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(b) Conventional inductive approach



Inductive approach 1
J

Two questions

Q1: How do we dynamically adjust the
Inductive model?

Aware of

A 4

Customize to

Differences across

graphs

Q2: What form of general knowledge can
empower semi-supervised node
classification on a new graph?




We propose a learning-to-train framework.

Graph 2 (6,)

Graph 1 (6,) / Graph 3 (65)
adopt |
v
Prior

S

Learn a prior that can be adapted to semi-supervised node classification
on different graphs (an instance of meta-learning)



Condition (

{ Task-level general knowledge } L Graph-level general knowledge }

Adapt

Final model adapted to semi-supervised
node classification tasks on new graphs
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Our meta-inductive approach (MI-GNN)



Q Support node
with label ¢

©

Query node
with label ¢
(in training)

®

Query node
without label
(in testing)

Training graphs G**
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(a) Training/testing graphs and tasks

/
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Sample (S;, Q;)
onG; € G

G;-conditioned

Support loss

task prior 6;

T

G;-specific transformation

Given (S], QJ)
on G; € G*

> (y;:scaling, B;: shifting)

General knowledge
Task prior 8
Graph prior ¢

_ Gj-specific transformation

/
s

(v;: scaling, B;: shifting)

Gj-conditioned

L(S;, 6;)

‘ Fine-tune
Dual-adapted model 6;
Task (query) loss
L(Qir 91,)

Optimize via JI

backpropagation

Query embeddings
f(v,6),vv e Q;

T

Dual-adapted model 6;
1 Fine-tune

Support loss

Predict @

task prior 6,

(b) Graph-level adaptation

L(S;,6))

(c) Task-level adaptation



Our task prior 8 takes the form of

GNNs model, i.e.,
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[a1, b1, ... ] information
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* Graph prior ¢.
* We employ a graph prior ¢ to
condition the task prior @

Graph-conditioned task prior

0; =7100,8¢)=((;+1)o 0+ f

G;-conditioned

task prior 6;

!

G;-specific transformation
(v;: scaling, B;: shifting)

7

General knowledge

~N

Task prior 6
Graph prior ¢

11



* We use MLPs to generate the scaling and shifting vector y; & f5;

f—’
-

_» Yi = MLP,(8i; dy)-__
1 AR
Both are vectors — , ... Learnable parameters of the

== two MLPs
s pi = MLPg(gi; ¢p)

g; is a graph-level representation of graph i

Graph-conditioned task prior
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Graph-level repfesentation ¢ = (¢, dp) Vector Element-wise
' of ones multiplication & addition



Gradient

G;-conditioned Support loss steps Dual-adapted
task prior 6; L(S;, 6;) model 6;
= 0, -

; 6. a
i )
- ””” ’ 8\61:

task-level adaptation

learning rate cross-entropy classification

loss of the support set S;
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 After the dual adaptions on G;, the goal is to optimize the general knowledge
and the optimal (8 ,¢) are given by

__ ahyper-parameter

-~

arg min (L(QyT' (0,8 ¢0)) + Al yi ll +11 B 1l2))
9 ;¢ GiE gt‘r//f R\ A

\

Task cross-entropy loss Dual-adapted L, regularization
on query nodes Q; model (6;) on scaling & shifting
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Dataset Flickr  Yelp Cuneiform COX2 DHFR

# Graphs 300 300 267 467 756

# Edges (avg) | 13.1 435 20.1 448 445
# Nodes (avg.) 12.5 6.9 21.3 41.2 42.4
# Node features 500 300 3 3 3
# Node classes 7 10 7 8 9

(All'5 datasets are from PyTorch Geometric Datasets:

Multi-label? No Yes Yes No No https://pytorch-

geometric.readthedocs.io/en/latest/modules/datasets.html)

0O O —

A

) ; P i,

https://www.smrfoundat https://www.yelp.com/dataset Walker CBF. Figure: FieldenSD P, Service R F. Molecular

ion.org/nodex|/automati Cuneiform[M] Leigh D A, Woltering S L. CT scan could speed
on/flickr-data-recipes/ Molecular knots[J] drug discovery [J]
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https://www.smrfoundation.org/nodexl/automation/flickr-data-recipes/
https://www.yelp.com/dataset
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html

We report the average accuracy and micro-F1 with 95% confidence interval, in percent. In each column, the
best result is bolded and the runner-up is underlined. Improvement by MI-GNN is calculated relative to the
best baseline. ***/**/* denotes the difference between MI-GNN and the best baseline is statistically
significant at the 0.01/0.05/0.1 level under the two-tail t-test.

Flickr Yelp Cuneiform COX2 DHFR

Accuracy Micro-F1 Accuracy Micro-F1 Accuracy Micro-F1 Accuracy Micro-F1 Accuracy Micro-F1
DeepWalk 39.88+2.42  30.01+1.21 | 63.27+£2.73  57.11+6.29 | 74.61+0.60  27.05+2.11 | 37.68+0.73  26.16+1.08 | 33.14+0.18  29.93+0.58
Transduct-GNN | 13.61+1.22 10.71+£1.20 | 24.87+15.4  23.85+14.6 | 49.63+0.95 34.00+1.15 | 13.23+0.17 9.73+0.22 | 11.21+0.33 8.65+0.22
o Planetoid 14.78+8.75 8.72+3.07 | 53.12+£2.38  46.29+3.55 | 53.14+5.49  30.22+5.83 | 11.81+7.41 10.58+8.79 | 17.35+11.1 9.62+9.63
§ Induct-GNN 40.48+1.69  29.67+1.77 | 65.95+0.56 56.61+1.81 | 74.89+0.35 18.03+0.93 | 53.71+0.92 41.56+1.90 | 45.23+0.62 29.38+6.07
S K-NN 34.11+1.76  26.39+1.39 | 61.70£0.90 57.35x1.42 | 70.36+0.27 35.66+0.84 | 33.16+£0.95 32.84+1.00 | 36.32+0.89  27.12+1.20
& AGF 40.58+1.61  28.99+2.09 | 65.96+0.54 56.64+1.83 | 74.89+0.37 18.00+0.94 | 53.97+0.79 42.00+1.62 | 44.85+0.56  29.08+5.96
o GFL 30.24+0.68  29.51+0.69 | 61.62+0.97  58.88+2.03 | 63.72+0.37  38.30+0.84 | 29.25+0.73  25.53+0.94 | 30.24+0.68  29.51+0.69
§Meta—GNN 39.66+0.92  30.02+2.49 | 66.24+0.84 56.20+1.81 | 75.12+0.33  19.21+1.25 | 53.24+0.77 37.36+3.02 | 45.61+0.65 28.34+4.46

43
rb\‘z’ MI-GNN 44.45+2.18 33.79+£1.87 | 67.92+0.69 60.20+2.23 | 81.48+0.47 43.32+1.49 | 57.27+0.80 44.66+2.01 | 45.19+0.70 49.93+1.62
g (improv.) (+9.53%) (+12.57%) (+2.54%) (+2.23%) (+8.47%) (+13.10%) (+6.11%) (+6.34%) (-0.92%) (+66.82%)
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Performance comparison of LZT-GNN and a few key baselines, whilst using GCN and GraphSAGE as the GNN

architecture. We report the average accuracy with 95% confidence interval.

GCN as the GNN Architecture

Flickr Yelp Cuneiform COX2 DHFR
Transduct-GNN | 14.89+0.94 50.92+0.95 49.40+2.27 11.89+0.63 10.89+0.43
Induct-GNN 12.08£3.98  55.04%+1.77 71.65+£0.46  86.06+2.78 90.31+1.03
AGF 11.94+2.45 53.66+3.04 71.66+0.46 86.32+3.08 89.64+1.00
Meta-GNN 22.51+3.05 54.80+1.86 72.24+0.88 86.92+3.66 90.26+0.91
MI-GNN 29.91+6.85 57.22+1.79 75.36+2.07 86.97+2.94 91.39+0.51

GraphSAGE as the GNN Architecture

Flickr Yelp Cuneiform COX2 DHFR
Transduct-GNN | 14.97+1.96 50.14+1.19 50.59+1.37 12.78+0.65 11.19+0.75
Induct-GNN 7.31£1.57 56.48+1.73 84.46%+2.68 85.28+1.78 88.65+4.79
AGF 7.45+1.31 56.70+2.04 34.66+2.73 85.21+1.85 88.21+4.45
Meta-GNN 33.88+2.91 61.80+1.81 84.46+2.44 86.05+2.80 88.17+4.71
MI-GNN 42.37+3.87 69.23+1.18 91.09+2.51 93.24+0.80 93.89+0.33
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Ablated versions of MI-GNN:

Fine-tune only

Neither graph- nor task-level adaptations, but a
simple fine-tuning step.

Graph-level only

Remove the task-level adaptation from MI-GNN.

Task-level only
Remove graph-level adaptation from MI-GNN.

100 Fine-tune only B Task-level only
B Graph-level only . MI-GNN
;\3 80
>
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S 60
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Flickr Yelp Cuneiform COX2 DHFR
(a) Accuracy
80
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B Graph-level only - MI-GNN
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x
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40
A=
=30
20
10°

Flickr Yelp Cuneiform COX2 DHFR

(b) Micro-F1 19



* Transductive methods are not influenced by

similarity between testing and training graphs.

* Performance of inductive models correlates
to such similarity.

e Our meta-inductive approach is robust due to
the dual-adaptation.

Med High

Similarity to training graphs
Low

Transduct Induct Meta-Induct
Training settings

(a) Accuracy

High

Med

Similarity to training graphs
Low

Transduct Induct Meta-Induct
Training settings

(b) Micro-F1
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* Conclusion: e Future work:

» Studied the problem of inductive e Consider the node level
semi-supervised node classification adaptation, additionally

across graphs.
grap * Apply to heterogeneous network

* Proposed a novel framework called
MI-GNN, containing a dual
adaptation mechanism at both the

graph and task levels.

* Conduct extensive experiments on

five real-world graph collections.
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