
Meta-Inductive Node Classification across Graphs
Zhihao Wen

Singapore Management University

Singapore

zhwen.2019@smu.edu.sg

Yuan Fang

Singapore Management University

Singapore

yfang@smu.edu.sg

Zemin Liu

Singapore Management University

Singapore

zmliu@smu.edu.sg

ABSTRACT
Semi-supervised node classification on graphs is an important re-

search problem, with many real-world applications in information

retrieval such as content classification on a social network and

query intent classification on an e-commerce query graph. While

traditional approaches are largely transductive, recent graph neu-

ral networks (GNNs) integrate node features with network struc-

tures, thus enabling inductive node classification models that can

be applied to new nodes or even new graphs in the same feature

space. However, inter-graph differences still exist across graphs

within the same domain. Thus, training just one global model (e.g.,
a state-of-the-art GNN) to handle all new graphs, whilst ignoring

the inter-graph differences, can lead to suboptimal performance.

In this paper, we study the problem of inductive node classifica-

tion across graphs. Unlike existing one-model-fits-all approaches,

we propose a novel meta-inductive framework called MI-GNN to

customize the inductive model to each graph under a meta-learning

paradigm. That is, MI-GNN does not directly learn an inductive

model; it learns the general knowledge of how to train a model for

semi-supervised node classification on new graphs. To cope with

the differences across graphs, MI-GNN employs a dual adaptation
mechanism at both the graph and task levels. More specifically, we

learn a graph prior to adapt for the graph-level differences, and a

task prior to adapt for the task-level differences conditioned on a

graph. Extensive experiments on five real-world graph collections

demonstrate the effectiveness of our proposed model.

CCS CONCEPTS
• Computing methodologies → Learning latent representa-
tions; • Information systems→ Data mining.

KEYWORDS
Graph neural networks, semi-supervised node classification, induc-

tive graph model, meta-learning

ACM Reference Format:
Zhihao Wen, Yuan Fang, and Zemin Liu. 2021. Meta-Inductive Node Classi-

fication across Graphs. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR ’21),
July 11–15, 2021, Virtual Event, Canada. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3404835.3462915

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8037-9/21/07. . . $15.00

https://doi.org/10.1145/3404835.3462915

1 INTRODUCTION
Graph-structured data widely exist in diverse real-world scenarios,

such as social networks, e-commerce graphs, citation graphs, and

biological networks. Analysis of these graphs can uncover valuable

insights about their respective application domain. In particular,

semi-supervised node classification on graphs [2] is an important

task in information retrieval. For instance, on a content-sharing

social network such as Flickr, content classification enables topical

filtering and tag-based retrieval for multimedia items [34]; on a

query graph for e-commerce, query intent classification enhances

the ranking of results by focusing on the intended product category

[10]. Such scenarios are semi-supervised, as only some of the nodes

on the graph are labeled with a category, whilst the remaining

nodes are unlabeled. The labeled nodes and the intrinsic structures

between both labeled and unlabeled nodes (i.e., the graph) can be

used for training a model to classify the unlabeled nodes.

Unfortunately, traditional manifold-based semi-supervised ap-

proaches on graphs [2, 9, 44, 54, 56] mostly assume a transductive

setting. That is, the learned model only works on existing nodes

in the same graph, and cannot be applied to new nodes added to

the existing graph or entirely new graphs even if they are from

the same domain. As Figure 1(a) shows, a transductive approach

directly trains a model 𝜃𝑖 on the labeled nodes of each graph 𝐺𝑖 ,

and apply the model to classify the unlabeled nodes in the same

graph 𝐺𝑖 . While some simple inductive extensions exist through

nearest neighbors or kernel regression [17], they can only deal with

new nodes in a limited manner by processing the local changes,

and often cannot generalize to handling new graph structures. The

ability to handle new graphs is important, as we often need to deal

with a series of ego-networks or subgraphs [7, 22, 53] when the

full graph is too large to process or impossible to obtain. Thus, it

becomes imperative to equip semi-supervised node classification

with the inductive capability of generalizing across graphs.

Problem setting. In this paper, we study the problem of inductive
semi-supervised node classification across graphs. Consider a set of
training (existing) graphs and a set of testing (new) graphs. In a

training graph, some or all of the nodes are labeled with a category;

in a testing graph only some of the nodes are labeled and the rest

are unlabeled. The nodes in all graphs reside in the same feature

space and share a common set of categories. Our goal is to learn an

inductive model from the training graphs, which can be applied to

the testing graphs to classify their unlabeled nodes.

Prior work. State-of-the-art node classification approaches hinge

on graph representation learning, which projects nodes to a la-

tent, low-dimensional vector space. There exist two main factions:

network embedding [4] and graph neural networks (GNNs) [45].

On one hand, network embeddingmethods directly parameterize

node embedding vectors and constrain them with various local

https://doi.org/10.1145/3404835.3462915
https://doi.org/10.1145/3404835.3462915

𝐺ଷ

people

pet

plant

?

?

…
𝐺ସ

people

pet

plant

?

?

𝜃

(b) Conventional inductive approach

𝜃ଵ

(a) Transductive approach

𝜃

𝜃ଵ

𝜃ଶ

𝜃ଵ
ᇱ

𝜃ଶ
ᇱ

(c) Our meta-inductive approach (MI-GNN)

Graph-level
adaptation

Task-level
adaptation

Training graphs Testing graphs Training graphs

𝐺ଷ

people

pet

plant

?

?

…
𝐺ସ

people

pet

plant

?

?

Testing graphs

𝐺ଵ

people pet

?

?

𝜃ଶ

…
𝐺ଶ

people plant

? ?

𝐺ଵ

people pet

?

?

…
𝐺ଶ

people plant

? ?

𝐺ଵ

people pet

?

?

…
𝐺ଶ

people plant

? ?

𝜙

𝜙

Figure 1: Illustrative comparison of transductive, inductive and our meta-inductive approaches for semi-supervised node clas-
sification on subgraphs of an image-sharing network. (Colored images: labeled nodes; black &white images: unlabeled nodes.)

structures, such as random walks in DeepWalk [31] and node2vec

[14], and first- and second-order proximity in LINE [38]. Due to the

direct parameterization, network embedding has limited inductive

capability like the traditional manifold approaches. For instance, the

online version of DeepWalk handles new nodes by incrementally

processing the local random walks around them.

On the other hand, GNNs integrate node features and structures

into representation learning. They typically follow a message pass-

ing framework, in which each node receives, maps and aggregates

messages (i.e., features or embeddings) from its neighboring nodes

in multiple layers to generate its own embedding vector. The impli-

cation is that GNNs are parameterized by a weight matrix in each

layer to map the messages from the neighboring nodes, instead

of directly learning the node embedding vectors. In particular, the

weight matrices give rise to the inherent inductive power of GNNs,

which can be applied to similarly map and aggregate messages in

a new graph given the same feature space. As Figure 1(b) shows,

we can train a GNN model 𝜃 on a collection of training graphs

{𝐺3,𝐺4}, which are image co-occurrence subgraphs of an image-

sharing network like Flickr [52]. Specifically, in every subgraph,

each node represents an image, and an edge can be formed be-

tween two images if they have certain common properties (e.g.,
submitted to the same gallery or taken by friends). The learned

model 𝜃 can be deployed to predict the unlabeled nodes on new test-

ing graphs {𝐺1,𝐺2}, which are different subgraphs from the same

image-sharing network. In particular, nodes in all subgraphs share

the same feature space and belong to a common set of categories.

Challenges and present work.While most GNNs can be induc-

tive, ultimately they only train a single inductive model to apply

on all new graphs. These one-model-fits-all approaches turn out

to suffer from a major drawback, as they neglect inter-graph dif-

ferences that can be crucial to new graphs. Even graphs in the

same domain often exhibit a myriad of differences. For instance,

social ego-networks for different kind of ego-users (e.g., businesses,
celebrities and regular users) show dissimilar structural patterns;

image co-occurrence subgraphs in different galleries have vary-

ing distributions of node features and categories. To cope with

such inter-graph differences, it remains challenging to formulate

an inductive approach that not only becomes aware of but also

customizes to the differences across graphs. To be more specific,

there are two open questions to address.

First, how do we dynamically adjust the inductive model? A naïve

approach is to perform an additional fine-tuning step on the labeled

nodes of the new graph. However, such a fine-tuning on new graphs

is decoupled from the training step, which does not learn to deal

with inter-graph differences. Thus, the two-step approach cannot

adequately customize to different graphs. Instead, the training pro-

cess must be made aware of inter-graph differences and further

adapt to the differences across training graphs. In this paper, we

resort to the meta-learning paradigm [33, 42], in which we do not

directly train an inductive model. Instead, we learn a form of gen-

eral knowledge that can be quickly utilized to produce a customized

inductive model for each new graph. In other words, the general

knowledge encodes how to train a model for new graphs. While

meta-learning has been successfully adopted in various kinds of

data including images [23], texts [19] and graphs [55], these ap-

proaches mainly address the few-shot learning problem, whereas

our work is the first to leverage meta-learning for inductive semi-

supervised node classification on graphs.

Second, more concretely, what form of general knowledge can
empower semi-supervised node classification on a new graph? On one

hand, every semi-supervised node classification task is different,

which arises from different nodes and labels across tasks. On the

other hand, every graph is different, providing a different context to

the tasks on different graphs. Thus, the general knowledge should

encode how to deal with both task- and graph-level differences. As

Figure 1(c) illustrates, for task-level differences, we learn a task prior
𝜃 that can be eventually adapted to the semi-supervised node classi-

fication task in a new graph; for graph-level differences, we learn a

graph prior 𝜙 that can first transform 𝜃 into 𝜃𝑖 conditioned on each

graph𝐺𝑖 , before further adapting 𝜃𝑖 to 𝜃
′
𝑖
for the classification task

on𝐺𝑖 . In other words, our general knowledge consists of the task

prior and graph prior, amounting to a dual adaptation mechanism
on both tasks and graphs. Intuitively, the graph-level adaptation

exploits the intrinsic relationship between graphs, whereas the

task-level adaptation exploits the graph-conditioned relationship

between tasks. This is a significant departure from existing task-

based meta-learning approaches such as protonets [35] and MAML

[11], which assumes that tasks are i.i.d. sampled from a task dis-

tribution. In contrast, in our setting tasks are non-i.i.d. as they are

sampled from and thus conditioned on different graphs.

Contributions. Given the above challenges and insights for induc-

tive semi-supervised node classification across graphs, we propose

a novel Meta-Inductive framework for Graph Neural Networks (MI-

GNN). To summarize, we make the following contributions. (1) This

is the first attempt to leverage the meta-learning paradigm for in-

ductive semi-supervised node classification on graphs, which learns

to train an inductive model for new graphs. (2) We propose a novel

framework MI-GNN, which employs a dual-adaptation mechanism

to learn the general knowledge of training an inductive model at

both the task and graph levels. (3) We conduct extensive experi-

ments on five real-world datasets, and demonstrate the superior

inductive ability of the proposed MI-GNN.

2 RELATEDWORK
We investigate related work in three groups: graph neural networks,

inductive graph representation learning and meta-learning.

Graph neural networks. A surge of attention has been attracted

to graph neural networks (GNNs) [45]. Based on they key operation

of neighborhood aggregation in a message passing framework, they

exploit the underlying graph structure and node features simul-

taneously. In particular, different message aggregation functions

materialize different GNNs, e.g., GCN [20] employs an aggregation

roughly equivalent to mean pooling, and GAT [40] employs self-

attention to aggregate neighbors in a weighted manner. Recent

works often exploit more structural information on graphs, such as

graph isomorphism [47] and node positions [51].

Inductive graph representation learning.Recent inductive learn-
ing on graphs are mainly based on network embedding and GNNs.

For the former, some extend classical embedding approaches (e.g.,
skip-gram) to handle new nodes on dynamic graphs [8, 29, 57],

by exploiting structural information from the graph such as co-

occurrence between nodes; others employ graph auto-encoders

[12, 13] for dynamic graphs, by mining and reconstructing the

graph structures. In general, this category of approaches only han-

dle new nodes on the same graph, lacking the ability to extend

to entirely new graphs. In the latter category, most GNNs are in-

herently inductive, and can be applied to new graphs in the same

feature space after training [16, 46]. In this paper, we follow the

line of inductive learning based on GNNs. More recently, a few pre-

training approaches have also been devised for GNNs [18, 27, 41].

While they also learn some form of transferable knowledge on the

training graphs, they are trained in a self-supervised manner, and

the main objective is to learn universally good initializations for

different downstream tasks. Thus, they address a problem setting

that is different from ours.

Meta-learning. Also known as “learning to learn,” meta-learning

[11, 35] aims to simulate the learning strategy of humans, by learn-

ing some general knowledge across a set of learning tasks and

adapting the knowledge to novel tasks. Generally, some approaches

resort to protonets [35] which aim to learn a metric space for the

class prototypes, and others apply optimization-based techniques

Table 1: List of major notations.

Notation Description

𝐺,𝑉 , 𝐸,X a graph, its node and edge set, and node feature matrix

𝐶 the set of node categories

ℓ the label mapping function𝑉 → 𝐶

N𝑣 the set of neighbors of node 𝑣

G, Gtr, Gte
the set of all graphs, training graphs and testing graphs

𝐺𝑖 , 𝑆𝑖 ,𝑄𝑖 a graph𝐺𝑖 with support set 𝑆𝑖 and query set𝑄𝑖

𝜃,𝜙 general knowledge: task prior 𝜃 , graph prior 𝜙

𝛾𝑖 , 𝛽𝑖 scaling and shifting vectors for graph𝐺𝑖

𝜃𝑖 graph𝐺𝑖 -conditioned task prior

𝜃 ′
𝑖

graph𝐺𝑖 -conditioned and task adapted model

such as model-agnostic meta-learning (MAML) [11]. To further en-

hance task adaptation, the transferable knowledge can be tailored to

different clusters of tasks, forming a hierarchical structure of adap-

tation [49]; feature-specific memories can also guide the adapted

model with a further bias [6]; domain-knowledge graphs can also

be leveraged to provide task-specific customization [36]. Another

subtype of meta-learning called hypernetwork [15, 30] uses a sec-

ondary neural network to generate the weights for the target neural

network, i.e., it learns to generate different weights conditioned

on different input, instead of freezing the weights for all input

after training in traditional neural networks. More recently, meta-

learning has also been adopted on graphs for few-shot learning,

such as Meta-GNN [55], GFL [50], GPN [5], RALE [25] and meta-

tail2vec [26], which is distinct from inductive semi-supervised node

classification as further elaborated in Section 3.1. Hypernetwork-

based approaches have also emerged, such as LGNN [24] that adapts

GNN weights to different local contexts, and GNN-FiLM [3] that

adapts to different relations in a relational graph.

3 PRELIMINARIES
In this section, we first formalize the problem of inductive semi-

supervised node classification across multiple graphs. We then

present a background on graph neural networks as the foundation

of our approach. Major notations are summarized in Table 1.

3.1 Problem formulation

Graphs. Our setting assumes a set of graphs G from the same

domain. A graph 𝐺 ∈ G is a quintuple 𝐺 = (𝑉 , 𝐸,X,𝐶, ℓ) where
(1) 𝑉 denotes the set of nodes; (2) 𝐸 denotes the set of edges be-

tween nodes; (3) X ∈ R |𝑉 |×𝑑 is the feature matrix such that x𝑣
is the 𝑑-dimensional feature vector of node 𝑣 ; (4) 𝐶 is the set of

node categories; (5) ℓ is a label function that maps each node to

its category, i.e., ℓ : 𝑉 → 𝐶 . Note that the node feature space and

category set are the same across all graphs.

Inductive semi-supervised node classification. The graph set

G comprises two disjoint subsets, namely, training graphs Gtr and
testing graphs Gte. In a training graph, some or all of the nodes are

labeled, i.e., the label mapping ℓ is known for these nodes. In con-

trast, in a testing graph, only some of the nodes are labeled and the

remaining nodes are unlabeled, i.e., their label mapping is unknown.

Subsequently, given a set of training graphs Gtr and a testing graph

Optimize via
backpropagation

Fine-tune

Fine-tuneSample (𝑆௜, 𝑄௜)
on 𝐺௜ ∈ 𝒢୲୰

Given (𝑆௝, 𝑄௝)

on 𝐺௝ ∈ 𝒢୲ୣ

General knowledge
Task prior 𝜃

Graph prior 𝜙

(b) Graph-level adaptation

Support loss

𝐿(𝑆௜, 𝜃௜)

𝐺௜-conditioned
task prior 𝜃௜

(c) Task-level adaptation

𝐺௜-specific transformation
(𝛾௜: scaling, 𝛽௜: shifting)

1

……

Training graphs 𝒢୲୰

Support Support

Query Query

……

Testing graphs 𝒢୲ୣ

Support Support

Query Query

(a) Training/testing graphs and tasks

2
3

1 2

2

0

1

1

2

0

1 3

?

?

1
2

?
?

Task (query) loss
𝐿(𝑄௜, 𝜃௜

ᇱ)

Dual-adapted model 𝜃௜
ᇱ

Support loss
𝐿(𝑆௝, 𝜃௝)

𝐺௝-conditioned
task prior 𝜃௝

𝐺௝-specific transformation
(𝛾௝: scaling, 𝛽௝: shifting)

Query embeddings

𝑓 𝑣, 𝜃௝
ᇱ , ∀𝑣 ∈ 𝑄௝

Dual-adapted model 𝜃௝
ᇱ

Predict

𝑐 Support node
with label 𝑐

Query node
with label 𝑐
(in training)

𝑐

? Query node
without label
(in testing) ?

Figure 2: Overall framework of MI-GNN, illustrating the pipeline on a training graph 𝐺𝑖 and a testing graph 𝐺 𝑗 .

𝐺 ∈ Gte, our goal is to predict the categories of unlabeled nodes

in 𝐺 . This is known as inductive node classification, as we attempt

to distill the training graphs to enable node classification in new

testing graphs that have not been seen before.

Distinction from few-shot classification.While we address the

semi-supervised node classification problem, it is worth noting

that many meta-learning works [23, 50, 55] address the few-shot

classification problem. Both problems contain labeled and unlabeled

nodes (respectively known as the support and query nodes in the

few-shot setting), and thus they may appear similar. However, there

are two significant differences. First, in few-shot classification, the

query nodes belong to the same category as at least one of the

support nodes. This is often unrealistic on a small graph where

some categories only contain one node. In contrast, in our setting,

the labeled and unlabeled nodes can be randomly split on any graph.

Second, few-shot classification typically deals with novel categories

on the same graph, but our setting deals with novel graphs with

the same set of categories.

3.2 Graph neural networks
Our approach is grounded on graph neural networks, which are

inductive due to the shared feature space and weights across graphs.

We give a brief review of GNNs in the following.

Modern GNNs generally follow a message passing scheme: each

node in a graph receives, maps, and aggregates messages from its

neighbors recursively in multiple layers. Specifically, in each layer,

h𝑙+1𝑣 =M(h𝑙𝑣, {h𝑙𝑢 ,∀𝑢 ∈ N𝑣};W𝑙), (1)

where h𝑙𝑣 ∈ R𝑑𝑙 is the message or the 𝑑𝑙 -dimensional embedding

vector of node 𝑣 in the 𝑙-th layer,N𝑣 is the set of neighboring nodes

of 𝑣 , W𝑙 ∈ R𝑑𝑙+1×𝑑𝑙 is a learnable weight matrix to map the node

embeddings in the 𝑙-th layer, andM(·) is the message aggregation

function. The initial message of node 𝑣 in the input layer is simply

the original node features, i.e., h1𝑣 ≡ x𝑣 . For node classification,

the dimension of the output layer is set to the number of node

categories and uses a softmax activation.

The choice of the message aggregation functionM varies and

characterizes different GNN architectures, ranging from a simple

mean pooling [16, 20, 43] to more complex mechanisms [16, 40, 47].

Our proposed model is flexible in the aggregation functions.

4 METHODOLOGY
In this section, we present a novel graph inductive framework called

MI-GNN, a meta-inductive model that learns to train a model for

every new graph. In the following, we start with an overview of

the framework, before we introduce its components in detail.

4.1 Overview of MI-GNN
The overarching philosophy of MI-GNN is to design an inductive

approach that can dynamically suit to each new graph, in order to

cope with the inter-graph differences. A straightforward approach

is to train a model on the training graphs, and further perform

a fine-tuning step on a new graph in the testing phase. However,

since the training step is independent of the fine-tuning step, it does

not train the model to learn how to fine-tune on unseen graphs. In

contrast, MI-GNN, hinging on the meta-learning principle, learns

a general training procedure so that it knows how to dynamically

generate a model suited to any new graph. We set forth the overall

framework of MI-GNN in Figure 2.

First of all, MI-GNN exploits each training graph to simulate

the semi-supervised node classification task in testing, as shown

in Figure 2(a). Specifically, we take a training graph and split its

nodes with known labels into two subsets: the support set and query
set, following the task-based meta-learning setup [11]. While in

a training graph both the support and query nodes have known

category labels, we regard the support nodes as the only labeled

nodes and the query nodes as the unlabeled nodes to simulate the

semi-supervised classification process during training. On a testing

graph, the labeled and unlabeled nodes naturally form the support

and query sets, respectively, where the ultimate goal is to predict

the unknown categories of the query nodes.

Next, on the simulated tasks, we learn a task prior and a graph

prior during training. The task prior captures the general knowledge

of classifying nodes in a semi-supervised setting, whereas the graph

prior captures the general knowledge of transforming the task prior

w.r.t. each graph. In other words, our general knowledge allows

for dual adaptations at both the graph and task levels. On one

hand, the graph prior captures and adapts for macro differences

across graphs, as illustrated in Figure 2(b). On the other hand, the

task prior captures and adapts for micro differences across tasks

conditioned on a graph, as illustrated in Figure 2(c).

4.2 Graphs and tasks

Training tasks. We refer to the upper half of Figure 2(a) for il-

lustration. On a training graph 𝐺 tr

𝑖
∈ Gtr, we can sample a semi-

supervised node classification task by randomly splitting its nodes

with known labels into the support set 𝑆 tr
𝑖
and query set 𝑄 tr

𝑖
such

that 𝑆 tr
𝑖
∩𝑄 tr

𝑖
= ∅. Specifically, without loss of generality, for the

node set with known labels {𝑣𝑖,𝑘 : 1 ≤ 𝑘 ≤ 𝑚 + 𝑛} on 𝐺 tr

𝑖
, the

support and query sets are given by

𝑆 tr𝑖 = {(𝑣𝑖,𝑘 , ℓ (𝑣𝑖,𝑘)) : 1 ≤ 𝑘 ≤ 𝑚}, (2)

𝑄 tr

𝑖 = {(𝑣𝑖,𝑚+𝑘 , ℓ (𝑣𝑖,𝑚+𝑘)) : 1 ≤ 𝑘 ≤ 𝑛}, (3)

where𝑚 = |𝑆 tr
𝑖
| and 𝑛 = |𝑄 tr

𝑖
| denotes the number of nodes in the

support and query sets, respectively. Note that for both support and

query nodes, their label mapping ℓ is known on training graphs.

During training, we mimic the model updating process on the

support nodes w.r.t. their classification loss, and further mimic the

prediction process on the query nodes. In particular, the labels of

the query nodes are hidden from the model updating process on

support nodes, but are used to validate the predictions on the query

nodes in order to optimize the general knowledge.

Testing tasks. On the other hand, suppose a testing graph 𝐺 te

𝑗
∈

Gte has a node set {𝑣 𝑗,𝑘 : 1 ≤ 𝑘 ≤ 𝑚 + 𝑛} such that nodes are

labeled for 1 ≤ 𝑘 ≤ 𝑚 only and unlabeled for𝑚 + 1 ≤ 𝑘 ≤ 𝑚 + 𝑛.
The support and query sets are then given by

𝑆 te𝑗 = {(𝑣 𝑗,𝑘 , ℓ (𝑣 𝑗,𝑘)) : 1 ≤ 𝑘 ≤ 𝑚}, (4)

𝑄 te

𝑗 = {𝑣 𝑗,𝑚+𝑘 : 1 ≤ 𝑘 ≤ 𝑛}. (5)

The main difference from the training setting is that, the support

set contains all the labeled nodes and the query set contains all

the unlabeled nodes, as illustrated in the lower half of Figure 2(a).

While the labeled support nodes on a testing graph are used in the

same way as in training, the unlabeled query nodes are only used

for prediction and evaluation.

In the following, for brevity we will omit the superscripts
tr

and
te
that distinguishes training and testing counterparts (such

as 𝐺 tr

𝑖
, 𝑆 tr

𝑖
, 𝑄 tr

𝑖
and 𝐺 te

𝑗
, 𝑆 te

𝑗
, 𝑄 te

𝑗
) when there is no ambiguity or we

are referring to any graph in general (i.e., regardless of training or

testing graphs).

4.3 Graph-level adaptation
We first formalize the general knowledge consisting of a task prior

and a graph prior, which are the foundation of the graph-level

adaptation as illustrated in Figure 2(b).

Task and graph priors. The task prior 𝜃 is designed for quick

adaptation to a new semi-supervised node classification task. Given

that GNNs can learn powerful node representations, our task prior

takes the form of a GNN model, i.e.,

𝜃 = (W1,W2, ...), (6)

where eachW𝑙
is a learnable weight matrix to map the messages

from the neighbors in the 𝑙-th layer, as introduced in Section 3.2.

Different from most task-based meta learning [11, 35], our tasks

are not sampled from an i.i.d. distribution. Instead, tasks are sampled

from different graphs, and each task is contextualized and thus

conditioned on a graph. We employ a graph prior 𝜙 to condition

the task prior, so that the task prior can be transformed to suit each

graph. The transformation model is given by

𝜏 (𝜃, g;𝜙), (7)

which (1) is parameterized by the graph prior 𝜙 ; (2) takes in the

task prior 𝜃 , and the graph-level representation g of an input graph

𝐺 (which can be either a training or testing graph); (3) outputs a

transformed, graph 𝐺-conditioned task prior. In other words, the

graph prior does not directly specify the transformation, but it

encodes the rules of how to transform w.r.t. each graph. This is

essentially a form of hypernetwork [15, 30], where the task prior is

adjusted by a secondary network (parameterized by 𝜙) in response

to the changing input graph.

In the following, we discuss the concrete formulation of the

graph-level representation g, the transformation model 𝜏 and its

parameters 𝜙 (i.e., the graph prior).

Graph-conditioned transformation. To transform the task prior

conditioned on a given graph 𝐺 , we need a graph-level represen-

tation g of the graph. A straightforward approach is to perform a

mean pooling of the features or embeddings of all nodes. Although

simple, mean pooling does not differentiate the relative importance

of each node to the global representation g. Thus, we adopt an

attention-based aggregation to compute our graph-level represen-

tation [1], which assigns bigger weights to more significant nodes.

Consider a graph 𝐺𝑖 (which can be either a training or testing

graph) and its graph-level representation vector g𝑖 . We perform

feature-wise linear modulations [30] on the task prior in order to

adapt to𝐺𝑖 , by conditioning the transformations on g𝑖 . This is more

flexible than gating, which can only diminish an input as a function

of the same input, instead of a different conditioning input [30].

To be more specific, we use MLPs to generate the scaling vector

𝛾𝑖 and shifting vector 𝛽𝑖 given the input g𝑖 , which will be used to

transform the task prior in order to suit 𝐺𝑖 . Specifically,

𝛾𝑖 = MLP𝛾 (g𝑖 ;𝜙𝛾), (8)

𝛽𝑖 = MLP𝛽 (g𝑖 ;𝜙𝛽), (9)

where 𝜙𝛾 and 𝜙𝛽 are the learnable parameters of the two MLPs,

respectively. Here 𝛾𝑖 ∈ R𝑑𝜃 and 𝛽𝑖 ∈ R𝑑𝜃 are 𝑑𝜃 -dimensional

vectors, where 𝑑𝜃 is the number of parameters in task prior 𝜃 . Note

that 𝜃 contains all the GNN weight matrices, and we flatten it into

a 𝑑𝜃 -dimensional vector in a slight abuse of notation.

Since 𝛾𝑖 and 𝛽𝑖 have the same dimension as 𝜃 , we can apply the

transformation in an element-wise manner, to produce the graph

𝐺𝑖 -conditioned task prior as

𝜃𝑖 = 𝜏 (𝜃, g𝑖 ;𝜙) = (𝛾𝑖 + 1) ⊙ 𝜃 + 𝛽𝑖 , (10)

where ⊙ denotes element-wise multiplication, and 1 is a vector of
ones to ensure that the scaling factors are centered around one.

The graph prior 𝜙 , which forms the parameters of 𝜏 , consists of the

parameters of the two MLPs, i.e.,

𝜙 = {𝜙𝛾 , 𝜙𝛽 }. (11)

Note that 𝜏 is a function of g𝑖 as well, since 𝛾𝑖 and 𝛽𝑖 are functions

of g𝑖 generated by the two MLPs in Eqs. (8)–(9) in response to the

changing input graph. In particular, the two MLPs play the role of

secondary networks in the hypernetwork setting [15].

4.4 Task-level adaptation
Given any graph𝐺𝑖 (training or testing), the graph-conditioned task

prior 𝜃𝑖 serves as a good initialization of the GNN on𝐺𝑖 , which can

be rapidly adapted to different semi-supervised node classification

tasks on 𝐺𝑖 . Following MAML [11], we perform a few gradient

descent updates on the support nodes 𝑆𝑖 for rapid adaptation, and

finally obtain the dual-adapted model 𝜃 ′
𝑖
as shown in Figure 2(c).

Too many updates may cause overfitting to the support nodes and

thus hurt the generalization to query nodes, especially when the

support set is small in the semi-supervised setting.

The following Eq. (12) demonstrates one gradient update on the

support set 𝑆𝑖 w.r.t. the graph 𝐺𝑖 -conditioned 𝜃𝑖 , and extension to

multiple steps is straightforward.

𝜃 ′𝑖 = 𝜃𝑖 − 𝛼
𝜕𝐿(𝑆𝑖 , 𝜃𝑖)

𝜕𝜃𝑖
, (12)

where 𝛼 ∈ R is the learning rate of the task-level adaptation, and

𝐿(𝑆𝑖 , 𝜃𝑖) is the cross-entropy classification loss on the support 𝑆𝑖
using the GNN model parameterized by 𝜃𝑖 , as follows.

𝐿(𝑆𝑖 , 𝜃𝑖) = −
∑

(𝑣𝑖,𝑘 ,ℓ (𝑣𝑖,𝑘)) ∈𝑆𝑖

∑
𝑐∈𝐶

𝐼 (ℓ (𝑣𝑖,𝑘) = 𝑐) log 𝑓 (𝑣𝑖,𝑘 ;𝜃𝑖) [𝑐], (13)

where 𝐼 (∗) is an indicator function, 𝑓 (∗;𝜃𝑖) ∈ R |𝐶 | is the output
layer of the GNN parameterized by 𝜃𝑖 with a softmax activation,

and 𝑓 (∗;𝜃𝑖) [𝑐] denotes the probability of category 𝑐 .

4.5 Overall algorithm
Finally, we present the algorithm for training and testing.

Training. Consider a training graph 𝐺𝑖 ∈ 𝐺 tr
with graph-level

representation g𝑖 , and a corresponding task (𝑆𝑖 , 𝑄𝑖). The goal is to
optimize the general knowledge in terms of the task prior 𝜃 and

graph prior 𝜙 via backpropagation w.r.t. the loss on the query nodes

after dual adaptions. Specifically, the optimal {𝜃, 𝜙} is given by

argmin

𝜃,𝜙

∑
𝐺𝑖 ∈Gtr

𝐿(𝑄𝑖 , 𝜃
′
𝑖) + 𝜆(∥𝛾𝑖 ∥2 + ∥𝛽𝑖 ∥2), (14)

where (1) 𝜃 ′
𝑖
is the dual-adapted prior after performing one gradient

update according to Eq. (12) on the 𝐺𝑖 -condidtioned prior 𝜃𝑖 =

𝜏 (𝜃, g𝑖 ;𝜙), implying that 𝜃 ′
𝑖
is a function of 𝜃 and 𝜙 ; (2) 𝐿(𝑄𝑖 , ∗)

Algorithm 1 TrainingProcedure

Input: training graph set Gtr
.

Output: task prior 𝜃 , graph prior 𝜙 .

1: 𝜃,𝜙 ← parameters initialization;

2: while not converged do
3: sample a batch of graphs from Gtr

;

4: for each graph𝐺𝑖 in the batch do
5: sample support set 𝑆𝑖 , query set𝑄𝑖 from𝐺𝑖 ;

6: calculate scaling and shifting factors 𝛾𝑖 , 𝛽𝑖 ; ⊲ Eqs. (8), (9)

7: 𝜃𝑖 ← graph-level adaptation on 𝜃 ; ⊲ Eq. (10)

8: calculate support loss 𝐿 (𝑆𝑖 , 𝜃𝑖) and gradient; ⊲ Eq. (13)

9: 𝜃 ′
𝑖
← task-level adaptation on 𝜃𝑖 ; ⊲ Eq. (12)

10: calculate task (query) loss 𝐿 (𝑄𝑖 , 𝜃
′
𝑖
) ;

11: end for
12: 𝜃, 𝜙 ← backpropagation of total task loss ⊲ Eq. (14)

13: end while
14: return 𝜃 , 𝜙 .

Table 2: Statistics of graph datasets.

Dataset Flickr Yelp Cuneiform COX2 DHFR

Graphs 800 800 267 467 756

Edges (avg.) 13.1 43.5 20.1 44.8 44.5

Nodes (avg.) 12.5 6.9 21.3 41.2 42.4

Node features 500 300 3 3 3

Node classes 7 10 7 8 9

Multi-label? No Yes Yes No No

is the task loss using the same cross-entropy definition shown in

Eq. (13), but computed on the query set𝑄𝑖 ; (3) the 𝐿2 regularization

∥𝛾𝑖 ∥2 + ∥𝛽𝑖 ∥2 ensures that the scaling is close to 1 and the shifting

is close to 0 to prevent overfitting to the training graphs, and 𝜆 > 0

is a hyperparameter to control the regularizer.

In practical implementation, the optimization is performed over

batches of training graphs using any gradient-based optimizer. The

overall training procedure is outlined in Algorithm 1.

Testing. During testing, we follow the same dual adaption mecha-

nism on each testing graph 𝐺 𝑗 ∈ Gte to generate the dual-adapted

prior 𝜃 ′
𝑗
. The only difference from training is that, the query nodes

are used for prediction and evaluation, not for backpropagation.

That is, for any unlabeled node in the query set 𝑣 𝑗,𝑘 ∈ 𝑄 𝑗 , we

predict its label as argmax𝑐∈𝐶 𝑓 (𝑣 𝑗,𝑘 ;𝜃 ′𝑗) [𝑐].

5 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate MI-

GNN. More specifically, we compare MI-GNN with state-of-the-art

baselines, study the effectiveness of our dual adaptations, and fur-

ther analyze hyperparameter sensitivity and performance patterns.

5.1 Experimental setup

Datasets.We conduct experiments on five public graph collections,

as follows. Their statistics are summarized in Table 2.

• Flickr [52] is a collection of 800 ego-networks sampled from an

online image-sharing network. Each node is an image, and each

edge connects two images that share some common properties

(e.g., same geographic location or gallery). Our task is to classify

each image into one of the seven categories.

• Yelp [52] is a collection of 800 ego-networks sampled from an

online review network. Each node represents a user, and each

edge represents the friendship relations between users. Our task

is to classify each user node according to the types of business

reviewed by the user in a multi-label setting.

• Cuneiform [21] is a collection of 267 cuneiform signs in the form

of wedge-shaped marks. Each node is a wedge, and each edge

indicates the arrangement of the wedges. Our task is to classify

the visual appearance of the wedges in a muli-label setting.

• COX2 and DHFR [37] are two collections of molecular structures.

Specifically, COX2 is a set of 467 cyclooxygenase-2 inhibitors;

DHFR is a set of 756 dihydrofolate reductase inhibitors. Each

node is an atom and each edge is a chemical bond between two

atoms. Our task is to predict the node atomic type.

Training and testing. For each graph collection, we randomly

partition the graphs into 60%, 20% and 20% subsets for training,

validation and testing, respectively. On each graph, we randomly

split its nodes into two equal halves as the support and query sets,

respectively. Our goal is to evaluate the performance of node clas-

sification on the unlabeled query nodes on the testing graphs, in

terms of accuracy and micro-F1. Note that on multi-label graphs

with |𝐶 | categories, we perform |𝐶 | binary classification tasks, one

for each category. Each model is trained with 10 random initializa-

tions, and we report the average accuracy and micro-F1 over the

10 runs with 95% confidence intervals.

Settings of MI-GNN. First, our approach can work with different

GNN architectures. By default, we use simplifying graph convo-

lutional networks (SGC) [43] in all of our experiments, except in

Section 5.3 where we also adopt GCN [20] and GraphSAGE [16] to

evaluate the flexibility of MI-GNN. For all GNNs, we employ two

layers with a hidden dimension of 16. For GraphSAGE, we use the

mean aggregator.

Next, for graph-level adaptations, in Eqs. (8) and (9) we adopt

MLPs with one hidden layer using LeakyReLU as the activation

function, and a linear output layer. For task-level adaptations, we set

the number of gradient descent updates to two, and the learning rate

of task adaptation 𝛼 in Eq. (12) to 0.5 for Flickr, Yelp and Cuneiform

or 0.005 for COX2 and DHFR. Lastly, for the overall optimization in

Eq. (14), we use the Adam optimizer with the learning rate 0.01, and

set the regularization co-efficient 𝜆 to 1 on Flickr and 0.001 on all

other datasets. The settings are tuned using the validation graphs.

Baselines and settings.We compare our proposedMI-GNNwith a

comprehensive suite of competitive baselines from three categories.

(1) Transductive approaches, which do not utilize training graphs.

Instead, they directly train the model using the labeled nodes on

each testing graph, and we evaluate their classification performance

on the unlabeled nodes in the same graph.

• DeepWalk [31]: an unsupervised network embedding method

that learns node representations based on the skip-gram model

[28] to encode random walk sequences. After obtaining node

representations on a testing graph, we further train a logistic

regression classifier using the labeled nodes.

• Transduct-GNN: applying a GNN in a transductive setting, where

it is directly trained on each testing graph.

(2) Inductive approaches, which utilize the training graphs to learn

an inductive model that can be applied to new testing graphs. In

particular, a fixed inductive model is trained with either no or

limited adaptation to the testing graphs.

• Planetoid [48]: Planetoid is a semi-supervised graph embedding

approach. We use its inductive variant in our experiments.

• Induct-GNN: applying a GNN in an inductive setting, where it is

trained on the training graphs, followed by applying the trained

model on each testing graph to generate the node representations.

The labeled nodes on the testing graphs are not utilized to adapt

the trained model.

• K-NN [39]: a two-stage process, in which the first stage is the

same as Inductive-GNN, and the second stage subsequently em-

ploys a K-nearest-neighbor (K-NN) classifier to classify each

unlabeled node into the same category as the closest labeled

node in terms of their representations.

• AGF [39]: also a two-stage process similar to K-NN, except that

in the second stage the K-NN classifier is substituted by a fine-

tuning step performed on the labeled nodes.

(3)Meta-learning approaches, which “learns to learn” on the training
graphs. Instead of learning a fixed model, they learn different forms

of general knowledge that can be conveniently adapted to the semi-

supervised task on the testing graphs.

• GFL [50]: a few-shot node classification method on graphs, based

on protonets [35]. While there are major differences between the

few-shot and semi-supervised tasks, GFL can still be used in our

setting although its performance may not be ideal.

• Meta-GNN [55]: another few-shot node classification approach

on graphs, based on MAML [11].

All methods (except DeepWalk and Planetoid) use the same GNN

architecture and corresponding settings in our model. For K-NN, we

use the Euclidean distance and set the number of nearest neighbors

to 1. For AGF, GFL and Meta-GNN, we use a learning rate of 0.01.

For the fine-tuning step in AGF and the task adaptation in Meta-

GNN, we use the same setup as the task adaptation in MI-GNN.

For DeepWalk and Planetoid, we set their random walk sampling

parameters, such as number of walks, walk length and window size

according to their recommended settings, respectively.

5.2 Performance comparison to baselines
In Table 3, we report the performance comparison of our proposed

MI-GNN and the baselines. Generally, our method achieves consis-

tently the best performance among all methods, demonstrating its

advantages in inductive semi-supervised node classification. More

specifically, we make the following observations.

First, in the transductive setting, Transduct-GNN performsworse

than DeepWalk, which is not surprising given that GNNs generally

require a large training set to learn effective representations. How-

ever, in our setting, an individual test graph may be small with a

limited number of labeled nodes. In this regard, the unsupervised

representation learning in DeepWalk is more advantageous.

Second, the inductive approaches Induct-GNN and AGF gener-

ally outperform transductive approaches, as inductive methods can

Table 3: Performance of MI-GNN and baselines, in percent, with 95% confidence intervals.

In each column, the best result is bolded and the runner-up is underlined. Improvement by MI-GNN is calculated relative to the best baseline.

***/**/* denotes the difference between MI-GNN and the best baseline is statistically significant at the 0.01/0.05/0.1 level under the two-tail 𝑡 -test.

Flickr Yelp Cuneiform COX2 DHFR

Accuracy Micro-F1 Accuracy Micro-F1 Accuracy Micro-F1 Accuracy Micro-F1 Accuracy Micro-F1

DeepWalk 39.88±2.42 30.01±1.21 63.27±2.73 57.11±6.29 74.61±0.60 27.05±2.11 37.68±0.73 26.16±1.08 33.14±0.18 29.93±0.58
Transduct-GNN 13.61±1.22 10.71±1.20 24.87±15.4 23.85±14.6 49.63±0.95 34.00±1.15 13.23±0.17 9.73±0.22 11.21±0.33 8.65±0.22

Planetoid 14.78±8.75 8.72±3.07 53.12±2.38 46.29±3.55 53.14±5.49 30.22±5.83 11.81±7.41 10.58±8.79 17.35±11.1 9.62±9.63
Induct-GNN 40.48±1.69 29.67±1.77 65.95±0.56 56.61±1.81 74.89±0.35 18.03±0.93 53.71±0.92 41.56±1.90 45.23±0.62 29.38±6.07

K-NN 34.11±1.76 26.39±1.39 61.70±0.90 57.35±1.42 70.36±0.27 35.66±0.84 33.16±0.95 32.84±1.00 36.32±0.89 27.12±1.20
AGF 40.58±1.61 28.99±2.09 65.96±0.54 56.64±1.83 74.89±0.37 18.00±0.94 53.97±0.79 42.00±1.62 44.85±0.56 29.08±5.96

GFL 30.24±0.68 29.51±0.69 61.62±0.97 58.88±2.03 63.72±0.37 38.30±0.84 29.25±0.73 25.53±0.94 30.24±0.68 29.51±0.69
Meta-GNN 39.66±0.92 30.02±2.49 66.24±0.84 56.20±1.81 75.12±0.33 19.21±1.25 53.24±0.77 37.36±3.02 45.61±0.65 28.34±4.46

MI-GNN 44.45±2.18 33.79±1.87 67.92±0.69 60.20±2.23 81.48±0.47 43.32±1.49 57.27±0.80 44.66±2.01 45.19±0.70 49.93±1.62
(improv.) (+9.53%) (+12.57%) (+2.54%) (+2.23%) (+8.47%) (+13.10%) (+6.11%) (+6.34%) (-0.92%) (+66.82%)

** ** *** *** *** *** *** * ***

Table 4: Accuracy of MI-GNN and baselines using alternative GNN architectures, in percent, with 95% confidence intervals.

GCN as the GNN Architecture GraphSAGE as the GNN Architecture

Flickr Yelp Cuneiform COX2 DHFR Flickr Yelp Cuneiform COX2 DHFR

Transduct-GNN 14.89±0.94 50.92±0.95 49.40±2.27 11.89±0.63 10.89±0.43 14.97±1.96 50.14±1.19 50.59±1.37 12.78±0.65 11.19±0.75
Induct-GNN 12.08±3.98 55.04±1.77 71.65±0.46 86.06±2.78 90.31±1.03 7.31±1.57 56.48±1.73 84.46±2.68 85.28±1.78 88.65±4.79

AGF 11.94±2.45 53.66±3.04 71.66±0.46 86.32±3.08 89.64±1.00 7.45±1.31 56.70±2.04 84.66±2.73 85.21±1.85 88.21±4.45
Meta-GNN 22.51±3.05 54.80±1.86 72.24±0.88 86.92±3.66 90.26±0.91 33.88±2.91 61.80±1.81 84.46±2.44 86.05±2.80 88.17±4.71
MI-GNN 29.91±6.85 57.22±1.79 75.36±2.07 86.97±2.94 91.39±0.51 42.37±3.87 69.23±1.18 91.09±2.51 93.24±0.80 93.89±0.83

make use of the abundant training graphs. While K-NN is extended

from Induct-GNN with an additional K-nearest neighbor step dur-

ing testing, it actually performs worse than Induct-GNN. Recall that

in our problem setting, on a new graph some node categories may

not have labeled nodes (although they have some labeled examples

in the training graphs), which makes K-NN unable to classify any

node into those categories. Another interesting observation is that,

AGF with an additional fine-tuning step on top of Inductive-GNN is

only comparable to or marginally better than Inductive-GNN. That

means fine-tuning can be prone to overfitting especially when the

labeled data are scarce, and a better solution is to learn adaptable

general knowledge through meta-learning.

Third, the meta-learning approaches achieve competitive results.

GFL and Meta-GNN are often better than inductive approaches, but

largely trail behind our approach MI-GNN, as they are designed for

few-shot classification and lack the dual-level adaptations. In partic-

ular, our proposed MI-GNN outperforms all other methods with sta-

tistical significance in all but one case. The only exception is on the

highly imbalanced DHFR dataset, where MI-GNN achieves slightly

worse accuracy than Meta-GNN at low significance (𝑝 = 0.442) but

significantly better Micro-F1. Note that Micro-F1 is regarded as a

more indicative metric than accuracy on imbalanced classes.

5.3 Alternative GNN architectures
As MI-GNN is designed to work with different GNN architectures,

we evaluate its flexibility on two other GNN architectures, namely,

GCN and GraphSAGE, in addition to SGC as described in the ex-

perimental setup. For each architecture, we compare with several

representative baselines in Table 4. Similar to using SGC, our ap-

proach consistently outperforms tranductive, inductive and meta-

learning baselines alike. The results demonstrate the robustness of

our approach across different GNN architectures.

5.4 Effect of dual adaptations
The advantage of our approach MI-GNN stems from the dual adap-

tations at the graph and task levels. To investigate the contribution

from each level of adaptation, we perform an ablation study on

MI-GNN, comparing with the following variants. (1) Fine-tune only:
A standard inductive GNN model without any graph- or task-level

adaptation, but there is still a simple fine-tuning step on the testing

graphs. This is equivalent to the AGF baseline. (2) Graph-level only:
This can be obtained by removing the task-level adaptation from

MI-GNN. (3) Task-level only: This can be obtained by removing the

graph-level adaptation from MI-GNN.

We present the comparison in Figure 3. First of all, MI-GNN

outperforms all the ablated models consistently, demonstrating the

overall benefit of the dual adaptations. Among the ablated models,

Fine-tune only achieves a surprisingly competitive performance

approaching themodel with only task-level adaptation, while graph-

level adaptation performs rather poorly in majority of the cases.

That means in MI-GNN the two levels of adaptations are both

crucial and they are well integrated, as each adaptation alone may

Flickr Yelp Cuneiform COX2 DHFR

40

60

80

100

Ac
cu

ra
cy

 (%
)

Fine-tune only
Graph-level only

Task-level only
MI-GNN

(a) Accuracy

Flickr Yelp Cuneiform COX2 DHFR10
20
30
40
50
60
70
80

M
icr

o-
F1

 (%
)

Fine-tune only
Graph-level only

Task-level only
MI-GNN

(b) Micro-F1

Figure 3: Effect of dual adaptations.

0.0001 0.001 0.01 0.1 1
Scaling & Shifting Reg Coeff (λ)

40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Flickr
Yelp

Cuneiform
COX2

DHFR

(a) Regularization

1 2 3 4 5
of Gradient Updates

40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Flickr
Yelp

Cuneiform
COX2

DHFR

(b) Gradient steps

Figure 4: Impact of regularization and gradient steps.

Transduct Induct Meta-Induct
Training settings

Hi
gh

M
ed

Lo
w

Si
m

ila
rit

y
to

 tr
ai

ni
ng

 g
ra

ph
s

74.8 74.9 82.4

75.1 74.6 82.2

75.8 72.8 81.4 65

70

75

80

85

(a) Accuracy

Transduct Induct Meta-Induct
Training settings

Hi
gh

M
ed

Lo
w

Si
m

ila
rit

y
to

 tr
ai

ni
ng

 g
ra

ph
s

25.8 26.6 43.8

23.4 21.5 41.1

25.2 19.6 40.1
10

20

30

40

50

(b) Micro-F1

Figure 5: Performance w.r.t. similarity to training graphs.

not give any significant benefit over a simple fine-tuning step but

together they work much better.

5.5 Hyperparameter sensitivity
We study the effect of regularization in graph-level adaptation, and

the number of gradient descent steps in task-level adaptation.

Regularization for graph-level adaptation. To prevent overfit-

ting to the training graphs, we constrain the graph-conditioned

transformations to ensure that the scaling is close to 1 and the

shifting is close to 0. We study the effect of the regularization in

Figure 4(a), as controlled by the co-efficient 𝜆 in Eq. (14). In gen-

eral, the performance is stable for different values of 𝜆, although

smaller values in the range [0.0001, 0.01] tends to perform better.

Overly large values will result in very little scaling and shifting,

effectively removing the graph-level adaptation and thus suffering

from reduced performance.

Number of gradient steps in task-level adaptation. As dis-

cussed in Section 4.4, we achieve task-level adaptation by con-

ducting a few steps of gradient descent on the support set of each

graph. To understand the impact of number of steps, we conduct

experiments using different number of steps. Results in Figure 4(b)

reveal that the performance is not sensitive to the number of steps.

Thus, it is sufficient to perform just one or two steps for efficiency.

5.6 Performance case study
To understand more precisely when our proposed meta-inductive

framework can be effective, we conduct a case study on the per-

formance patterns of transductive and inductive methods. On one

hand, the performance of inductive models on testing graphs would

directly correlate to the similarity between testing and training

graphs. Intuitively, the less similar they are, the less effectively

knowledge can be transferred from training to testing graphs. On

the other hand, transductive methods are not influenced by such

similarity, as they do not learn from training graphs at all.

We compute the similarity between two graphs based on the

Euclidean distance of their graph-level representations generated

by an attention-based model [1]. The similarity between a testing

graph and a set of training graphs is then given by the average

similarity between the testing graph and each of the training graph.

Subsequently, we split the testing graphs into three groups accord-

ing to their similarity to the training set, namely, high, medium

and low similarity. We report the performance of each group un-

der three settings: transductive (using DeepWalk), inductive (using

Induct-GNN) and meta-inductive (using MI-GNN).

We present heatmap visualizations in Figure 5 on the Cuneiform

dataset. Although the inductive setting can leverage knowledge

gained from the training graphs and potentially transfer it to testing

graphs, it is not always helpful and can even be harmful when the

training data are quite different from the testing data, known as

negative transfer [32]. Our heatmaps show that in the transduc-

tive setting, the performance remains largely unchanged across the

three groups, as transductivemethods do not rely on any knowledge

transfer from training graphs. In contrast, the conventional induc-

tive setting can suffer from negative transfer, as its performance

drops considerably when the testing graphs become less similar to

the training graphs. Finally, our meta-inductive approach is gen-

erally robust and the effect of negative transfer is much smaller

than the conventional inductive method. The underlying reason

is that we only learn a form of general knowledge from training

graphs, which undergoes a further adaptation process to suit each

testing graph. The adaptation process makes our method more

robust when dealing with different graphs, which is also our key

distinction from conventional inductive methods.

6 CONCLUSION
In this paper, we studied the problem of inductive node classifica-

tion across graphs. Unlike existing one-model-fits-all approaches,

we proposed a novel framework called MI-GNN to customize the

inductive model to each graph under a meta-learning paradigm. To

cope with the differences across graphs, we designed a dual adapta-

tion mechanism at both the graph and task levels. More specifically,

we learn a graph prior to adapt for the graph-level differences, and a

task prior to further adapt for the task-level differences conditioned

on each graph. Extensive experiments on five real-world graph

collections demonstrate the effectiveness of MI-GNN.

ACKNOWLEDGMENTS
This research is supported by the Agency for Science, Technology

and Research (A*STAR) under its AME Programmatic Funds (Grant

No. A20H6b0151).

REFERENCES
[1] Yunsheng Bai, Hao Ding, Yang Qiao, Agustin Marinovic, Ken Gu, Ting Chen,

Yizhou Sun, and Wei Wang. 2019. Unsupervised inductive graph-level represen-

tation learning via graph-graph proximity. In IJCAI. 1988–1994.
[2] Avrim Blum and Shuchi Chawla. 2001. Learning from labeled and unlabeled data

using graph mincuts. In ICML. 19–26.
[3] Marc Brockschmidt. 2020. GNN-FiLM: Graph neural networks with feature-wise

linear modulation. In ICML. 1144–1152.
[4] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2018. A com-

prehensive survey of graph embedding: Problems, techniques, and applications.

TKDE 30, 9 (2018), 1616–1637.

[5] Kaize Ding, Jianling Wang, Jundong Li, Kai Shu, Chenghao Liu, and Huan Liu.

2020. Graph prototypical networks for few-shot learning on attributed networks.

In CIKM. 295–304.

[6] Manqing Dong, Feng Yuan, Lina Yao, Xiwei Xu, and Liming Zhu. 2020. MAMO:

Memory-augmented meta-optimization for cold-start recommendation. In KDD.
688–697.

[7] Raïssa Yapan Dougnon, Philippe Fournier-Viger, Jerry Chun-Wei Lin, and Roger

Nkambou. 2016. Inferring social network user profiles using a partial social

graph. Journal of Intelligent Information Systems 47, 2 (2016), 313–344.
[8] Lun Du, Yun Wang, Guojie Song, Zhicong Lu, and Junshan Wang. 2018. Dy-

namic network embedding: an extended approach for skip-gram based network

embedding.. In IJCAI. 2086–2092.
[9] Yuan Fang, Kevin Chen-Chuan Chang, and Hady Wirawan Lauw. 2014. Graph-

based semi-supervised learning: Realizing pointwise smoothness probabilistically.

In ICML. 406–414.
[10] Yuan Fang, Bo-June Paul Hsu, and Kevin Chen-Chuan Chang. 2012. Confidence-

aware graph regularization with heterogeneous pairwise features. In SIGIR. 951–
960.

[11] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-

learning for fast adaptation of deep networks. ICML (2017), 1126–1135.

[12] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. 2020. dyngraph2vec:

Capturing network dynamics using dynamic graph representation learning.

Knowledge-Based Systems 187 (2020), 104816.
[13] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. 2018. DynGEM: Deep

embedding method for dynamic graphs. arXiv preprint arXiv:1805.11273 (2018).
[14] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In KDD. 855–864.
[15] David Ha, Andrew Dai, and Quoc V Le. 2017. Hypernetworks. In ICLR.
[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NeurIPS. 1024–1034.
[17] Jingrui He, Jaime Carbonell, and Yan Liu. 2007. Graph-based semi-supervised

learning as a generative model. In IJCAI. 2492–2497.
[18] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,

and Jure Leskovec. 2020. Strategies for pre-training graph neural networks. In

ICLR.
[19] Ziniu Hu, Ting Chen, Kai-Wei Chang, and Yizhou Sun. 2019. Few-shot represen-

tation learning for out-of-vocabulary words. In ACL. 4102–4112.
[20] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph

convolutional networks. In ICLR.
[21] Nils M Kriege, Matthias Fey, Denis Fisseler, Petra Mutzel, and Frank Weichert.

2018. Recognizing cuneiform signs using graph based methods. In International
Workshop on Cost-Sensitive Learning. 31–44.

[22] Rui Li, Chi Wang, and Kevin Chen-Chuan Chang. 2014. User profiling in an ego

network: co-profiling attributes and relationships. In WWW. 819–830.

[23] Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019. Learn-

ing to propagate for graph meta-learning. In NeurIPS. 1039–1050.
[24] Zemin Liu, Yuan Fang, Chenghao Liu, and Steven C.H. Hoi. 2021. Node-wise

localization of graph neural networks. In IJCAI.
[25] Zemin Liu, Yuan Fang, Chenghao Liu, and Steven C.H. Hoi. 2021. Relative and

absolute location embedding for few-shot node classification on graph. In AAAI.
[26] Zemin Liu,Wentao Zhang, Yuan Fang, Xinming Zhang, and Steven C.H. Hoi. 2020.

Towards locality-aware meta-learning of tail node embeddings on networks. In

CIKM. 975–984.

[27] Yuanfu Lu, Xunqiang Jiang, Yuan Fang, and Chuan Shi. 2021. Learning to pre-train

graph neural networks. In AAAI.
[28] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed representations of words and phrases and their compositionality. In

NeurIPS. 3111–3119.
[29] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee

Koh, and Sungchul Kim. 2018. Continuous-time dynamic network embeddings.

In WWW. 969–976.

[30] Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C

Courville. 2018. FiLM: Visual reasoning with a general conditioning layer. In

AAAI. 3942–3951.
[31] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online learning

of social representations. In KDD. 701–710.
[32] Michael T Rosenstein, Zvika Marx, Leslie Pack Kaelbling, and Thomas G Di-

etterich. 2005. To transfer or not to transfer. In NeurIPS Workshop on Transfer
Learning. 1–4.

[33] Adam Santoro, Sergey Bartunov,MatthewBotvinick, DaanWierstra, and Timothy

Lillicrap. 2016. Meta-learningwithmemory-augmented neural networks. In ICML.
1842–1850.

[34] Boon-Siew Seah, Aixin Sun, and Sourav S Bhowmick. 2018. Killing two birds

with one stone: Concurrent ranking of tags and comments of social images. In

SIGIR. 937–940.
[35] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for

few-shot learning. In NIPS. 4077–4087.
[36] Qiuling Suo, Jingyuan Chou, Weida Zhong, and Aidong Zhang. 2020. TAdaNet:

Task-adaptive network for graph-enriched meta-learning. In KDD. 1789–1799.
[37] Jeffrey J Sutherland, Lee AO’brien, and Donald FWeaver. 2003. Spline-fitting with

a genetic algorithm: A method for developing classification structure-activity

relationships. Journal of Chemical Information and Computer Sciences 43, 6 (2003),
1906–1915.

[38] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. LINE: Large-scale information network embedding. In WWW. 1067–1077.

[39] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci,

Kelvin Xu, Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Man-

zagol, et al. 2019. Meta-Dataset: a dataset of datasets for learning to learn from

few examples. In ICLR.
[40] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2018. Graph attention networks. In ICLR.
[41] Petar Velickovic, William Fedus, William L Hamilton, Pietro Lio, Yoshua Bengio,

and R Devon Hjelm. 2019. Deep graph infomax. In ICLR.
[42] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. 2016.

Matching networks for one shot learning. In NIPS. 3630–3638.
[43] Felix Wu, Amauri H Souza Jr, Tianyi Zhang, Christopher Fifty, Tao Yu, and

Kilian Q Weinberger. 2019. Simplifying graph convolutional networks. In ICML.
6861–6871.

[44] Xiao-Ming Wu, Zhenguo Li, Anthony M So, John Wright, and Shih-Fu Chang.

2012. Learning with partially absorbing random walks. In NIPS. 3086–3094.
[45] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
TNNLS 32 (2020), 4–24. Issue 1.

[46] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan.

2020. Inductive representation learning on temporal graphs. In ICLR.
[47] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful

are graph neural networks?. In ICLR.
[48] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-

supervised learning with graph embeddings. In ICML. PMLR, 40–48.

[49] Huaxiu Yao, Ying Wei, Junzhou Huang, and Zhenhui Li. 2019. Hierarchically

Structured Meta-learning. In ICML. 7045–7054.
[50] Huaxiu Yao, Chuxu Zhang, YingWei, Meng Jiang, SuhangWang, Junzhou Huang,

Nitesh V Chawla, and Zhenhui Li. 2020. Graph few-shot learning via knowledge

transfer. In AAAI. 6656–6663.
[51] Jiaxuan You, Rex Ying, and Jure Leskovec. 2019. Position-aware graph neural

networks. In ICML. 7134–7143.
[52] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor

Prasanna. 2020. GraphSAINT: Graph sampling based inductive learning method.

In ICLR.
[53] Jing Zhang, Biao Liu, Jie Tang, Ting Chen, and Juanzi Li. 2013. Social influence

locality for modeling retweeting behaviors. In IJCAI, Vol. 13. 2761–2767.
[54] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bern-

hard Schölkopf. 2003. Learning with local and global consistency. In NIPS. 321–
328.

[55] Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji

Geng. 2019. Meta-GNN: On few-shot node classification in graph meta-learning.

In CIKM. 2357–2360.

[56] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. 2003. Semi-supervised

learning using Gaussian fields and harmonic functions. In ICML. 912–919.
[57] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. 2018.

Embedding temporal network via neighborhood formation. In KDD. 2857–2866.

	Abstract
	1 Introduction
	2 Related Work
	3 PRELIMINARIES
	3.1 Problem formulation
	3.2 Graph neural networks

	4 METHODOLOGY
	4.1 Overview of MI-GNN
	4.2 Graphs and tasks
	4.3 Graph-level adaptation
	4.4 Task-level adaptation
	4.5 Overall algorithm

	5 EXPERIMENTS
	5.1 Experimental setup
	5.2 Performance comparison to baselines
	5.3 Alternative GNN architectures
	5.4 Effect of dual adaptations
	5.5 Hyperparameter sensitivity
	5.6 Performance case study

	6 Conclusion
	Acknowledgments
	References

