Meta-Inductive Node Classification across Graphs

Zhihao Wen, Yuan Fang, Zemin Liu School of Computing and Information Systems Singapore Managent University

School of Computing and Information Systems

Outline

Introduction

Methodology

D Experiment

Conclusion & Future Work

Semi-supervised node classification on graphs

(a) Transductive approach

(b) Conventional inductive approach

Two challenges of inductive semi-supervised node classification (Q1 & Q2)

Q1: How to dynamically adjust the inductive model?

We propose a **learning-to-train** framework.

Learn a prior that can be adapted to semi-supervised node classification on different graphs (an instance of **meta-learning**)

Q2: What form of general knowledge (i.e. prior)?

Outline

□ Introduction & Challenge

Methodology

D Experiment

Conclusion & Future Work

MI-GNN: Meta-Inductive GNN

Our meta-inductive approach (MI-GNN)

Overall framework

Graph-level adaptation

- Graph prior ϕ .
 - We employ a graph prior ϕ to condition the task prior θ

Graph-conditioned task prior

$$\theta_i = \tau(\theta, \mathbf{g}; \phi) = (\gamma_i + \mathbf{1}) \circ \theta + \beta_i$$

$$G_i \text{-conditioned} \\ \textbf{task prior } \theta_i$$

$$f_i = G_i \text{-specific transformation} \\ (\gamma_i: \text{ scaling, } \beta_i: \text{ shifting})$$

$$f_i = G_i \text{-specific transformation} \\ f_i = G_i \text{-specific transformation} \\$$

Graph conditioned transformation

• We use MLPs to generate the scaling and shifting vector $\gamma_i \& \beta_i$

 g_i is a graph-level representation of graph i

Graph-conditioned task prior

Task-level adaptation

Overall training objective

• After the dual adaptions on G_i , the goal is to **optimize the general knowledge** and the optimal (θ , ϕ) are given by

Outline

□ Introduction & Challenge

Methodology

Experiment

□ Conclusion & Future Work

Datasets

Dataset	Flickr	Yelp	Cuneiform	COX2	DHFR
# Graphs	800	800	267	467	756
# Edges (avg.)	13.1	43.5	20.1	44.8	44.5
# Nodes (avg.)	12.5	6.9	21.3	41.2	42.4
<pre># Node features</pre>	500	300	3	3	3
# Node classes	7	10	7	8	9
Multi-label?	No	Yes	Yes	No	No

(All 5 datasets are from PyTorch Geometric Datasets: <u>https://pytorch-</u> geometric.readthedocs.io/en/latest/modules/datasets.html)

https://www.smrfoundat ion.org/nodexl/automati on/flickr-data-recipes/

https://www.yelp.com/dataset

Walker C B F. Cuneiform[M]

Figure: Fielden S D P, Leigh D A, Woltering S L. Molecular knots[J]

Service R F. Molecular CT scan could speed drug discovery [J]

Performance comparison with baselines

We report the average accuracy and micro-F1 with 95% confidence interval, in percent. In each column, the best result is bolded and the runner-up is underlined. Improvement by MI-GNN is calculated relative to the best baseline. ***/**/* denotes the difference between MI-GNN and the best baseline is statistically significant at the 0.01/0.05/0.1 level under the two-tail *t*-test.

		Flie	Flickr Yelp Cuneiform		iform	COX2		DHFR			
	.se	Accuracy	Micro-F1	Accuracy	Micro-F1	Accuracy	Micro-F1	Accuracy	Micro-F1	Accuracy	Micro-F1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	DeepWalk	$39.88 \pm 2.42$	$30.01 \pm 1.21$	63.27±2.73	57.11±6.29	$74.61 \pm 0.60$	$27.05 \pm 2.11$	$37.68 \pm 0.73$	$26.16 \pm 1.08$	$33.14 \pm 0.18$	<u>29.93</u> ±0.58
and	Transduct-GNN	$13.61 \pm 1.22$	$10.71 \pm 1.20$	24.87±15.4	$23.85 \pm 14.6$	49.63±0.95	$34.00 \pm 1.15$	$13.23 \pm 0.17$	$9.73 \pm 0.22$	$11.21 \pm 0.33$	$8.65 \pm 0.22$
hot	Planetoid	$14.78 \pm 8.75$	$8.72 \pm 3.07$	53.12±2.38	$46.29 \pm 3.55$	53.14±5.49	$30.22 \pm 5.83$	$11.81 \pm 7.41$	$10.58 \pm 8.79$	$17.35 \pm 11.1$	9.62±9.63
	Induct-GNN	$40.48 \pm 1.69$	$29.67 \pm 1.77$	$65.95 \pm 0.56$	$56.61 \pm 1.81$	$74.89 \pm 0.35$	$18.03 \pm 0.93$	$53.71 \pm 0.92$	$41.56 \pm 1.90$	$45.23 \pm 0.62$	$29.38 \pm 6.07$
	K-NN	$34.11 \pm 1.76$	$26.39 \pm 1.39$	$61.70 \pm 0.90$	$57.35 \pm 1.42$	$70.36 \pm 0.27$	$35.66 \pm 0.84$	$33.16 \pm 0.95$	$32.84{\pm}1.00$	$36.32 \pm 0.89$	$27.12 \pm 1.20$
	AGF	$40.58 \pm 1.61$	$28.99 \pm 2.09$	$65.96 \pm 0.54$	$56.64 \pm 1.83$	$74.89 \pm 0.37$	$18.00 \pm 0.94$	$53.97 \pm 0.79$	$42.00 \pm 1.62$	$44.85 \pm 0.56$	$29.08 \pm 5.96$
	GFL	$30.24 \pm 0.68$	29.51±0.69	61.62±0.97	$58.88 \pm 2.03$	63.72±0.37	$38.30 \pm 0.84$	$29.25 \pm 0.73$	$25.53 \pm 0.94$	$30.24 \pm 0.68$	29.51±0.69
lets lestre.	Meta-GNN	$39.66 \pm 0.92$	$30.02 \pm 2.49$	$66.24 \pm 0.84$	$56.20 \pm 1.81$	$75.12 \pm 0.33$	19.21±1.25	$53.24 \pm 0.77$	$37.36 \pm 3.02$	<b>45.61</b> ±0.65	$28.34 \pm 4.46$
	MI-GNN	<b>44.45</b> ±2.18	<b>33.79</b> ±1.87	<b>67.92</b> ±0.69	<b>60.20</b> ±2.23	<b>81.48</b> ±0.47	<b>43.32</b> ±1.49	<b>57.27</b> ±0.80	<b>44.66</b> ±2.01	45.19±0.70	<b>49.93</b> ±1.62
	(improv.)	(+9.53%)	(+12.57%)	(+2.54%)	(+2.23%)	(+8.47%)	(+13.10%)	(+6.11%)	(+6.34%)	(-0.92%)	(+66.82%)
4		**	**	***	***	***	***	***	*		***

#### **Alternative GNN architectures**

Performance comparison of L2T-GNN and a few key baselines, whilst using **GCN** and **GraphSAGE** as the GNN architecture. We report the average accuracy with **95% confidence interval**.

	GCN as the GNN Architecture					
	Flickr	Yelp	Cuneiform	COX2	DHFR	
Transduct-GNN	$14.89 \pm 0.94$	$50.92 \pm 0.95$	$49.40 \pm 2.27$	$11.89 \pm 0.63$	$10.89 \pm 0.43$	
Induct-GNN	$12.08 \pm 3.98$	$55.04 \pm 1.77$	$71.65 \pm 0.46$	$86.06 \pm 2.78$	<u>90.31</u> ±1.03	
AGF	$11.94 \pm 2.45$	$53.66 \pm 3.04$	$71.66 \pm 0.46$	$86.32 \pm 3.08$	$89.64 \pm 1.00$	
Meta-GNN	<u>22.51</u> ±3.05	$54.80 \pm 1.86$	$72.24 \pm 0.88$	<u>86.92</u> ±3.66	$90.26 \pm 0.91$	
MI-GNN	<b>29.91</b> ±6.85	<b>57.22</b> ±1.79	75.36±2.07	<b>86.97</b> ±2.94	<b>91.39</b> ±0.51	

	Flickr	Yelp	Cuneiform	COX2	DHFR
Transduct-GNN	14.97±1.96	50.14±1.19	$50.59 \pm 1.37$	$12.78 \pm 0.65$	11.19±0.75
Induct-GNN	7.31±1.57	$56.48 \pm 1.73$	$84.46 \pm 2.68$	$85.28 \pm 1.78$	<u>88.65</u> ±4.79
AGF	$7.45 \pm 1.31$	$56.70 \pm 2.04$	$84.66 \pm 2.73$	85.21±1.85	88.21±4.45
Meta-GNN	<u>33.88</u> ±2.91	$61.80 \pm 1.81$	84.46±2.44	$86.05 \pm 2.80$	$88.17 \pm 4.71$
MI-GNN	<b>42.37</b> ±3.87	<b>69.23</b> ±1.18	<b>91.09</b> ±2.51	<b>93.24</b> ±0.80	<b>93.89</b> ±0.83

### **Ablation Study**

#### Ablated versions of **MI-GNN**:

- Fine-tune only
   Neither graph- nor task-level adaptations, but a
   simple fine-tuning step.
- Graph-level only

Remove the task-level adaptation from MI-GNN.

• Task-level only

Remove graph-level adaptation from MI-GNN.



#### Performance case study

- Transductive methods are **not influenced** by similarity between testing and training graphs.
- Performance of inductive models **correlates** to such similarity.
- Our meta-inductive approach is **robust** due to the **dual-adaptation**.



#### Outline

□ Introduction & Challenge

Methodology

**D** Experiment

**Conclusion & Future Work** 

#### **Conclusion & Future Work**

- Conclusion:
  - Studied the problem of inductive semi-supervised node classification across graphs.
  - Proposed a novel framework called MI-GNN, containing a dual adaptation mechanism at both the graph and task levels.
  - Conduct extensive experiments on five real-world graph collections.

- Future work:
  - Consider the **node level** adaptation, additionally
  - Apply to heterogeneous network

#### **THANK YOU FOR YOUR ATTENTION**

Paper, code, data... <u>www.yfang.site</u>





### School of Computing and Information Systems