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Semi-supervised node classification on graphs
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Two challenges of inductive semi-supervised 
node classification (Q1 & Q2)

Inductive approach

Aware of Customize to

Differences across 

graphs

Two questions

Q2: What form of general knowledge can 

empower semi-supervised node 

classification on a new graph?

Q1: How do we dynamically adjust the 

inductive model?
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Q1: How to dynamically adjust the inductive model?

We propose a learning-to-train framework.

Learn a prior that can be adapted to semi-supervised node classification 
on different graphs (an instance of meta-learning)

𝜃

Graph 1 (𝜃1)

Graph 2 (𝜃2)

Graph 3 (𝜃3)

Prior

Adapt
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Q2: What form of general knowledge (i.e. prior)?

Graph-level general knowledgeTask-level general knowledge

Final model adapted to semi-supervised 
node classification tasks on new graphs

Condition
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MI-GNN: Meta-Inductive GNN

Our meta-inductive approach (MI-GNN) 8



Overall framework

Optimize via 

backpropagation

Fine-tune

Fine-tuneSample (𝑆𝑖 , 𝑄𝑖)
on 𝐺𝑖 ∈ 𝒢tr

Given (𝑆𝑗 , 𝑄𝑗)

on 𝐺𝑗 ∈ 𝒢te

General knowledge
Task prior 𝜃

Graph prior 𝜙

(b) Graph-level adaptation

Support loss

𝐿(𝑆𝑖 , 𝜃𝑖)

𝐺𝑖-conditioned 
task prior 𝜃𝑖

(c) Task-level adaptation

𝐺𝑖-specific transformation
(𝛾𝑖: scaling, 𝛽𝑖: shifting)

1

……

Training graphs 𝒢tr

Support Support

Query Query

……

Testing graphs 𝒢te

Support Support

Query Query

(a) Training/testing graphs and tasks
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?

?
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?

?

Task (query) loss

𝐿(𝑄𝑖 , 𝜃𝑖
′)

Dual-adapted model 𝜃𝑖
′

Support loss

𝐿(𝑆𝑗 , 𝜃𝑗)

𝐺𝑗-conditioned 

task prior 𝜃𝑗

𝐺𝑗-specific transformation

(𝛾𝑗: scaling, 𝛽𝑗: shifting)

Query embeddings

𝑓 𝑣, 𝜃𝑗
′ , ∀𝑣 ∈ 𝑄𝑗

Dual-adapted model 𝜃𝑗
′

Predict

𝑐 Support node 
with label 𝑐

Query node 
with label 𝑐
(in training)

𝑐

? Query node 
without label 
(in testing) ?
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Task prior

Our task prior 𝜃 takes the form of 

GNNs model, i.e.,

Node features
[[𝑎0, 𝑏0,  ……]
[𝑎1, 𝑏1,  ……]
[𝑎2, 𝑏2,  ……]

……       ]

Structural 
information

Layer 1 of GNNs

Final representation 
[[x0, 𝑦0,  ……]
[x1, 𝑦1,  ……]
[x2, 𝑦2,  ……]

……       ]

Layer 2 of GNNs

……𝜃 = (𝑊1,𝑊2, …… )
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Graph-level adaptation
• Graph prior 𝜙.

• We employ a graph prior 𝜙 to 
condition the task prior 𝜃

𝜃𝑖 = 𝜏 𝜃, g;𝜙 = 𝛾i + 𝟏 ∘ 𝜃 + 𝛽i

Graph-conditioned task prior
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Graph conditioned transformation
• We use MLPs to generate the scaling and shifting vector 𝛾𝑖 & 𝛽𝑖

Learnable parameters of the 
two MLPs

Both are vectors 

𝛾i = 𝑀𝐿𝑃𝛾(g𝑖; 𝜙𝛾)

𝛽i = 𝑀𝐿𝑃𝛽(g𝑖; 𝜙𝛽)

g𝑖 is a graph-level representation of graph 𝑖

𝜃𝑖 = 𝜏 𝜃, g;𝜙 = 𝛾i + 𝟏 ∘ 𝜃 + 𝛽i

Graph-conditioned task prior

Graph-level representation 𝜙 = (𝜙𝛾, 𝜙𝛽)
Vector 
of ones

Element-wise 
multiplication & addition 
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Task-level adaptation

task-level adaptation 
learning rate cross-entropy classification 

loss of the support set 𝑆𝑖

𝜃𝑖
′ = 𝜃𝑖 − 𝛼

𝜕𝐿(𝑆𝑖 , 𝑄𝑖)

𝜕𝜃𝑖
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Overall training objective

• After the dual adaptions on 𝐺𝑖, the goal is to optimize the general knowledge 
and the optimal (𝜃 ,𝜙) are given by 

arg min
𝜃 ,𝜙

෍

𝐺𝑖∈ 𝒢𝑡𝑟

(𝐿 𝑄𝑖 , 𝜏
′ 𝜃, g;𝜙 + 𝜆(∥ 𝛾𝑖 ∥2 +∥ 𝛽𝑖 ∥2) )

Dual-adapted 
model (𝜃𝑖

′)
Task cross-entropy loss 
on query nodes 𝑄𝑖

𝐿2 regularization
on scaling & shifting

a hyper-parameter 
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Datasets

https://www.smrfoundat
ion.org/nodexl/automati
on/flickr-data-recipes/

Walker C B F. 
Cuneiform[M]

Figure: Fielden S D P, 
Leigh D A, Woltering S L. 
Molecular knots[J]

Service R F. Molecular 
CT scan could speed 
drug discovery [J]

https://www.yelp.com/dataset

(All 5 datasets are from PyTorch Geometric Datasets:
https://pytorch-
geometric.readthedocs.io/en/latest/modules/datasets.html)

https://www.smrfoundation.org/nodexl/automation/flickr-data-recipes/
https://www.yelp.com/dataset
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html


Performance comparison with baselines
We report the average accuracy and micro-F1 with 95% confidence interval, in percent. In each column, the
best result is bolded and the runner-up is underlined. Improvement by MI-GNN is calculated relative to the
best baseline. ***/**/* denotes the difference between MI-GNN and the best baseline is statistically
significant at the 0.01/0.05/0.1 level under the two-tail 𝑡-test.
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Alternative GNN architectures
Performance comparison of L2T-GNN and a few key baselines, whilst using GCN and GraphSAGE as the GNN 
architecture. We report the average accuracy with 95% confidence interval. 
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Ablation Study

Ablated versions of MI-GNN:

• Fine-tune only
Neither graph- nor task-level adaptations, but a 
simple fine-tuning step.

• Graph-level only
Remove the task-level adaptation from MI-GNN.

• Task-level only
Remove graph-level adaptation from MI-GNN.
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Performance case study

• Transductive methods are not influenced by 
similarity between testing and training graphs.

• Performance of inductive models correlates
to such similarity.

• Our meta-inductive approach is robust due to 
the dual-adaptation.
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Conclusion & Future Work

• Conclusion:

• Studied the problem of inductive 

semi-supervised node classification 

across graphs.

• Proposed a novel framework called 

MI-GNN, containing a dual 

adaptation mechanism at both the 

graph and task levels.

• Conduct extensive experiments on 

five real-world graph collections. 

• Future work:

• Consider the node level 

adaptation, additionally

• Apply to heterogeneous network
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