Confidence-Aware Graph Regularization with Heterogeneous Pairwise Features

Yuan Fang Bo-June (Paul) Hsu Kevin Chen-Chuan Chang University of Illinois at Urbana-Champaign Microsoft Research University of Illinois at Urbana-Champaign

SIGIR 2012 @ Portland, OR, USA

Outline

- Problem and motivation
- Regularization framework
- Applications in IR
- Experiments
- Conclusion

Classifications in IR

- Many classification tasks in IR
 - Given some objects and a set of classes
 - Some objects are labeled (with known classes)
 - Predict the class of each unlabeled object
- Eg 1. Text categorization
 - Spam detection
 - Information filtering
 - Email organization

•••

...

- Eg 2. Query intent classification
 - Search vertical
 - Ads targeting

Challenges

Feature sparsity

 In our query classification dataset, 95% of queries contain no more than five words

Scarcity of labeled data

- Especially for IR tasks with a large number of classes
- Our query classification dataset contains 2000+ fine-grained classes for the shopping domain alone
 - Eg. Inkjet-printer, laser-printer, line printer

Graph Regularization

- Addresses both challenges
- Feature sparsity
 - Traditionally features are extracted at object level
 - Features can be potentially extracted from each pair of objects
 - Can be modeled by an undirected graph
 - Vertices: objects
 - Edges: pairwise features
- Scarcity of labeled data
 - Neighboring objects on the graph are similar
 - Labels propagate across similar objects
 - "Similar objects share similar labels"
 - Semi-supervised in nature

Key Observation 1

Heterogeneous Pairwise Features

- Most existing frameworks use a single pairwise feature
- Heterogeneous features exist
 - Complement each other
 - More robust
- Eg. in query intent classification
 - Co-clicks
 - If two queries share a common click landing on the same page

only about ¼ of the queries have clicks

- Lexical similarity
 - If two queries contain overlapping words

"laptop" vs. "notebook computer" → same products "laptop" vs. "laptop bag" → different products

Key Observation 2

Confidence-aware regularization

- Existing frameworks regularize based on similarity only
 - "Similar objects share similar labels"
 - More similar → higher influence on label

a: a printerb: more likely a printerc: less likely a printer

- Classification confidence also matters
 - Some objects are easier to classify than others
 - If we are more confident about the prediction on an object, we expect it to influence its neighbors more

a: a printer (90% confident)
b: a camera (10% confident)
c: more likely a printer than a camera

Outline

- Problem and motivation
- Regularization framework
- Applications in IR
- Experiments
- Conclusion

8

Object-Relationship Graph

- Vertices: objects, o
- Edges: relationships, $e = (o, o', \tau)$
 - Have different types τ for different pairwise features
 - Can have multiple edges between two objects
 - Weights encode the affinity between objects, $W(o, o', \tau)$

9

Dirichlet Distribution

- Target classes {1, ..., K}
- Each object has an underlying class distribution over {1, ..., K}
 - Eg. "canon": (digital-camera:0.3; inkjet-printer:0.2; . . .)
 - Inherently latent
- Model each object o with a **Dirichlet distribution** $Dir(\boldsymbol{\alpha}_o)$
 - $\boldsymbol{\alpha}_0 = (\boldsymbol{\alpha}_0[1], \dots, \boldsymbol{\alpha}_0[K])$
 - Describes the distribution over all possible class distributions when class i has been observed $\alpha_0[i] 1$ times
- Interpret the total count of observation as confidence σ_o :

$$\sigma_o \triangleq \sum_{i=1}^{K} \left(\boldsymbol{\alpha}_o[i] - 1 \right) = \sum_{i=1}^{K} \boldsymbol{\alpha}_o[i] - K$$

Regularization by Neighbors

Additional multinomial observations

$$S(o, o_{1}) (\alpha_{o_{1}} - 1)$$

$$S(o, o_{1}) (\alpha_{o_{2}} - 1)$$

$$S(o, o_{1}) (\alpha_{o_{3}} - 1)$$

$$Hig$$

More neighbors → - Morenabservations → Higher confidence?

Overall similarity: $S(o, o') = \sum_{\tau} \lambda_{\tau} W(o, o', \tau)$

Confidence-Aware Prediction

- Find the posterior mode $\widetilde{\mathbf{m}}_o$ of the Dirichlet posterior $Dir(\widetilde{\boldsymbol{\alpha}}_o)$
 - $\widetilde{\mathbf{m}}_o$ itself is a distribution over the classes
- Assign labels by:
 - using a cut-off threshold on $\widetilde{\mathbf{m}}_o$
 - taking top k classes in $\widetilde{\mathbf{m}}_o$
- Exists a closed form for $\widetilde{\mathbf{m}}_o$
 - Weighted average of the prior mode of o and its neighbors N(o)
 - Weights accounts for both similarity and confidence

$$\widetilde{\mathbf{m}}_{o} \propto \sigma_{o} \mathbf{m}_{o} + \sum_{o' \in N(o)} \underbrace{S(o, o')}_{S(o, o')} \mathbf{m}_{o'}$$

Iterative Regularization

- An object is directly regularized by its neighbors
- How about neighbors of neighbors?
 - Can be modeled by regularizing the posterior again
 - More generally, iterative regularization
- Posterior is Dirichlet
 - Treat it as the new Dirichlet prior
 - The exact same regularization can be applied
 - Let $\alpha_o^{(0)} = \alpha_o$
 - $\forall t > 0$:

$$\boldsymbol{\alpha}_{o}^{(t)} - \boldsymbol{1} = \frac{1}{S_o} \Biggl(\boldsymbol{\alpha}_{o}^{(t-1)} - \boldsymbol{1} + \sum_{o' \in N(o)} S(o, o') \Bigl(\boldsymbol{\alpha}_{o'}^{(t-1)} - \boldsymbol{1} \Bigr) \Biggr)$$

Parameters Learning

- Parameters
 - *T*, number of iterations
 - $\Lambda = \{\lambda_{\tau} : \forall \tau\}$

$$S(o, o') = \sum_{\tau} \lambda_{\tau} W(o, o', \tau)$$

- We can minimize a global error function on labeled data
 - Distance between the predicted distribution and the gold standard distribution derived from the labels
 - Expensive to compute for $T \ge 2$
- Use an iterative optimization process instead
 - Dynamically update parameters in each iteration
 - 1) Regularization step:
 - Update model using parameters learnt from the previous iteration
 - 2) Minimization step:
 - Find parameters by minimizing a local error function

Outline

- Problem and motivation
- Regularization framework
- Applications in IR
- Experiments
- Conclusion

Realization of Framework

- Requires a vertex model and an edge model
- Vertex model
 - Need an initial Dirichlet prior $Dir(\boldsymbol{\alpha}_{o}^{(0)})$ for each object at t = 0
 - $\boldsymbol{\alpha}_{o}^{(0)} = \boldsymbol{\sigma}_{o}^{(0)} \mathbf{m}_{o}^{(0)} + \mathbf{1}$
 - Can equivalently set $\alpha_o^{(0)}$ by initializing $\sigma_o^{(0)}$ and $\mathbf{m}_o^{(0)}$ separately
- Edge model
 - Define an edge weight function for each pairwise feature τ $W(o, o', \tau)$
 - Recall that there may exist multiple edges between two objects

Example: query intent

- Query intent classification in the shopping domain
 - Map a query to a predefined product category
- Vertex model
 - Mode initialization
 - Any classification method
 - Unigram model based on a product database (weakly supervised) $p(\theta_i|q) \propto p(q|\theta_i)p(\theta_i)$

Title	Description	Brand	Category
SD1000 Camera	A digital camera	Canon	digital camera
15 inch laptop	A laptop for	Dell	laptop

- Confidence initialization
 - Background unigram model
 - Heuristic: lower background likelihood \rightarrow higher confidence

Example: query intent

- Two edge models for two pairwise feature
- Lexical pairwise feature
 - A simple binary similarity
 - 1 if one of the query contains all the words in the other query
 - 0 otherwise
- Co-click pairwise feature
 - More co-clicks \rightarrow higher similarity (like tf)
 - Popular clickthroughs contribute less (like idf)
- Other potential edge models
 - Co-session, search results, user profiles

Outline

- Problem and motivation
- Regularization framework
- Applications in IR
- Experiments
- Conclusion

Experiment Setup

- Query intent classification using a shopping query dataset
 - Map a shopping query to a product category
- Dataset
 - # product categories: 2043
 - # all queries: 4 millions
 - # of labeled training queries: 1K (default)
 - # of labeled testing queries: ≥ 10 K
 - # clickthroughs: 11 millions
 - # queries with clicks: 1 million (about ¼)
- Metrics
 - Top-k accuracy
 - Precision-recall plot
 - Optimal f-score
 - Precision at 0.5 recall

Illustrative results

• Classification of two example queries using unigram model

	Misclassified	Actual
canon 35	camcorder	camera-lens
hp laptop hard drive	laptop	hard-drive

- The actual classes can be predicted using their neighbors
 - Look at the lexical neighbors of "canon 35"
 - canon 35 mm lens
 - canon 35 f 2
 - 35 mm wide angle 1.4 canon lens
 - Look at the co-click neighbors of "Hp laptop hard drive"
 - hard drive 1tb
 - seagate harddrive
 - western digital 2tb external

Heterogeneous Pairwise Features

23

Queries without clicks

- "Click" alone has no effect
- "Lex + Click" performs better than "Lex" alone
- Even queries without clicks can benefit from co-click features
 - Their lexical neighbors (or neighbors of neighbors) may have clicks
 - Iterative regularization helps propagate the evidence from those clicks

24

Confidence

- **NoConf:** no confidence information
- **Heuristic:** the heuristic method using the background model
- Simulated: generate confidence using available labels

Top-1 accuracy

Labeled and unlabeled data

- # labeled training queries
- # total queries (using the same 1000 training queries)

26

Outline

- Problem and motivation
- Regularization framework
- Applications in IR
- Experiments
- Conclusion

Conclusion

- We observe the benefits of:
 - Regularization using heterogeneous pairwise features
 - Regularization with confidence
- We may further improve performance by:
 - Exploring more pairwise features like query sessions, etc.
 - Better confidence estimation
- Can be applied to other classification tasks in IR
 - E.g. Text categorization
 - Using pairwise features such as co-readership, social tagging overlap, document similarity, etc.