Augmenting Low-Resource Text Classification with Graph-Grounded Pre-training and Prompting

Zhihao Wen and Yuan Fang School of Computing and Information Systems Singapore Managent University

School of Computing and Information Systems

Outline

Introduction

Methodology

D Experiment

□ Conclusion & Future work

samples

Low-resource multi-task text classification

Many tasks and each task is a different text classification task

3

Text data are grounded on network structures

- Text data are frequently grounded on **network structures**
- Graph structures expose valuable relationships
- **GNNs** are designed to learn from graph structures

Challenges and present work

Q1: How do we capture **finegrained textual** semantics, while leveraging **graph structure** information jointly? We propose a graph-grounded contrastive pre-training, to maximize the alignment between text and graph representations based on three types of graph interaction.

Q2: How do we **augment** lowresource multi-task text classification given a jointly pretrained **graph-text** model?

We propose a novel approach of "prompting" a jointly pre-trained graphtext model instead of fine-tuning it.

Outline

□ Introduction

Methodology

D Experiment

□ Conclusion & Future work

- Consider a set of documents D, which is grounded on a graph G such that each document d_i is a node v_i in the graph
- Documents are linked via edges

Computing and

- Each node v_i is also associated with a feature vector X_i
- Each document/node has a class label

SINGAPORE MANAGEMENT

Computing and Information Systems

Overall framework of G2P2. (a) During pre-training, it jointly trains a text and a graph encoder through three contrastive strategies. (b) During testing, it performs prompt-assisted zero- or few-shot classification

Preliminary: prompt learning

 Prompt learning in NLP: the process of formulating effective prompts or instructions to guide pre-trained language models to generate desired outputs.

Figure from [1]

Our proposed graph-grounded contrastive pre-training

 Learn a dual-modal embedding space jointly training a text encoder and graph encoder through 3 contrastive strategies.

(a) Graph-grounded contrastive pre-training

Graph-grounded contrastive pre-training

Dual-encoders

(6)

The translation ...

SMU SINGAPORE MANAGEMENT

Computing and Information Systems

- 1. Text-encoder: a transformer
 - $\mathbf{t}_i = \Phi_T(d_i; \theta_T)$
- 2. Graph-encoder: a GCN

$$\mathbf{z}_i = \Phi_Z(v_i; \theta_G)$$

Text-node interaction

<u>ے</u>	Text-node interaction						
• •	z ₁	$\mathbf{z}_1 \mathbf{t}_1$	$\mathbf{z}_1 \mathbf{t}_2$		$\mathbf{z}_1 \mathbf{t}_6$		
• Prce	z ₂	$\mathbf{z}_2 \mathbf{t}_1$	$\mathbf{z}_2\mathbf{t}_2$		z ₂ t ₆		
• he	•						
irap •	z ₆	$\mathbf{z}_6 \mathbf{t}_1$	$\mathbf{z}_6 \mathbf{t}_2$		$\mathbf{z}_6 \mathbf{t}_6$		
U							
		t ₁	t ₂	•••	t ₆		
		•	≜	A	▲		
		Т	Text encoder				

- Graph-grounded texts naturally implies a bijection between nodes and texts
- Predict the **text** of a document **matches** which **node** in the graph.
- Given n documents and the corresponding n nodes, there are n^2 possible document node pairs
- Only n pairs with **i** = **j** are true matching
- The remaining n^2-n pairs are false matching
- Maximize the cosine similarity of n matching pairs, while minimizing that of the n² – n unmatching pairs

Text-summary interaction

- Each document has a set of neighboring documents defined by graph topology
- The neighboring documents are a **summary** of the target document
- Employ a simple **mean** pooling to generate the summary embedding

$$\mathbf{s}_i = rac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} \mathbf{t}_j$$

 Align the text embedding and its corresponding summary text embedding

Node-summary interaction

- Neighborhood based summary s_i for document d_i also serves as a semantic description of node v_i.
 - Align the node embedding z_i and its neighborhood-based summary text embedding s_i.

Overall pre-training objective

- Integrate the three contrastive losses based on the text-node, text-summary and node-summary interactions
- Obtain a pre-trained model θ^0 consisting of the parameters of the **dual encoders**

$$\theta^{0} = \arg\min_{\theta_{T}, \theta_{G}} \mathcal{L}_{1} + \lambda(\mathcal{L}_{2} + \mathcal{L}_{3})$$
Hyperparameter

• Discrete prompt for zero-shot classification

Computing and Information Systems

- Predict the class whose label text embedding has the highest similarity to the node embedding
 - Classification weights can be generated by the text encoder based on the class label texts

$$\mathbf{w}_y = \phi_T("\texttt{prompt} [\texttt{CLASS}]"; \theta_T^0)$$

e.g., "A paper of " label text, e.g., "NLP"

Class distribution is predicted as

$$p(y \mid \mathbf{z}_i) = \frac{\exp\left(\langle \mathbf{z}_i, \mathbf{w}_y \rangle\right)}{\sum_{y=1}^N \exp\left(\langle \mathbf{z}_i, \mathbf{w}_y \rangle\right)}$$
cosine similarity

Graph-grounded prompt tuning

- Discrete prompts are difficult to optimize.
- Resort to prompt tuning, substituting discrete prompts with learnable continuous vectors, while keeping the parameters of PLM frozen
- Instead of a sequence of **discrete tokens**, we use a sequence of **continuous embeddings**

$$\mathbf{w}_y = \phi_T([\mathbf{h}_1, \cdots, \mathbf{h}_M, \mathbf{h}_{\mathsf{CLASS}}]; \theta_T^0)$$

- We initialize the prompt embeddings with graph contexts.
- A node v_i and its neighbor set $\{v_j | j \in \mathcal{N}_i\}$ are collectively called the graph contexts of v_i .

Outline

Introduction

Methodology

Experiment

□ Conclusion & Future work

Datasets

Table 1: Statistics of datasets.

Dataset	Cora	Art	Industrial	M.I.
# Documents	25,120	1,615,902	1,260,053	905,453
# Links	182,280	4,898,218	3,101,670	2,692,734
# Avg. doc length	141.26	54.23	52.15	84.66
# Avg. node deg	7.26	3.03	2.46	2.97
# Classes	70	3,347	2,462	1,191

Cora is a collection of research papers

Art, Industrial and Music Instruments (M.I.) are 3 Amazon review datasets

SMU SINGAPORE MANAGEMENT

Computing and Information Systems

		Cora		Art		Industrial		M.I.	
		Accuracy	Macro-F1	Accuracy	Macro-F1	Accuracy	Macro-F1	Accuracy	Macro-F1
the terms -	GCN	41.15 ± 2.41	34.50 ± 2.23	22.47±1.78	15.45 ± 1.14	21.08±0.45	15.23 ± 0.29	22.54 ± 0.82	16.26 ± 0.72
	SAGE _{sup}	41.42 ± 2.90	35.14 ± 2.14	22.60 ± 0.56	16.01 ± 0.28	20.74 ± 0.91	15.31 ± 0.37	22.14 ± 0.80	16.69 ± 0.62
	TextGCN	59.78 ± 1.88	55.85 ± 1.50	43.47 ± 1.02	32.20 ± 1.30	53.60 ± 0.70	45.97 ± 0.49	46.26 ± 0.91	38.75 ± 0.78
	GPT-GNN	76.72 ± 2.02	72.23 ± 1.17	65.15 ± 1.37	52.79 ± 0.83	62.13±0.65	54.47 ± 0.67	67.97±2.49	59.89 ± 2.51
	DGI	<u>78.42</u> ±1.39	74.58 ± 1.24	$65.41 {\pm} 0.86$	53.57 ± 0.75	52.29±0.66	45.26 ± 0.51	68.06 ± 0.73	$60.64 {\pm} 0.61$
	SAGE _{self}	77.59 ± 1.71	73.47 ± 1.53	$76.13 {\pm} 0.94$	65.25 ± 0.31	71.87 ± 0.61	65.09 ± 0.47	77.70 ± 0.48	70.87 ± 0.59
tot 1912	BERT	37.86 ± 5.31	32.78 ± 5.01	46.39±1.05	37.07 ± 0.68	54.00±0.20	47.57 ± 0.50	50.14 ± 0.68	42.96 ± 1.02
	BERT*	27.22 ± 1.22	23.34 ± 1.11	$45.31 {\pm} 0.96$	36.28 ± 0.71	49.60 ± 0.27	43.36 ± 0.27	40.19 ± 0.74	$33.69 {\pm} 0.72$
	RoBERTa	62.10 ± 2.77	57.21 ± 2.51	72.95 ± 1.75	62.25 ± 1.33	76.35 ± 0.65	$70.49 {\pm} 0.59$	70.67 ± 0.87	63.50 ± 1.11
	RoBERTa*	67.42 ± 4.35	62.72 ± 3.02	74.47 ± 1.00	63.35 ± 1.09	77.08 ± 1.02	$71.44 {\pm} 0.87$	74.61 ± 1.08	67.78 ± 0.95
	P-Tuning v2	71.00 ± 2.03	66.76±1.95	76.86 ± 0.59	<u>66.89</u> ±1.14	<u>79.65</u> ±0.38	$\underline{74.33}\pm0.37$	72.08 ± 0.51	65.44 ± 0.63
C. C.	G2P2-p	79.16±1.23	74.99±1.35	$79.59 {\pm} 0.31$	68.26 ± 0.43	80.86±0.40	74.44±0.29	81.26 ± 0.36	$74.82 {\pm} 0.45$
メな	G2P2	80.08*±1.33	75.91 *±1.39	81.03 *±0.43	69.86 *±0.67	82.46 *±0.29	76.36*±0.25	82.77 *±0.32	76.48 *±0.52
	(improv.)	(+2.12%)	(+1.78%)	(+5.43%)	(+4.44%)	(+3.53%)	(+2.7%)	(+6.53%)	(+7.92%)

 G2P2 outperforms the best baseline by around 3–7%, showing the advantage of our contrastive pre-training and graph grounded prompt tuning

Outline

Introduction

Methodology

D Experiment

Conclusion & Future work

Conclusion

Key contributions

- Addressed the problem of **low-resource multi-task text classification**;
- Proposed G2P2, consisting of **three graph interaction-based** contrastive strategies in pretraining, and a **prompting** mechanism for the jointly pre-trained graph-text model in downstream classification.

Limitations

- The need of a graph to complement the texts
- Cannot do prompt tuning for zero-shot

(b) Graph-grounded prompt tuning (few-shot classification)

THANK YOU FOR YOUR ATTENTION

Paper, code, data... <u>www.yfang.site</u>

School of Computing and Information Systems