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Citation graph for online articles E-commerce item review graph

* Text data are frequently grounded on network structures

Graph structures expose valuable relationships

* GNNs are designed to learn from graph structures
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g : ) /\Ne propose a graph-grounded )
Q1: How do we capture fine- . . . .
rained textual semantics. while contrastive pre-training, to maximize

8 ’ ——>| the alignment between text and graph

leveraging graph structure :
. 5 .g g. p representations based on three types of
information jointly?

\_ J Qgraph interaction. J
4 N\

We propose a novel approach of
——>| “prompting” ajointly pre-trained graph-
text model instead of fine-tuning it.

/ N /

Q2: How do we augment low-
resource multi-task text
classification given a jointly pre-
trained graph-text model?
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Consider a set of documents D, which is
grounded on a graph G such that each
document d; is a node v; in the graph

Documents are linked via edges

Each node v; is also associated with a
feature vector X;

Each document/node has a class label

Language

models are ...

Visual QA ...

The BERT
model ...

The translation

Label: NLP
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Papers grounded on a citation network
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(a) Graph-grounded contrastive pre-training

Label texts of N classes

y; = NLP

v, = Recommendation
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Pre-trained
GNN 82 in (a)

(b) Graph-grounded prompt tuning (few-shot classification)

Overall framework of G2P2. (a) During pre-training, it jointly trains a text and a graph encoder through three contrastive strategies.
(b) During testing, it performs prompt-assisted zero- or few-shot classification
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* Prompt learning in NLP: the process of
formulating effective prompts or
instructions to guide pre-trained
language models to generate desired
outputs.

Figure from [1]

[1] Liu, Pengfei, et al. "Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing." ACM Computing Surveys 2023.
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(a) Graph-grounded contrastive pre-training
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Graph-grounded contrastive pre-training

Dual-encoders
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Graph-grounded texts naturally implies a
bijection between nodes and texts

. Text-node interaction £, Predict the text of a document matches

= » oz Z1ty | Z1t, Zitg which node in the graph.

2 ¥ oz, Z,t, | Z,t, P Given n documents and the corresponding n

_g » nodes, there are n2 possible document

S > 2o || zets | zets Zots node pairs

O Only n pairs with i = j are true matching

tl* ti + ;6 The remaining n*2-n pairs are false

matching

Maximize the cosine similarity of n matching
pairs, while minimizing that of the n®"2 - n
unmatching pairs
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Text-node interaction £,  Each document has a set of neighboring
2| |[Bb] %t - | %t documents defined by graph topology
Graph encoder| | | %2 | | Bon (B v Bike * The neighboring documents are a summary of
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* Integrate the three contrastive losses
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* Discrete prompt for zero-shot classification

Label texts of N classes

= NLP Discrete prompt ) . .
L Pre-trained * Predict the class whose label text embedding has
y, =Recommendation | | “paperof” +y; [|transformer 67

: the highest similarity to the node embedding
yy = Computer vision | | ¢ ¢ ¢ ¢

W, | Wy

2| - * Classification weights can be generated by the
ger | “f'ghtsl text encoder based on the class label texts

Pre-trained nOd:emb-—b Z1Wq |ZywWo| ... |ZqwWy « ” 0
GNN 62 1 — w, = ¢r(“prompt [CLASS]”;6;)
" v N
e.g., “A paperof ”  label text, e.g., “NLP”
* Class distribution is predicted as
exp ((z;, W
bl | ) = oy )
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* Discrete prompts are difficult to optimize.

Label texts of N classes Trainable prompt emb.

* Resort to prompt tuning, substituting discrete
2 Recommendation (B, Bar b ranstormer o prompts with learnable continuous vectors,

y1 =NLP [hy, -, hy by, ]

Pre-trained

Y = Computer vision (b, ==, by by, | ; T while keeping the parameters of PLM frozen
A 4
T R S B (R * Instead of a sequence of discrete tokens, we
Graph contexts of target Classification weights . .
1 h, [T use a sequence of continuous embeddings
2 Visual QA ... m h :
The BERT mIT]
m 3 — . 00
dEI (4) Ir.jgg:égaere backpropagation [Z1W1]Z1W2| - |Z1Wy Wy o QST([hl’ T hM ) hCLASS]? QT)
target Z e ey . . .
node eme * We initialize the prompt embeddings with
9 The - Pre-trained
translation GNN 82 in (2) graph contexts.

* Anode v; and its neighbor set {v;|j € NV;} are
collectively called the graph contexts of v; .
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Table 1: Statistics of datasets.

Dataset Cora Art  Industrial M.I.
# Documents 25,120 1,615,902 1,260,053 905.453
# Links 182,280 4,898,218 3,101,670 2,692,734
# Avg. doc length 141.26 54.23 52.15 84.66
# Avg. node deg 7.26 3.03 2.46 2.97
# Classes 70 3,347 2,462 1,191
=)
5 | il
EF ER & W@
(S
Cora is a collection of Art, Industrial and Music Instruments (M.l.)

research papers are 3 Amazon review datasets
19
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| Cora | Art | Industrial | ML
| Accuracy Macro-F1 ‘ Accuracy Macro-F1 | Accuracy Macro-F1 ’ Accuracy Macro-F1
Q)Qb GCN 41.15+2.41 34.50+2.23 22.47+1.78 15.45+1.14 21.08+0.45 15.23+0.29 22.54+0.82 16.26+0.72
O'% SAGEgyp 41.42+2.90 35.14+2.14 22.60+0.56 16.01+0.28 20.74+0.91 15.31+0.37 22.14+0.80 16.69+0.62
/
o % TextGCN 59.78+1.88 55.85+1.50 43.47+1.02 32.20+1.30 53.60+0.70 45.97+0.49 46.26+0.91 38.75+0.78
((/{\
GPT-GNN 76.72+2.02 72.23+1.17 65.15+1.37 52.79+0.83 62.13+0.65 54.47+0.67 67.97+2.49 59.89+2.51
DGI 78.42+1.39 74.58+1.24 65.41+0.86 53.57+0.75 52.29+0.66 45.26+0.51 68.06+0.73 60.64+0.61
SAGEge ¢ 77.59+1.71 73.47+1.53 76.13+£0.94 65.25+0.31 71.87+0.61 65.09+0.47 77.70+0.48 70.87+0.59
@b@ BERT 37.86+5.31 32.78+5.01 46.39+1.05 37.07+ 0.68 54.00+0.20 47.57+0.50 50.14+0.68 42.96+1.02
§§) BERT* 27.22+1.22 23.34+1.11 45.31+0.96 36.28+0.71 49.60+0.27 43.36+0.27 40.19+0.74 33.69+0.72
y,\{b‘fo\o RoBERTa 62.10+2.77 57.21+£2.51 72.95+£1.75 62.25+1.33 76.35+£0.65 70.49+0.59 70.67+0.87 63.50+1.11
@ N RoBERTa* 67.42+4.35 62.72+3.02 74.47+1.00 63.35+1.09 77.08+1.02 71.44+0.87 74.61+1.08 67.78+0.95
U@
AN
@EQ\Q) P-Tuning v2 | 71.00+2.03 66.76+1.95 ‘ 76.86+0.59 66.89+1.14 | 79.65+0.38 74.33+0.37 ’ 72.08+0.51 65.44+0.63
\O N G2P2-p 79.16+1.23 74.99+1.35 79.59+0.31 68.26+0.43 80.86+0.40 74.44+0.29 81.26+0.36 74.82+0.45
3N}
< G2P2 80.08"+1.33 75.91*+1.39 81.03%+0.43 69.86"+0.67 82.46"+0.29 76.36"+0.25 82.77*+0.32 76.48" +0.52
(improv.) (+2.12%) (+1.78%) (+5.43%) (+4.44%) (+3.53%) (+2.7%) (+6.53%) (+7.92%)

* G2P2 outperforms the best baseline by around 3-7%, showing the advantage of our contrastive pre-training and
graph grounded prompt tuning
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Key contributions

e Addressed the problem of low-resource
multi-task text classification;

* Proposed G2P2, consisting of three graph
interaction-based contrastive strategies in pre-
training, and a prompting mechanism for the
jointly pre-trained graph-text model in
downstream classification.

Limitations

* The need of a graph to complement the texts

e Cannot do prompt tuning for zero-shot

Papers grounded on a citation network Text-node interaction £,
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(b) Graph-grounded prompt tuning (few-shot classification)
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