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Low-resource multi-task text classification
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Text data are grounded on network structures
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• Text data are frequently grounded on network structures

• Graph structures expose valuable relationships

• GNNs are designed to learn from graph structures
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Challenges and present work

Q2: How do we augment low-
resource multi-task text 
classification given a jointly pre-
trained graph-text model?

Q1: How do we capture fine-
grained textual semantics, while 
leveraging graph structure 
information jointly?

We propose a graph-grounded 
contrastive pre-training, to maximize 
the alignment between text and graph
representations based on three types of 
graph interaction.

We propose a novel approach of 
“prompting” a jointly pre-trained graph-
text model instead of fine-tuning it.
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Preliminary: Graph-grounded text corpus

• Consider a set of documents 𝒟, which is 
grounded on a graph 𝒢 such that each 
document 𝑑𝑖 is a node 𝑣𝑖 in the graph 

Language 
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The translation 
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Visual QA … 

The BERT 
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• Documents are linked via edges

• Each node 𝑣𝑖 is also associated with a 
feature vector X𝑖

• Each document/node has a class label Label: NLP
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Overall framework of our proposed G2P2

Overall framework of G2P2. (a) During pre-training, it jointly trains a text and a graph encoder through three contrastive strategies. 
(b) During testing, it performs prompt-assisted zero- or few-shot classification



SMU Classification: Restricted

9

Preliminary: prompt learning

[1] Liu, Pengfei, et al. "Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing." ACM Computing Surveys 2023.

• Prompt learning in NLP: the process of 
formulating effective prompts or 
instructions to guide pre-trained 
language models to generate desired 
outputs.

Figure from [1]
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Our proposed graph-grounded contrastive pre-training

• Learn a dual-modal embedding 
space jointly training a text 
encoder and graph encoder 
through 3 contrastive strategies.



SMU Classification: Restricted

11

Graph-grounded contrastive pre-training

Dual-encoders

2. Graph-encoder: a GCN

1. Text-encoder: a transformer
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Text-node interaction
• Graph-grounded texts naturally implies a 

bijection between nodes and texts
• Predict the text of a document matches

which node in the graph. 
• Given n documents and the corresponding n 

nodes, there are n^2 possible document 
node pairs

• Only n pairs with i = j are true matching
• The remaining n^2−n pairs are false 

matching
• Maximize the cosine similarity of n matching

pairs, while minimizing that of the n^2 − n 
unmatching pairs
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Text encoder
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Text-summary interaction
• Each document has a set of neighboring 

documents defined by graph topology
• The neighboring documents are a summary of 

the target document 
• Employ a simple mean pooling to generate the 

summary embedding

• Align the text embedding and its corresponding 
summary text embedding
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Node-summary interaction

• Neighborhood based summary  𝐬𝑖 for 
document 𝑑𝑖 also serves as a semantic 
description of node 𝒗𝒊.

• Align the node embedding 𝐳𝑖 and its 
neighborhood-based summary text 
embedding 𝐬𝑖.
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Overall pre-training objective

• Integrate the three contrastive losses 
based on the text-node, text-summary
and node-summary interactions

• Obtain a pre-trained model 𝜽𝟎 consisting 
of the parameters of the dual encoders

Hyperparameter
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Prompt-assisted text classification
• Discrete prompt for zero-shot classification

• Predict the class whose label text embedding has 
the highest similarity to the node embedding 

• Classification weights can be generated by the 
text encoder based on the class label texts

• Class distribution is predicted as

cosine similarity

label text, e.g., “NLP”e.g., “A paper of ”
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Graph-grounded prompt tuning
• Discrete prompts are difficult to optimize.

• Resort to prompt tuning, substituting discrete 
prompts with learnable continuous vectors, 
while keeping the parameters of PLM frozen

• Instead of a sequence of discrete tokens, we 
use a sequence of continuous embeddings

• We initialize the prompt embeddings with 
graph contexts.

• A node 𝑣𝑖 and its neighbor set {𝑣𝑗|𝑗 ∈ 𝒩𝑖} are 

collectively called the graph contexts of 𝑣𝑖 .
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Datasets

Cora  is a collection of 
research papers

Art, Industrial and Music Instruments (M.I.) 
are 3 Amazon review datasets
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Performance comparison with baselines

• G2P2 outperforms the best baseline by around 3–7%, showing the advantage of our contrastive pre-training and 
graph grounded prompt tuning 
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Conclusion

Key contributions

• Addressed the problem of low-resource 

multi-task text classification;

• Proposed G2P2, consisting of three graph 

interaction-based contrastive strategies in pre-

training, and a prompting mechanism for the 

jointly pre-trained graph-text model in 

downstream classification.

Limitations

• The need of a graph to complement the texts

• Cannot do prompt tuning for zero-shot

23
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