exclude the context-aware contrastive learning 

▪ w/o Decay: exclude the time decay



Experiment: Effect of Different Retrieval Methods 

• Retrieval performance: Ours shows comparable performance and can handle inductive scenarios (Hepth, Reddit) 

• Generative performance: Our method performs better compared to other retrieval strategies.

13

▪ BM25: calculates a relevance score (TF-IDF) between the query sequence and each candidate sequence in the retrieval pool 

▪ Jaccard: calculates the set similarity by comparing the size of their intersection to the size of their union 

▪ “GroundTruth”: an upper bound on the performance when using ground-truth retrieval results on the testing data 



Experiment: Effect of the K and Fusion Strategies

• Higher 𝐾 yields better prediction performance: more demonstrations provide richer contextual information

• Too large K may introduce more noise, which can harm the performance. 

14

• “Concatenation” leads to lower performance compared with other strategies

• “MLP” maps the concatenated demonstrations into a shorter feature space, neglecting the structural pattern

• “GraphFusion” highlights the importance of considering both the content and the structure of the demonstrations for fusion.



Summary:

• We a novel retrieval-augmented generation approach for dynamic graph modeling 

• We introduce a time- and context- aware contrastive learning module for demonstration 

retrieval and a graph fusion module to effectively integrate retrieved demonstrations. 

• We conduct extensive experiments to validate our approach, demonstrating the effectiveness 

of RAG4DyG across various domains. 

• Thank you for your listening!

• Q & A 

15
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