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Abstract

The explainability of Graph Neural Networks (GNNs) is critical to various GNN applications, yet it remains a significant
challenge. A convincing explanation should be both necessary and sufficient simultaneously. However, existing GNN
explaining approaches focus on only one of the two aspects, necessity or sufficiency, or a heuristic trade-off between the
two. Theoretically, the Probability of Necessity and Sufficiency (PNS) holds the potential to identify the most necessary
and sufficient explanation since it can mathematically quantify the necessity and sufficiency of an explanation. Never-
theless, the difficulty of obtaining PNS due to non-monotonicity and the challenge of counterfactual estimation limit its
wide use. To address the non-identifiability of PNS, we resort to a lower bound of PNS that can be optimized via coun-
terfactual estimation, and propose a framework of Necessary and Sufficient Explanation for GNN (NSEG) via optimizing
that lower bound. Specifically, we depict the GNN as a structural causal model (SCM), and estimate the probability of
counterfactual via the intervention under the SCM. Additionally, we leverage continuous masks with a sampling strategy
to optimize the lower bound to enhance the scalability. Empirical results demonstrate that NSEG outperforms state-
of-the-art methods, consistently generating the most necessary and sufficient explanations. The implementation of our
NSEG is available at https://github.com/EthanChu7/NSEG.
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1. Introduction

Graph Neural Networks (GNNs) differentiate them-
selves from neural networks designed for Euclidean data
by not only learning feature information but also captur-
ing graph structures through the message-passing mech-
anism [23, 18, 55, 49, 60, 24, 17, 53, 10]. This unique
characteristic has facilitated the successful application of
GNNs in various domains, including social recommenda-
tion [15, 19], molecule discovery [44, 45], and fraud de-
tection [54, 14]. However, GNNs with high complexity
are still considered black-box models [4, 35], which lim-
its their applications in many real-life related domains like
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medicine and healthcare [39]. Although numerous studies
have been proposed to explain neural networks for Eu-
clidean data [41, 31, 46, 21], such approaches are usually
not suitable for GNNs as they cannot explain the graph
structures well. Hence, the explainability of GNNs remains
an open challenge.

Current approaches for explaining GNNs mainly search
for three types of explanation, i.e., necessary explanation,
sufficient explanation, and the heuristic trade-off expla-
nation between necessity and sufficiency. First, the ap-
proaches [27, 51, 29] searching for a necessary explana-
tion seek to identify a group of necessary features that
will change the prediction if one performs a perturbation.
Although necessity is important for the explanation, the
lack of sufficiency can result in the incompleteness of the
explanations. For instance, consider a chat group classi-
fication task in which the hobby and social connections
of each member are provided and we aim to explain why
the instance given in Figure 1 is predicted as “Sport Lover
Group”. For the necessary explanation shown on the top-
right of Figure 1, only a small set of soccer lovers or bas-
ketball lovers are considered as explanations. However, it
is insufficient as some basketball lovers are missing. In
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Figure 1: Explanations for the prediction “Sport Lover Group”,
which are highlighted in blue. Each node is a member in the group
whose node features are their hobby, denoted by the icons. PN, PS,
PNS refer to the probability of necessity, the probability of suffi-
ciency, and the probability of necessity and sufficiency, respectively.

contrast, the approaches [57, 32] searching for a sufficient
explanation seek to locate a subset of the graph that can
sufficiently cause the outcome by maximizing the mutual
information between the input and outcome. For such ap-
proaches, the sufficient explanation might not be concise
enough for people to understand, e.g., in the bottom-left
of Figure 1, the explanation covers almost the whole graph
including both sports and snack lovers and their relation-
ships. Furthermore, a recent approach [47] considers a
trade-off between necessity and sufficiency, whereas the
trade-off is heuristically determined by hyper-parameters
so that the explanation obtained might not be the most
necessary and sufficient.

Different from either sufficient or necessary explana-
tions, a both necessary and sufficient explanation offers
completeness without sacrificing conciseness. As illus-
trated in the bottom-right of Figure 1, the most neces-
sary and sufficient explanation includes all sport lovers, en-
suring completeness, while excluding the redundant snack
lovers, ensuring conciseness. The necessity and sufficiency
of the explanation deserve a privileged position in the the-
ory and practice of explainable AI [52, 37], and we argue
that an ideal explanation should be most necessary and
sufficient. A formal way to quantify the necessity and suf-
ficiency of an explanation is through the use of the Prob-
ability of Necessity and Sufficiency (PNS) [38]. However,
there are two main challenges in identifying PNS: 1) the vi-
olation of the assumption of monotonicity making PNS not
identifiable [37, 48] and 2) the difficulty of counterfactual
estimation. On one hand, to address the above identifiabil-
ity issue of PNS, we derive a lower bound of PNS that can
be estimated via counterfactual estimation. On the other
hand, for counterfactual estimation, we depict the GNN as
a structural causal model (SCM) and estimate the counter-
factual probability by intervention under the SCM. In ad-

dition, to enable tractable optimization, continuous masks
with a sampling strategy are used to optimize the lower
bound of PNS. By combining these techniques, we propose
a framework of Necessary and Sufficient Explanation for
GNNs (NSEG), via maximizing the lower bound of PNS.
Our contributions can be summarized as follows:

• We propose NSEG to generate necessary and suffi-
cient explanations for GNNs, by optimizing a lower
bound of PNS via counterfactual estimation.

• We depict the GNN as an SCM such that the counter-
factual estimation is tractable via intervention on the
SCM. We further leverage a continuous mask with
a sampling strategy to optimize the lower bound of
PNS, making the optimization tractable by relaxing
the discrete explanation to a continuous case.

• Our experiments show that the explanations from
NSEG are the most necessary and sufficient, and both
aspects are critical to the generation of explanations.

2. Related Work

2.1. Graph Neural Networks

Graph Neural Networks (GNNs) [23, 18, 55, 49, 60, 24,
17, 53, 10, 12, 59, 28, 13, 5, 26] have demonstrated tremen-
dous success in various real-world applications, e.g., so-
cial recommendation [15, 19], molecule discovery [44], etc.
Inspired by Convolutional Neural Networks (CNN) [25],
graph convolution is applied in graph data to make the
networks more efficient and convenient. Over the years,
various convolutional GNNs have been proposed, including
spectral-based and spatial-based approaches. Graph Con-
volutional Networks (GCN) later bridge the gap between
spectral-based approaches and spatial-based [23], and then
spatial-based approaches become more popular as they are
efficient, flexible and general. For example, GraphSAGE
with its proposed sampling and aggregation strategies [18]
can be used for inductive learning and large-scale graph
learning. Graph Attention Networks (GAT) adopt the
self-attention mechanism to differentiate the importance
of neighbors [49]. Graph Isomorphism Networks (GIN) in-
troduce a pooling architecture so that they have expressive
power as Weisfeiler-Lehman test [55].

2.2. Explainability of GNN

Most of the GNN explanation approaches can be catego-
rized into four types: perturbation-based, gradient-based,
decomposition, and surrogate approaches [58].

Our proposed approach is closely aligned with
perturbation-based methods, which study the outcome
changes w.r.t. different input perturbations. GNNEx-
plainer [57] employs a trainable mask to perturb the
data in the input space, to maximize the mutual infor-
mation between perturbed input data and model out-
come, to obtain a subgraph explanation that is relevant
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for the particular prediction. Though PGExlainer [32]
shares the same objective with GNNExplainer, it achieved
faster inference time by learning a parameterized mapping
from the graph representation space to subgraph space.
CF-GNNExplainer generates a counterfactual explanation
that can flip the model prediction subject to a minimal
perturbation [29]. RG-Explainer [43] leverages Reinforce-
ment Learning (RL) algorithm to generate the explana-
tion by sequentially adding nodes (action) based on the
current generated explanation (state), which has the sim-
ilar objective (reward) with [32]. RC-Explainer [51] also
employs a RL algorithm to search for the explanation that
maximizes the causal effect obtained by the edge pertur-
bation. CF2 [47], arguably the most closely related work
to our approach, utilizes both factual and counterfactual
reasoning to generate heuristic necessary and sufficient ex-
planations. The main difference between CF2 and ours is
that the former searches for a trade-off explanation be-
tween necessity and sufficiency, while our work searches
for the most necessary and sufficiency explanation. Be-
sides, CF2 only samples one counterfactual (necessary) for
computing the necessary strength, which is a degradation
to ours.

Gradient-based approaches approximate the importance
of an input using the gradients of its outcome obtained
by back-propagation. The saliency map approach, which
is used to indicate the input importance, is obtained by
computing the squared norm of the gradients [6]. In an-
other method called Guided Backpropagation (GBP), the
negative gradients are clipped during back-propagation as
negative gradients are challenging to explain [6].

Decomposition approaches aim to decompose the model
outcome into several terms as the importance scores of the
corresponding input feature. Layer-wise Relevance Propa-
gation (LRP) decomposes the GNN output into node im-
portance scores, whereas the edge importance scores can-
not be provided [6]. EBP [40] shares a similar idea with
LRP, while it is based on the law of total probability.

Surrogate approaches leverage a simple and inter-
pretable model to approximate the behavior of a complex
model locally. GraphLIME [20] extends the LIME algo-
rithm [41], and employs a Hilbert-Schmidt Independence
Criterion Lasso as a surrogate to approximate the GNN in-
stance. In particular, the weights of the surrogate model
indicate the importance scores of the nodes. In PGM-
Explainer [50], a probabilistic graphical model is utilized
as surrogate for explaining the GNN instance.

2.3. Casual Explainability

Causal inference has a long history in statistics [38]
and there is now an increasing interest in solving crucial
problems of machine learning that benefit from causality
[42, 56, 62, 7], including explainability. The well-known
perturbation-based approaches such as LIME [41], Shapley
values [31] implicitly use causal inference to estimate the
attribution scores, which can be viewed as a special case of
causal effect. Besides, Chattopadhyay et al. [11] views the

neural network architecture as a Structural Causal Model
(SCM) and estimates the average causal effect upon it.
Also, there are a few works [52, 16, 61, 8] utilizing the
aspects of necessity and sufficiency for explainability via
causal interpretations, which are the most related works
to ours.

3. Preliminary

3.1. Causality

Here we introduce the basic causality preliminaries to
enhance the understanding of this work. The identifica-
tion of PNS, PN, and PS requires the counterfactual esti-
mation. In the literature of [38], counterfactual is obtained
by intervention under the structural causal model (SCM),
which is defined in Definition 1.

Definition 1. (Structural Causal Model). A structural
causal model is a triple:

M = (V,U, F ),

where

1. V is a set of variables called endogenous, that are
determined by variables in the model, i.e., U ∪V.

2. U is a set of variables called exogenous, that are de-
termined by factors outside the model.

3. F is a set of functions where each fi is a mapping
from (V \ vi)×U to vi, i.e.,

vi = fi(Pa(vi),ui),

where Pa(vi) are the parent variables of vi, and ui is
the exogenous of vi.

The SCM can be associated with a directed acyclic
graph (DAG), where each node corresponds to variables
in V and the directed edges point from members of
Pa(vi) toward vi. A SCM can properly model the data-
generating process through functional mechanisms, that
is, an endogenous Vi is determined by its parents Pa(vi)
and exogenous ui via the function fi, denoted as vi =
fi(Pa(vi),ui). The functional characterization in SCM
provides a convenient language for specifying how the re-
sulting distribution would change in response to interven-
tions. Regarding intervention, the simplest intervention
such as an intervention of do(vi = v′i), amounts to re-
moving the old generating mechanism vi = fi(Pa(vi),ui)
from the SCM and substituting vi = v′i in the remain-
ing generating equations. The concept of counterfactual
refers to the consequences of the interventions, given cer-
tain facts. In particular, the given certain facts provide
evidence about the actual state of the world, which is ex-
ogenous in the literature of [38]. The counterfactual is
obtained by intervening on some variables under the SCM
while keeping the actual state (exogenous) the same.
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3.2. Graph Neural Networks

Graph neural networks are capable of incorporating
both graph structure and node features into representa-
tions in an end-to-end fashion, to facilitate downstream
tasks such as node classification task and graph classifica-
tion task. In particular, in the k-th layer of GNNs, the
learning process of the representation of node v can be
divided into the following three steps:

• First, obtaining message m
(k)
v,u for any node pair (v, u)

through a message function MSG:

m(k)
v,u = MSG(h(k−1)

v ,h(k−1)
u , ev,u),

where h
(k−1)
v and h

(k−1)
u denote the representations

of nodes v and u in the (k − 1)-the layer, and ev,u
denotes the entry (relation) between nodes v and u.

• Second, aggregating messages from node v’s neighbors

Nv and calculating the an aggregated message M
(k)
v

via a aggregating function AGG:

M(k)
v = AGG(m(k)

v,u|u ∈ Nv).

• Third, updating node v’s representation h
(k)
v using

the aggregated messages M
(k)
v and node v’s repre-

sentation in the previous layer h
(k−1)
v via a update

function UPDATE:

M(k)
v = UPDATE(M(k)

v ,h(k−1)
v ).

After obtaining the representation of each node, a node-
level read-out and a graph-level read-out can be applied
for node classification task and graph classification task
respectively.

3.3. Probability of Necessity and Sufficiency

As we discussed before, a convincing explanation should
be necessary and sufficient. To quantify the degree of ne-
cessity and sufficiency of an explanation to the model out-
come, the Probability of Necessity and Sufficiency (PNS)
is formally defined as follows.

Definition 2. (Probability of necessity and sufficiency
[38]).

PNS(ξ) = P (Yξc ̸= ŷ,Yξ = ŷ), (1)

where Yξc and Yξ are the potential outcome variables un-
der the treatments ξc and ξ respectively, and ξc is the com-
plementary event of ξ.

PNS measures the necessity and sufficiency of treatment
ξ to model outcome ŷ in probability space. Intuitively,
PNS indicates the probability that the outcome ŷ responds
to both treatments ξ and ξc. However, direct optimization
of the objective is intractable, given the non-identifiability
of PNS shown in Eq. (1) due to the potential violation
of monotonicity as defined in Definition 3, as well as the
challenges of counterfactual estimation [38].

Definition 3. (Monotonicity). The model outcome Y is
monotonic relative to the explanation event ξ if and only
if:

(Yξ ̸= ŷ) ∧ (Yξc = ŷ) = false.

Monotonicity indicates that a change from ξc to ξ cannot
assure the outcome also changes fromY = ŷ toY ̸= ŷ [37].
However, the assumption of monotonicity will not always
hold during the explanation searching stage. Instead of
addressing the non-monotonic issue to identify the exact
PNS, it is reasonable to maximize a lower bound of PNS(ξ)
as shown in Lemma 1 for our objective optimization.

Lemma 1. The lower bound of PNS(ξ) is:

max{0, P (Yξc ̸= ŷ) + P (Yξ = ŷ)− 1}. (2)

In particular, the lower bound is tight if the assumption
of monotonicity holds, as shown in Lemma 2. The proof
of Lemma 2 is given in Appendix A.2.

Lemma 2. When the outcome Y is monotonic relative to
explanation event ξ, the lower bound in Eq. (2) equals to
the exact PNS(ξ).

4. Methodology

In this section, we develop our approach NSEG to gen-
erate the most Necessary and Sufficient Explanations for
GNNs by optimizing our objective, the Probability of Ne-
cessity and Sufficiency (PNS). We maximize a derived
lower bound of PNS since the non-identifiability of PNS
and incorporate a proposed SCM of GNN for the identi-
fication of the lower bound. Additionally, we introduce a
continuous optimization method that utilizes continuous
masks and a sampling strategy. This approach enables
tractable optimization of large-scale graphs, ensuring the
scalability and efficiency of our approach.

4.1. Problem Definition

Given a trained GNN model fθ parameterized by θ for
graph classification task, our task is to explain a specific in-
stance I : ŷ = fθ(Ei, Xi) produced by the model fθ by gen-
erating a necessary and sufficient explanation in a post-hoc
manner, where ŷ is the predicted label, Xi = {xv|v ∈ Vi},
and Ei, Vi are edges and vertices of graphGi. In our frame-
work, we consider the explanation of a specific instance I
as an event, i.e., (E = E′

i,X = X ′
i), that most necessarily

and sufficiently causes the model outcome Y = ŷ (with
maximum PNS), where E′

i ⊂ Ei and X ′
i = {xv|v ∈ V ′

i }
with V ′

i ⊂ Vi. Note that our main focus is to identify a set
of node features instead of a set of features in the feature
dimensions, where the latter has been well investigated
in [11]. Similarly, as for the formulation of node classi-
fication task, our task is to explain a node-level instance

I : ŷi = f
(i)
θ (E,X) for node i by generating a necessary

and sufficient explanation E = E′,X = X ′, where ŷi is the
predicted label of node i. Without loss of generality, we
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formulate our approach in a graph classification fashion in
the following paper. Regarding our notations, we use the
bold font notation for random variable to emphasize the
distinction between r.v. and its realization.

4.2. Lower Bound of the Explanation’s PNS on GNN

Although PNS has been formally defined, applying it to
GNNs is not a trivial task due to: 1) the combined in-
fluence of both structural information (edges) and feature
information (node features) on GNN predictions, 2) GNN
takes continuous inputs rather than a binary variable ξ.
To overcome these challenges, we extend PNS to the graph
domain by defining a joint event (E = E′

i,X = X ′
i) as the

explanation, and its complement event (E = E′
i,X = X ′

i)
c

which can be derived as (E ̸= E′
i,X ̸= X ′

i)∨ (E ̸= E′
i,X =

X ′
i) ∨ (E = E′

i,X ̸= X ′
i). Hence, our objective becomes

maximizing the probability of necessity and sufficiency
w.r.t. E′

i and X ′
i as:

max
E′

i,X
′
i

PNSe,f (E′
i, X

′
i), (3)

where PNSe,f (E′
i, X

′
i) is defined as:

PNSe,f (E′
i, X

′
i)

=Pθ(Y(E=E′
i,X=X′

i)
c ̸= ŷ,YE=E′

i,X=X′
i
= ŷ),

(4)

where θ denotes the model parameter. The lower bound
of PNSe,f (E′

i, X
′
i) is:

max{0, Pθ(Y(E=E′
i,X=X′

i)
c ̸= ŷ)

+Pθ(YE=E′
i,X=X′

i
= ŷ)− 1}.

(5)

Note that our approach to optimize the above lower
bound in Eq. (5) provides a joint explanation of both the
edge and node feature. Single edge explanation and sin-
gle node feature explanation are special cases of our joint
explanation. Specifically, the formulations of single-edge
and single-node features are familiar with the joint formu-
lation, which are given by:

PNSe(E′
i, Xi) = Pθ(YE ̸=E′

i
̸= ŷ,YE=E′

i
= ŷ|X = Xi),

PNSf (Ei, X
′
i) = Pθ(YX̸=X′

i
̸= ŷ,YX=X′

i
= ŷ|E = Ei),

where the lower bound of each is shown as follows respec-
tively.

max{0, Pθ(YE=E′
i
̸= ŷ|Xi) + Pθ(YE=E′

i
= ŷ|Xi)− 1},

max{0, Pθ(YX=X′
i
̸= ŷ|Ei) + Pθ(YX=X′

i
= ŷ|Ei)− 1}.

4.3. Estimating the Lower Bound via Counterfactual Es-
timation

4.3.1. GNN as Structural Causal Model

Obtaining the probability term in Eq. (5) requires gen-
erating counterfactual by intervention under a specific
structural causal model (SCM) [38]. In terms of coun-
terfactual, it answers what would the outcome Y be if
(E = E′

i,X = X ′
i)

c or (E = E′
i,X = X ′

i). Building upon
the interpretation of feed-forward neural networks as SCM

for investigating causal attribution [2, 11], we extend the
SCM interpretation to GNNs. In particular, GNNs can be
interpreted as directed acyclic graphs with directed edges
from the lower layer to the layer above.

Proposition 1. An (l + 1)-layer GNN corre-
sponds to an SCM M({X,E,H(1), ...,H(l),Y},
U, {f (0), f

(1)
θ , ..., f

(l+1)
θ }), where H(k) denotes a set

of node hidden representation after the k-th graph convo-

lution layer, i.e., H(k) = f
(k)
θ (E,H(k−1)). f

(l+1)
θ denotes

the read-out layer, which can be a node-level read-out
for node classification tasks or a graph-level read-out for

graph classification tasks, with Y = f
(l+1)
θ (H(l)). U refers

to a set of exogenous which act as causal factors for X
and E, i.e., E,X = f (0)(U).

The proof of Proposition 1 is provided in Appendix A.3.
For a more intuitive understanding, the left side of Fig-
ure 2 illustrates M ’s corresponding causal graph. In the

k-th layer of GNN, the node v’s representation h
(k)
v is de-

termined by all nodes’ representations H(k−1) in (k−1)-th
layer and the entry of the graph E, specifically, aggregat-

ing node u’s representation h
(k−1)
u to obtain h

(k)
v if the

entry ev,u is not zero. Since our focus is on the mapping
from the input to output rather than the full intrinsic map-
pings in the hidden layer, the SCM of GNN can be reduced
to SCM M({E,X,Y},U, {f (0), fθ}) by marginalizing the
hidden representations.

Proposition 2. The SCM of an (l + 1)-layer GNN,

M({X,E,H(1), ...,H(l),Y},U, {f (0), f
(1)
θ , ..., f

(l+1)
θ }) can

be reduced to M({E,X,Y},U, {f (0), fθ}).

The proof of Proposition 2 is presented in Appendix
A.4. Intuitively, marginalizing the hidden representations
is analogous to deleting edges connecting the hidden rep-
resentations and creating new directed edges from the par-
ents of the deleted to their respective child vertices in
the causal diagram depicted on the left side of Figure 2.
The corresponding causal diagram of the reduced SCM in
Proposition 2 is shown on the right side of Figure 2.

4.3.2. Counterfactual Estimation

Given the reduced SCM depicted in Proposition 2, we
can obtain the interventional probability via do-calculus,
by controlling E and X for edges and node features re-
spectively. To facilitate understanding, we present the
formulations separately for edges and node features before
combining them to give the joint formulation.

Counterfactual for Edges. Regarding edges, the inter-
ventional probability of the counterfactual (E = E′

i) can
be obtained by intervening on E, i.e., replacing the causal
mechanism from exogenous U to the edge E with the in-
tervention do(E = E′

i) while keeping other mechanisms
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Causal diagram of GNN
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Figure 2: The causal diagram of corresponding SCM of GNN. hk
v denotes the hidden representation of node v in k-th layer, ev,u denotes

the entry between v and u, xv denotes the node feature of node v, H(k) = {h(k)
v |v ∈ V } denotes a set of node representations in k-th layer,

X = {xv |v ∈ V } denotes a set of node features, E = {ev,u|v, u ∈ V } denotes a set of graph entries.

unperturbed, i.e., X = Xi:

Pθ(YE=E′
i
= ŷ|X = Xi)

=Pθ(Y = ŷ|do(E = E′
i),X = Xi)

=f ŷ
θ (E

′
i, Xi),

(6)

where f ŷ
θ (., .) outputs the probability of the class ŷ and

ŷ is the label predicted by the model. Note that we only
alter the generating mechanism f (0) for E and the GNN
model fθ remains unchanged. As for the interventional
probability of the counterfactual (E ̸= E′

i),

Pθ(YE ̸=E′
i
̸= ŷ|X = Xi)

=Pθ(Y ̸= ŷ|do(E ̸= E′
i),X = Xi)

=Pθ(Y ̸= ŷ|E ∈ Ei \ E′
i,X = Xi)

=1− EE
′
i
[f ŷ

θ (E
′
i, Xi)],

(7)

where E
′
i ∼ p(E

′
i|Ei \ E′

i) which can be specified by p(U)
according to the corresponding SCM, and Ei is the sub-
edge space of graph Gi. In the absence of any prior

knowledge of p(E
′
i|Ei \ E′

i), it is reasonable to assume

p(E
′
i|Ei \ E′

i) is uniformly distributed over the sub-edge
space E , which encourage the exploration of all (E ̸= E′

i).
Prior knowledge p(U) can also be incorporated to refine
the estimation of counterfactual.

Counterfactual for Node Features. Our goal is to
identify a subset of node features that cause the prediction,
that is, features in a subset of nodes V ′

i , instead of identi-
fying a subset of feature in feature dimensions. One way
to incorporate sub-node structure with the node features
is to set the features outside V ′

i to 0 while keeping features
inside V ′

i the same, since the zero-valued features have no
impact in feed-forward process. Thus, the interventional
probability of counterfactual (X = X ′

i) can be obtained
by intervening on X, i.e., replacing the causal mechanism
fromU toX with the intervention do(X = X ′

i) while keep-

ing other mechanisms unperturbed, which is given by,

Pθ(YX=X′
i
= ŷ|E = Ei)

=Pθ(Y = ŷ|do(X = X ′
i),E = Ei)

=f ŷ
θ (Ei, X

′
i)

with X ′
i = {xv|v ∈ V ′

i } ∪ {0|v /∈ V ′
i }.

(8)

Likewise, the interventional probability of counterfac-
tual (X = X ′

i) is given by

Pθ(YX̸=X′
i
̸= ŷ|E = Ei)

=Pθ(Y ̸= ŷ|do(X ̸= X ′
i),E = Ei)

=EX
′
i
[Pθ(Y ̸= ŷ|X = X

′
i,E = Ei)]

=1− EX
′
i
[f ŷ

θ (Ei, X
′
i)]

with X
′
i = {xv|v ∈ V

′
i} ∪ {0|v /∈ V

′
i},

(9)

where X
′
i ∼ p(X

′
i|V

′
i)p(V

′
i|Vi \ V ′

i ) = p(V
′
i|Vi \ V ′

i ), and
Vi is sub-node space of graph Gi.

Joint Formulation of Edge and Node Feature. The
joint formulation of both edge and node feature expla-
nation in Eq. (5) requires us to generate counterfactual
for edge and node feature by intervention on both E and
X. Notably, the event (E = E′

i,X = X ′
i)

c in Eq. (5)
can be divided into three sub-events, (E ̸= E′

i,X ̸= X ′
i),

(E ̸= E′
i,X = X ′

i), and (E = E′
i,X ̸= X ′

i). According
to the interventional probability in Eqs. (6), (7), (8), and
(9), the lower bound of PNS in Eq. (5) can be derived as
follows.

max{0,−P00EE
′
i,X

′
i
[f ŷ

θ (E
′
i, X

′
i)]

−P01EE
′
i
[f ŷ

θ (E
′
i, X

′
i)]

−P10EX
′
i
[f ŷ

θ (E
′
i, X

′
i)]

+f ŷ
θ (E

′
i, X

′
i)},

(10)

with:

P00 = P (E ̸= E′
i,X ̸= X ′

i|(E = E′
i,X = X ′

i)
c),

P01 = P (E ̸= E′
i,X = X ′

i|(E = E′
i,X = X ′

i)
c),

P10 = P (E = E′
i,X ̸= X ′

i|(E = E′
i,X = X ′

i)
c),

(11)

6



Note that the values of P00, P01 and P10 need to be
specified manually. Since these values are interpretable,
their ranges can be flexibly defined based on prior knowl-
edge. In this work, we simply assume all possible
events derived from (Ei, Xi)

c are equally likely, setting
P00=P01=P10=1/3.

4.4. Generating the Explanation via Lower Bound Opti-
mization

Continuous mask. Enumerating all possible E′
i and X ′

i

for objective optimization in large-scale graphs is infeasi-
ble. To enhance the scalability of our approach, we adopt
a continuous relaxation approach, as in [57], using contin-
uous masks that allow for optimization through gradient
descent. In particular, we design two masks Me ∈ [0, 1]m

and Mf ∈ [0, 1]n to mask the edges Ei and the node fea-
ture Xi to obtain E′

i and X ′
i respectively, where m is the

number of edges, and n is the number of nodes. Intuitively,
Mk

e = 0 indicates that deleting the k-th edge from the full
edges Ei, while Mk

e = 1 indicates retaining the k-th edge.

E′
i = Me ⊙ Ei,

X ′
i = Mf ⊙Xi + (1−Mf )⊙ 0 = Mf ⊙Xi,

where ⊙ denotes the Hadamard multiplication, and 0 ∈
0n×d denotes a zero matrix. After masking, the term
f ŷ
θ (E

′
i, X

′
i) in Eq. (10) can be derived as follows.

f ŷ
θ (E

′
i, X

′
i) = f ŷ

θ (Me ⊙ Ei,Mf ⊙Xi), (12)

Sampling strategy. Incorporating the masks to gen-

erate samples from p(E
′
i|Ei \ E′

i) and p(V
′
i|Vi \ V ′

i ) in
Eq. (10), a heuristic sampling strategy is proposed such
that the Monte Carlo estimation of the expectations in
Eq. (10) are differentiable w.r.t. Me and Mf . Inspired by
the reparameterization trick proposed in [22], an auxiliary
variable ϵ is used in our sampling strategy for the sample
generation.

Specifically, the generating process of edge sample E
′
i

from p(E
′
i|Ei \ E′

i) can be expressed as a deterministic
function with auxiliary variable ϵe, which is:

E
′
i = (1−Me + ϵe)⊙ Ei, ϵe ∼ p(ϵe). (13)

Intuitively, the term 1 −Me aims to satisfy the given
condition of E ∈ Ei \ E′

i, and a positive value of ϵke in-
creases the weight of the existence of the k-th edge, while
a negative value decreases the weight. Without any prior

knowledge of p(E
′
i|Ei \ E′

i), it is reasonable to assume ϵe
is uniformly distributed to encourage the fair exploration.
Similarly, the generating process of node feature sample

X
′
i from p(V

′
i|Vi \ V ′

i ) can be expressed as follows.

X
′
i = (1−Mf + ϵf )⊙Xi, ϵf ∼ p(ϵf ). (14)

Thus, combining with Eqs. (13) and (14) the term

EE
′
i,X

′
i
[f ŷ

θ (E
′
i, X

′
i)] in Eq. (10) can be derived as:

Eϵe,ϵf [f
ŷ
θ ((1−Me + ϵe)⊙ Ei, (1−Mf + ϵf )⊙Xi)], (15)
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Figure 3: Illustration of the overall framework of NSEG. (a) is the
process to obtain Eq. (12); (b), (c), and (d) are the processes to
obtain Eqs. (15), (16), and (17), respectively.

similarly, the term EE
′
i
[f ŷ

θ (E
′
i, X

′
i)] is given by:

Eϵe [f
ŷ
θ ((1−Me + ϵe)⊙ Ei,Mf ⊙Xi)], (16)

also, the term EX
′
i
[f ŷ

θ (E
′
i, X

′
i)] is given by:

Eϵf [f
ŷ
θ (Me ⊙ Ei, (1−Mf + ϵf )⊙Xi)]. (17)

Overall, the final optimizable lower bound of PNS com-
bined with continuous masks, PNSe,flb , is given as follows.

max{0,−P00Eϵe,ϵf [f
ŷ
θ ((1−Me + ϵe)⊙ Ei, (1−Mf + ϵf )⊙Xi)]

−P01Eϵe [f
ŷ
θ ((1−Me + ϵe)⊙ Ei,Mf ⊙Xi)]

−P10Eϵf [f
ŷ
θ (Me ⊙ Ei, (1−Mf + ϵf )⊙Xi)]

+f ŷ
θ (Me ⊙ Ei,Mf ⊙Xi)},

(18)

Despite joint explanation, for single edge explana-
tion, the final objective is max{0,Eϵe [−f ŷ

θ ((1 − Me +

ϵe) ⊙ Ei, Xi)] + f ŷ
θ (Me ⊙ Ei, Xi)}. Similarly for sin-

gle node feature explanation, the final objective is
max{0,Eϵf [f

ŷ
θ (Ei, (1−Mf +ϵf )⊙Xi)]+f ŷ

θ (Ei,Mf⊙Xi)}.

4.5. Model Summary

The overall framework of NSEG is depicted in Figure 3.
To explain an instance I : ŷ = fθ(Ei, Xi), an edge mask
Me and a node feature mask Mf are used to obtain and
maximize the lower bound of PNS in Eq. (18). Then the
gradients of the overall loss w.r.t. to the masks are em-
ployed to update the masks and obtain the necessary and
sufficient explanation. Specifically, we utilize a mask size
regularization term to enhance the optimization, which is
also adopted in prior works [57, 32]. Intuitively, the regu-
larization operates as an L1 penalization, compelling the
explanation to concentrate on the most important por-
tions of the input. Besides, a mask entropy regularization
term is added to discretize the mask, i.e., the values of

7



the mask are concentrated around a few scalars when the
mask entropy is low [3]. Formally, the overall loss L is:

L = −PNSlb+αe||Me||1+βeEnt(Me)+αf ||Mf ||1+βfEnt(Mf ),
(19)

where PNSlb is the lower bound of PNS shown in Eq. (18),
and Ent() is the element-wise entropy to encourage the
discretization of the mask.

Formally, the NSEG algorithm is outlined in Algo-
rithm 1. After obtaining the final masks Me and
Mf , the explanation (E′

i, X
′
i) can be obtained via

extract explanation in Algorithm 1. The possible choices
for extract explanation can be, extracting the top-K ex-
planation based on the weights of the mask [57], or em-
ploying a pre-defined threshold [47].

Algorithm 1 The NSEG algorithm

Input: The trained GNN model fθ, the instance to be
explained I : ŷ = fθ(Ei, Xi), the hyper-parameters
(αe, βe, αf , βf ), lr γ, and the # epochs n.

Output: The explanation (E′
i, X

′
i).

1: Randomly initialize the Me and Mf

2: for j = 1, ..., n do

3: PNSlb(M
(j)
e ,M

(j)
f )← the lower bound of PNS cal-

culated by Eq.(18)

4: L(M (j)
e ,M

(j)
f ) ← the overall loss calculated by

Eq. (19)

5: (M
(j)
e ,M

(j)
f ) ← Update the masks via

∇Me,Mf
L(M (j−1)

e ,M
(j−1)
f )

6: end for
7: (Me,Mf )← (M

(n)
e ,M

(n)
f )

8: (E′
i, X

′
i)← extract explanation(Me,Mf )

5. NSEG Variants: Optimizing Only PN or PS

In this section, we present two variants of NSEG(PNS):
NSEG(PN) and NSEG(PS). NSEG(PN) focuses on op-
timizing the Probability of Necessity (PN), considering
only the necessity of the explanation. On the other hand,
NSEG(PS) concentrates on optimizing the Probability of
Sufficiency (PS), considering only the sufficiency of the ex-
planation. These two variants are utilized in our ablation
study.

5.1. PN and PS

In the NSEG variants, NSEG(PN) and NSEG(PS),
our goal is to generate the most necessary explanation
via NSEG(PN) and the most sufficient explanation via
NSEG(PS). Theoretically, the probability of necessity, PN,
and the probability of sufficiency, PS, which can quan-
tify the necessity and sufficiency of explanation (ξ) to the
model outcome ŷ respectively [37], are defined in Defini-
tion 4 and 5.

Definition 4. (Probability of necessity).

PN(ξ) = P (Yξc ̸= ŷ|ξ,Y = ŷ). (20)

Definition 5. (Probability of sufficiency).

PS(ξ) = P (Yξ = ŷ|ξc,Y ̸= ŷ). (21)

PN captures the probability that the model outcome ŷ
changes with the absence of the event ξ, given the fact
that the event ξ happens and the model outcome is ŷ. In
similar, PS captures the probability that the model out-
come is ŷ with the existence of the event ξ, given the fact
that the event ξ does not happen, and the model outcome
is not ŷ.

Similar to the generalized formulation in Eq. (3), both
PN and PS in Eqs. (20) and (21) can be generalized to
GNN explanation formulations, which are given as follows.

PNe,f (E′
i, X

′
i)

=Pθ(Y(E=E′
i,X=X′

i)
c ̸= ŷ|E = E′

i,X = X ′
i,Y = ŷ),

(22)

PSe,f (E′
i, X

′
i)

=Pθ(YE=E′
i,X=X′

i
= ŷ|(E = E′

i,X = X ′
i)

c,Y ̸= ŷ),
(23)

For NSEG(PN), to generate the most necessary expla-
nation of GNN, the objective to maximize the PN defined
in Eq. (22):

max
E′

i,X
′
i

PNe,f (E′
i, X

′
i). (24)

Similar for NSEG(PS), to generate the most sufficient
explanation, the objective to maximize the PS defined in
Eq. (23):

max
E′

i,X
′
i

PSe,f (E′
i, X

′
i). (25)

5.2. Optimization of PN and PS

The both PN and PS in Eqs. (22) and (23) are formu-
lated as the probability of counterfactual in the literature
of [38]. The identification of both PN and PS requires
incorporating with SCM for the recovery of the exoge-
nous [38]. However, the deterministic nature of GNN ren-
ders the given condition in the formulation of PN and PS
not guaranteed, resulting in the non-identifiability of these
probabilities. To better incorporate with the probability
outputted by GNN, we derive lower bounds of both PN
and PS that can be optimized similarly to PNS.

Proposition 3. Given the SCM M depicted in Proposi-
tion 2, the lower bounds of PNe,f and PSe,f can be derived
as:

PNe,f
lb (E′

i, X
′
i) = max{0, Pθ(Y ̸= ŷ|(E = E′

i,X = X ′
i)

c)−1

Pθ(Y = ŷ|E = E′
i,X = X ′

i)
+1},

PSe,f
lb (E′

i, X
′
i) = max{0, Pθ(Y = ŷ|E = E′

i,X = X ′
i)− 1

Pθ(Y ̸= ŷ|(E = E′
i,X = X ′

i)
c)

+ 1}.

For the proof of Proposition 3 and the optimization de-
tails of the PN and PS lower bounds, please refer to Sec-
tions Appendix A.5 and Appendix B.
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Table 1: Dataset statistics.
BA-Shapes Tree-Cycles Tree-Grid BA2Motif Mutagenicity MSRC 21

#graphs 1 1 1 1000 4337 563
#avg. nodes 700 871 1231 25000 30.32 77.52
#avg. edges 2055 967 1705 51392 30.77 198.32
#classes 4 2 2 2 2 20

6. Empirical Study

In this section, we quantitatively and qualitatively eval-
uate our NESG(PNS) on both synthetic and real-world
data to tell:

• (RQ1) Are the explanations necessary and sufficient?

• (RQ1) Are the necessary and sufficient explanations
accurate?

6.1. Dataset

In this subsection, we will introduce the datasets we
used in our experiments, and the statistics of the dataset
are presented in Table 1.

Synthetic Datasets. We follow the graph generation
process in [57, 32] and adopt four datasets, BA-Shapes,
Tree-Cycles, Tree-Grid, and BA2Motif. Each dataset con-
sists of a base graph and a set of motifs, where for node
classification, the class label of each node is determined
by its role in the motif, and for graph classification, the
class label of each graph is determined by the type of mo-
tif in the graph. For instance, in BA-Shapes, the motifs
are the “house-shaped” subgraphs, and the class labels of
the nodes are “bottom”, “middle”, “top” and “outside”.
For a node instance, its ground-truth explanation is given
by all edges in the motif to which it belongs. Regarding
the explaining indices, we follow the settings in [50] for
BA-Shapes, Tree-Cycles, and Tree-Grid, and the settings
in [32] for BA2Motif.

Real-world Datasets. Two real-world datasets called
Mutagenicity and MSRC 21 [36] are used for graph classifi-
cation in our experiment. Mutagenicity contains chemical
compounds that belong to two classes: either mutagenic or
not. Each compound is a graph, in which each node is an
atom and node features are one-hot encodings of the node
atom types. We follow [32, 57, 47, 33] and treat the amino-
group (-NH2) and nitro-group (-NO2) as the ground-truth
explanations for the mutagenic compounds. MSRC 21 is
derived from MSRC-v2 [34], a benchmark dataset in se-
mantic image processing, where each image belongs to one
of the 20 classes describing the scene of the image. A
graph is constructed based on the semantic segmentation
of each image, in which each node is a super-pixel whose
feature is the one-hot embedding of the object semantic
type. We evaluate on 250 graphs for both Mutagenicity
and MSRC 21.

6.2. Experimental Setup

GNN Training Setup. For both node and graph classi-
fication tasks, we employ three layers of Graph Convolu-
tional Networks (GCNs) [23] with ReLU activations. For
node classification task, we apply node-level read-out by
stacking a fully connected classification layer after the last
GCN layer. For graph classification task, a sum-based
read-out is used to obtain a graph representation after the
last GCN layer, followed by a fully connected classification
layer. The detailed training setup and results are provided
in Appendix C.1.

Evaluation Metrics. We quantitatively evaluate the ex-
planations from two aspects: (1) the necessity and suf-
ficiency (RQ1); (2) the accuracy when the ground
truth explanations are available (RQ2). Specifically:

• Necessity and Sufficiency: We utilize Fidelity+
and Fidelity- (abbreviated as Fid+ and Fid-) to quan-
tify the necessity and sufficiency of the explanations,
respectively [3]. The higher Fid+, the more neces-
sary the explanation, on the contrary, the lower Fid-
, the more sufficient the explanation. Additionally,
we use the charact score, which combines both Fid+
and Fid-, to measure the overall performance on both
necessary and sufficient aspects [3]. The definitions of
Fid+, Fid- and charact scores are shown as follows.

Fid+ = 1− 1
N

∑N
i=1 I(Y

1−Mi = ŷi),

Fid- = 1− 1
N

∑N
i=1 I(Y

Mi = ŷi),

charact =
2× Fid+ × (1− Fid-)

Fid+ + (1− Fid-)
,

where M is the explanation mask, and Y1−M =
fθ(E ⊙ (1 −Me), X ⊙ (1 −Mf )), and YM = fθ(E ⊙
Me, X ⊙ Mf ). We use Fid+c, Fid-c and charactc

to denote these scores for continuous mask explana-
tions. Since the discrete nature of graph, we further
discretize the explanations mask via threshold, and
compute the Fid+d, Fid- d and charactd for discrete
mask explanations.

• Accuracy: We use Recall@K and ROC-AUC to
evaluate the explanation prediction accuracy on
all datasets with ground-truths: BA-Shapes, Tree-
Cycles, Tree-Grid, BA2Motif, and Mutagenicity. In
particular, for most methods, K corresponds to the
number of edges in the ground-truth explanations,
with values of 6, 6, 12, 5, 15 for these datasets, respec-
tively. For PGM-Explainer, which generates node-
level explanation, K is based on the number of nodes
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Table 2: The hyper-parameters setting of NSEG(PNSe) and NSEG(PNSe,f ) among experimented datasets. The sub-script (e) denotes the
hyper-parameters for Me, and the sub-script (f) denotes the hyper-parameters for Mf .

BA-Shapes Tree-Cycles Tree-Grid BA2Motif Mutagenicity MSRC 21
PNSe

αe 5.0e-3 1.0e-2 5.0e-2 1.0e-2 1.0e-4 1.0e-3
βe 1.0 1.0 1.0 1.0 1.0e-3 1.0
PNSe,f

αe 5.0e-3 1.0e-2 1.0e-2 1.0e-2 1.0e-4 5.0e-4
βe 1.0 1.0 1.0 1.0 1.0 1.0
αf 5.0e-3 1.0e-3 1.0e-2 1.0e-2 1.0e-4 5.0e-4
βf 1.0 1.0 1.0 1.0 1.0 1.0

in the ground-truths, with values of 5, 6, 9, 5 and 10
for these datasets, respectively.

Hyper-parameter Setting. We apply a grid search
to tune the hyper-parameters for our NSEG. The de-
tailed hyper-parameters settings of NSEG(PNSe) and
NSEG(PNSe,f ) are shown in Table 2. Regarding the base-
lines, we carefully tune the hyper-parameters based on
their respective reported settings.

Baselines. To verify the effectiveness of PNS, we consider
three variants of NSEG, named NSEG(PN), NSEG(PS),
and NSEG(PNS), which optimize the lower bound of the
probability of necessity, the probability of sufficiency, and
the probability of necessity and sufficiency respectively.
Furthermore, we use a superscript to indicate if edge
(e) or feature (f) is considered in the explanations, e.g.,
NSEG(PNSe) means only edge explanations are consid-
ered by our full PNS model. We compare our NSEG with
the state-of-the-art baselines including the following:

• Random [1] generates random edge explanations.

• GuidedBP [12] generates explanation via gradi-
ent with negative gradients clipped during back-
propagation.

• GNNExplainer [57] generates explanations by max-
imizing the mutual information between explanation
subgraph and model prediction.

• PGExplainer [32] generates explanations from pa-
rameterized networks whose objective is to maximize
the mutual information, similar to GNNExplainer.

• PGM-Explainer [50] generates Bayesian networks
as explanations upon the perturbation-prediction
data to identify significant nodes.

• CF-GNNExplainer [29] generates counterfactual
explanations capable of flipping the model prediction
subject to minimal perturbation.

• CF2 [47] generates explanations based on factual and
counterfactual reasoning.

Note that for those baseline approaches that only gen-
erate node explanations (Grad, GuidedBP, and PGM-
Explainer), we we will not report the fidelity since there

is no edge explanation obtained, and we only report the
Recall@K. Regarding the implementations of baselines, we
adopt their original settings, as detailed in Appendix C.2.
Since all baseline approaches generate only edge explana-
tions instead of the joint explanations of edge and node fea-
tures, for a fair comparison, we mainly compare the results
of NSEG(PNSe), NSEG(PNe), and NSEG(PSe) (which
only generate edge explanations) with baseline methods
in quantitative analysis, and we also showcase the results
of NSEG(PNSe,f ), which generate joint explanations, in
both quantitative and qualitative analyses.

6.3. Are the Explanations Necessary and Sufficient?
(RQ1)

We evaluate the necessity and sufficiency aspects of the
explanations based on the Fid+, Fid-, and charact metrics
[3] in Table 3 and Figure 4 for continuous and discrete
explanations, respectively.

First, when comparing with the baselines, NSEG(PNS)
(including NSEG(PNSe) and NSEG(PNSe,f )) consistently
outperforms the other methods, achieving the high-
est charactc scores for continuous explanations in most
cases and the second winner on MSRC 21 dataset.
When discrete explanations are obtained by thresholding,
NSEG(PNS) achieves the best and relatively stable Fid+d,
Fid-d, and charactd at most cases and the second best on
MSRC 21. The second best results on MSRC 21 can be
due to, the winner GNNExplainer that searches for suffi-
cient explanations yields the extremely lowest Fid-c and
Fid-d, thus leads to the highest charactc and charactd, re-
spectively.

Secondly, among the variants of NSEG, we observe that
NSEG(PNe) provides higher Fid+c and Fid+d scores com-
pared to NSEG(PSe), indicating that NSEG(PNe) focuses
more on necessity. Conversely, NSEG(PSe) emphasizes
sufficiency, as reflected by its lower Fid-c and Fid-d scores
compared to NSEG(PNe). The full model, NSEG(PNSe),
combines the benefits of both aspects, achieving the high-
est charactc and charactd scores in most cases, with one
exception on charactd on Tree-Cycles datasets. This can
be due to, the discretization process damages the neces-
sary aspect of the explanation leading to extremely low
Fid+d, thus causes low charactd.
In summary, NSEG(PNS) consistently generates the

most necessary and sufficient explanations in most cases
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Table 3: Fid+c(%), Fid-c (%) and charactc (%) of the explanations on GCN. Mean and standard deviation are reported. The best result of
each metric is bolded.

Node Classification
BA-Shapes Tree-Cycles Tree-Grid

Fid+c (↑) Fid-c (↓) charactc (↑) Fid+c (↑) Fid-c (↓) charactc (↑) Fid+c (↑) Fid-c (↓) charactc (↑)
Random(3-hops) 57.25±1.97 58.20±1.12 48.30±1.01 77.22±1.82 78.28±1.28 33.88±1.55 87.22±0.55 86.28±0.65 23.71±0.98
GuidedBP 47.75±0.00 77.00±0.00 31.05±0.00 21.67±0.00 85.56±0.00 17.33±0.00 94.17±0.00 26.94±0.00 82.28±0.00
GNNExplainer 46.95±0.83 72.00±0.00 35.08±0.23 77.61±1.34 18.22±0.72 79.63±0.81 90.03±0.90 40.58±0.87 71.58±0.68
PGExplainer 58.45±0.90 59.45±0.10 47.88±0.26 93.61±3.80 95.56±1.24 8.46±2.27 88.06±10.12 94.63±1.41 10.10±2.53
CFGNNExplainer 33.85±0.25 79.75±0.00 25.34±0.07 78.39±0.62 6.11±0.00 85.44±0.37 43.83±0.38 59.53±0.57 42.08±0.44
CF2 46.60±0.25 72.00±0.00 34.98±0.07 78.89±0.00 21.11±0.00 78.89±0.00 43.89±0.00 56.11±0.00 43.89±0.00
NSEG(PNe) 100.00±0.00 66.60±0.12 50.07±0.14 100.00±0.00 0.00±0.00 100.00±0.00 99.31±0.00 11.53±0.00 93.58±0.00
NSEG(PSe) 62.75±0.00 0.00±0.00 77.11±0.00 98.89±0.00 0.00±0.00 99.44±0.00 95.50±0.07 0.00±0.00 97.70±0.04
NSEG(PNSe) 99.60±0.12 0.00±0.00 99.80±0.06 100.00±0.00 0.00±0.00 100.00±0.00 100.00±0.00 0.00±0.00 100.00±0.00
NSEG(PNSe,f ) 100.00±0.00 0.00±0.00 100.00±0.00 100.00±0.00 0.00±0.00 100.00±0.00 100.00±0.00 0.00±0.00 100.00±0.00

Graph Classification
BA2Motif Mutagenicity MSRC 21

Fid+c (↑) Fid-c (↓) charactc (↑) Fid+c (↑) Fid-c (↓) charactc (↑) Fid+c (↑) Fid-c (↓) charactc (↑)
Random 50.50±0.00 50.50±0.00 49.99±0.00 94.64±0.70 94.48±0.30 10.43±0.54 80.16±0.78 80.16±0.60 31.80±0.79
GuidedBP 50.50±0.00 50.50±0.00 50.00±0.00 88.40±0.00 58.80±0.00 56.20±0.00 79.60±0.00 77.60±0.00 34.96±0.00
GNNExplainer 46.40±1.20 50.50±0.00 47.89±0.64 12.80±1.54 89.44±1.42 11.52±1.24 87.36±0.54 2.40±0.00 92.20±0.30
PGExplainer 50.50±0.00 50.50±0.00 49.99±0.00 95.20±0.00 95.20±0.00 9.14±0.00 80.64±1.78 80.96±2.00 30.77±2.71
CFGNNExplainer 97.50±1.10 50.50±0.00 65.66±0.25 93.76±0.93 95.20±0.00 9.13±0.00 76.16±1.49 91.60±0.00 15.13±0.03
CF2 50.50±0.00 50.50±0.00 49.99±0.00 98.80±0.00 0.80±0.00 99.00±0.00 97.20±0.00 52.40±0.00 63.90±0.00
NSEG(PNe) 81.90±0.92 18.30±0.75 81.80±0.58 99.90±0.17 83.30±0.17 28.62±0.25 96.40±0.00 51.70±0.17 64.36±0.15
NSEG(PSe) 0.00±0.00 50.50±0.00 0.00±0.00 91.33±0.50 0.27±0.19 95.35±0.21 43.60±0.33 55.87±0.19 43.86±0.25
NSEG(PNSe) 83.50±1.70 17.60±0.37 82.94±1.01 99.60±0.00 0.80±0.00 99.40±0.00 96.00±0.00 33.12±0.47 78.84±0.33
NSEG(PNSe,f ) 73.50±1.38 47.90±0.73 60.97±0.69 95.12±0.16 86.48±0.78 23.67±1.20 93.52±0.39 61.44±0.20 54.61±0.24

compared to the baselines and other variants of our ap-
proach.

6.4. Are the Necessary and Sufficient Explanations Accu-
rate? (RQ2)

We employ Recall@K and ROC-AUC to judge if the
necessary and sufficient explanations are accurate. As
there is only edge-based ground truth on the first three
synthetic datasets, we only generate edge explanations us-
ing NSEG(PNSe) on those datasets compared with the
other baselines, as shown in Table 4.

The results indicate that our approach generally
achieves the highest Recall@K except on Tree-Cycles
datasets, and slightly lower ROC-AUC on Tree-Cycles,
BA2Motif, and Mutagenicity. The slightly lower Recall@K
and ROC-AUC of our approach may be attributed to the
fact that NSEG prioritizes finding the most necessary and
sufficient explanations rather than focusing on ranking the
explanations. However, Recall@K and ROC-AUC metrics
are sensitive to ranking, which could explain the relative
difference in performance on datasets like Tree-Cycles.

6.5. Qualitative Studies

Besides quantitative analysis, visual explanations can
better help humans understand the decision-making pro-
cess of GNNs. Hence, we present a series of qualitative
studies as follows.

Explanations of NSEG and Baselines. Figure 5 il-
lustrates explanations obtained by different approaches in
Mutagenicity and MSRC 21 datasets. In Figure 5 (a),
we observe that NSEG(PNS) successfully identifies the

well-known explanation, the nitro-group (-NO2), in the
Mutagenicity dataset, while maintaining the integrity of
the molecule by including the benzene ring and exclud-
ing the hydrogen bond (-H). Additionally, NSEG(PNSe,f )
generates a finer-grained explanation by identifying the
node features of nitrogen (N), oxygen (O), and carbon (C)
atoms. In Figure 5 (b), the prediction of the instance
graph is a scene about “chair”. For edge-level explana-
tions, we observe that our approach NSEG(PNS) success-
fully identifies all edges among the node “chair” as the
explanation, while GNNExplainer generates the explana-
tion including not only edges among nodes “chair” but
also edges among nodes “void”, and CF-GNNExplainer
only identifies the edges between nodes “chair” and nodes
“void”. For the node-level explanation generated by
NSEG(PNSe,f ) (highlighted nodes in the rightmost col-
umn of Figure 5 (b)), the inclusion of nodes related to the
chair ensures the explanation’s sufficiency. However, some
“void” nodes may also increase the probability of predict-
ing “chair” because they are strongly associated with the
“chair” nodes in the training set. These scattered “void”
nodes are unlikely to be shared by other “chair”-predicted
samples, making the explanation sufficient but unneces-
sary. This is expected, since the strength of our NSEG
lies in its ability to generate explanations that are both as
sufficient and necessary as possible.

Explanations of NSEG Variants. Figure 6 illustrates
the explanations obtained by the variants of NSEG, which
are NSEG(PNe), NSEG(PSe), and NSEG(PNSe) respec-
tively. Compared to the baselines, NSEG(PNSe) identi-
fies the well-known explanation, the amino-group (-NH2)
[57, 32], while keeping the integrity of the molecule by in-
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Figure 4: Fid+d, Fid-d, and charactd w.r.t. threshold on BA-Shapes, Tree-Cycles, Tree-Grid, Mutagenicity, and MSRC 21 datasets.

Table 4: Recall@K (%) and ROC-AUC (%) of the explanations on GCN. Mean and standard deviation are reported. The best result of
each metric is bolded. Approach with symbol * outputs node-level explanations. The K values for Recall@K in the table are for methods
generating edge-level explanations. For methods generating node-level explanations, the K values for these datasets are 5, 6, 9, 5, and 10.

BA-Shapes Tree-Cycles Tree-Grid BA2Motif Mutagenicity
Recall@6 ROC-AUC Recall@6 ROC-AUC Recall@12 ROC-AUC Recall@5 ROC-AUC Recall@15 ROC-AUC

Random 33.33±0.38 50.09±0.29 66.94±0.31 50.82±0.38 64.04±0.26 49.82±0.21 22.19±0.97 50.45±0.80 40.20±0.87 49.71±0.85
GuidedBP 88.38±0.00 99.63±0.00 77.69±0.00 74.50±0.00 72.11±0.00 67.63±0.00 64.07±0.00 88.44±0.00 82.75±0.00 84.06±0.00
GNNExplainer 79.47±0.41 79.23±0.44 67.16±0.26 54.89±0.57 68.78±0.03 61.59±0.26 19.38±0.48 50.78±0.38 80.43±0.70 69.17±0.15
PGExplainer 79.89±11.35 96.31±4.04 83.61±5.00 79.47±5.00 66.43±1.17 54.09±6.17 49.43±4.30 82.59±2.37 78.81±6.75 79.66±5.19
PGM-Explainer* 65.01±0.69 - 82.35±0.69 - 72.91±0.20 - 26.48±1.15 - 46.55±1.63 -
CFGNNExplainer 75.42±0.07 95.40±0.11 73.41±0.05 66.97±0.13 72.52±0.07 68.21±0.10 60.25±0.18 85.52±0.11 58.64±0.26 59.64±0.07
CF2 86.07±0.20 99.31±0.00 68.71±0.06 59.51±0.09 69.54±0.08 62.56±0.14 27.57±0.44 66.13±0.24 70.58±0.50 76.50±0.08
NSEG(PNSe) 86.48±0.12 98.44±0.08 71.92±0.16 66.57±0.08 73.27±0.07 69.17±0.06 68.75±0.59 85.06±0.23 67.95±0.19 74.03±0.12
NSEG(PNSe,f ) 89.96±0.07 99.67±0.00 72.82±0.13 63.13±0.14 72.62±0.07 67.32±0.05 61.43±0.20 86.33±0.12 84.69±0.69 70.97±0.37

cluding the benzene ring and excluding the hydrogen bond
(-H). In contrast, the ablation NSEG(PNe) only identifies
the benzene ring (which is necessary but not sufficient),
while NSEG(PSe) identifies almost the whole graph (which
is sufficient but not necessary).

Explanations for Incorrect and Correct Predic-
tions. To gain insights into the model’s decision-making
process, it is crucial to explain both correct and incor-
rect predictions. Hence, we showcase two explanations
of the instances with correct and incorrect predictions.
The first instance in Figure 7(a) is a scene about “water,
boat...”, but the GNN incorrectly predicts “road, build-
ing...”. The generated explanation suggests the reason
behind the misclassification—the GNN paid more atten-
tion to the nodes “road”, “building”, and the edges among
them. The second instance in Figure 7(b) is a scene about
“dog”, which is correctly predicted. The generated expla-
nation shows that more attention was paid to the nodes
“dog” and edges among them, leading to the correct pre-
diction. Additionally, more qualitative studies are shown
in Appendix D.2.

Explanations with both Necessity and Sufficiency.
In Figure 8 a compound is predicted as a “mutagenic”,
whose necessary and sufficient explanation E = E′

i,X =
X ′

i can produce the prediction “mutagen” with a high
probability 0.93, showing the sufficiency of the explana-
tion. Also, in the last three columns of Figure 8, we present
one example for each of the cases: (E ̸= E′

i,X ̸= X ′
i),

(E ̸= E′
i,X = X ′

i), and (E = E′
i,X ̸= X ′

i), which degrades
the probabilities of producing “mutagen” to 0.44, 0.41, and
0.38, respectively. Such changes imply the necessity of the
explanation.

6.6. Sensitivity Analysis

Sensitivity of α and β. The hyper-parameter α and β
in Eq. (19) modulates the mask size and mask entropy
regularization terms, the components also utilized in prior
works [57, 32, 47, 30]. Intuitively, the mask size regu-
larization operates as an L1 penalization, compelling the
explanation to emphasize the most salient portions of the
input, while the mask entropy forces the mask concentrat-
ing around a few scalars. Within our experimental setup,
we scrutinized the impact of αe and βe on NSEG(PNSe),
where αe and βe govern the mask size and mask entropy
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Figure 5: Explanations of GNNExplainer, PGExplainer,CF-GNNExplainer, CF2, NSEG(PNSe), and NSEG(PNSe,f ) in Mutagenicity and
MSRC 21, where the explanations are highlighted in blue.
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regularization of the edge mask Me, respectively. The im-
plications of varying αe on NSEG(PNSe) across the met-
rics of charact and Recall@K are depicted in Figure 9.
Two key observations emerge from our analysis:

• Regarding αe, metrics Fid+c, Fid-c and charactc re-
mains largely impervious to alterations in αe, while
in contrast, metric AUC displays a pronounced sen-
sitivity to αe.

• Regarding βe, metrics αe, metrics Fid+c, Fid-c, char-
actc, and AUC show non-sensitive to αe, evidenced
by achieving stable results on these metrics.

Sensitivity of the Priors. We present the sensitiv-
ity analysis for the prior probabilities P00, P01, and P10

(Eq. (11)) in our NSEG. Specifically, we first determined
the appropriate ranges for P00, P01, and P10 around 1/3,
based on the prior knowledge discussed in Section 4.3.2,
using the range [0.2, 0.4]. We then fixed P00 at 0.4 and
linearly sampled 5 values for P01 and P10 at equal inter-
vals within their respective ranges. As shown in Figure 10,
NSEG’s performance, evaluated using Fid+c, Fid-c, char-
actc, and AUC, remains stable. This indicates that as long

Ground truth: “water, boat...”
GNN prediction: “road, building...”

water
road
sky
buliding
void

(a) Explanation of an in-
correctly predicted instance.
The GNN falsely pays more
attention to the nodes “sky”,
“road”, and “building” and
the edges among them.

Ground truth: “dog”
GNN prediction: “dog”

dog
void

(b) Explanation of a cor-
rectly predicted instance.
The GNN correctly pays
more attention to the nodes
“dog” and the edges among
them.

Figure 7: Explanations of NSEG(PNSe,f ) on two MSRC 21 in-
stances, where the explanations are highlighted in blue and enclosed
by a red dashed line.

as the priors are within an appropriate range, NSEG’s per-
formance is less sensitive to their values.

7. Conclusion and Discussion

In this paper, we proposed NSEG, a GNN explana-
tion model that is able to provide necessary and sufficient
explanations for GNNs. Different from the existing ap-
proaches that generate either necessary or sufficient ex-
planations, or a heuristic trade-off explanation between
the two aspects, our objective is to maximize PNS that
ensures the explanation is both necessary and sufficient.
To overcome the intractability of identifying PNS, we de-
rived a lower bound of PNS, and further propose a gen-
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Figure 9: Fid+c, Fid-c, charactc and AUC w.r.t. αe

on NSEG(PNSe) across BA-Shapes, Tree-Cycles, and Tree-Grid
datasets.

eralized SCM of GNN for estimating this lower bound.
For optimization, we leverage continuous masks with sam-
pling strategy to optimize the lower bound. Our empiri-
cal study demonstrates that NSEG can provide the most
necessary and sufficient explanations and achieves state-
of-the-art performance on various datasets.

However, the objective function of NSEG depends on
the selection of priors, even though an appropriate range
can be ensured based on prior knowledge. In future work,
we believe a more prior-free algorithm deserves further at-
tention to address the limitations of NSEG. Despite these
limitations, we believe our NSEG contributes to machine
learning explainability, particularly in terms of necessity
and sufficiency, and inspires the design of more inter-
pretable models.
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Figure 10: Fid+c, Fid-c, charactc and AUC w.r.t. P01 and P10

on NSEG(PNSe,f ) across BA-Shapes, Tree-Cycles, and Tree-Grid
datasets, where P00 = 1− P01 − P10.
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Appendix A. Proof

Appendix A.1. Proof of Lemma 1

Proof. According to the definition of PNS in Definition 2,
we have

PNS(ξ) = P (Yξc ̸= ŷ,Yξ = ŷ)

=P (Yξc ̸= ŷ) + P (Yξ = ŷ)− P (Yξc ̸= ŷ ∨Yξ = ŷ),

since P (Yξc ̸= ŷ ∨ Yξ = ŷ) ≤ 1 and P (Yξc ̸= ŷ,Yξ =
ŷ) ≥ 0, we have:

PNS(ξ) ≥ max{0, P (Yξc ̸= ŷ) + P (Yξ = ŷ)− 1}.

Appendix A.2. Proof of Lemma 2

Proof. Since (Yξc = ŷ) ∨ (Yξc ̸= ŷ) = true, we have:

(Yξ = ŷ)

=(Yξ = ŷ) ∧ ((Yξc = ŷ) ∨ (Yξc ̸= ŷ))

=((Yξ = ŷ) ∧ (Yξc = ŷ)) ∨ ((Yξ = ŷ) ∧ (Yξc ̸= ŷ)),

and since (Yξ = ŷ)∨ (Yξ ̸= ŷ) = true, when monotonicity
holds, i.e., (Yξ ̸= ŷ) ∧ (Yξc = ŷ) = false, we have:

(Yξc = ŷ)

=(Yξc = ŷ) ∧ ((Yξ = ŷ) ∨ (Yξ ̸= ŷ))

=((Yξc = ŷ) ∧ (Yξ = ŷ)) ∨ ((Yξc = ŷ) ∧ (Yξ ̸= ŷ))

=((Yξc = ŷ) ∧ (Yξ ̸= ŷ)),

then, combining those 2 equations, we have:

(Yξ = ŷ)

=(Yξc = ŷ) ∨ ((Yξ = ŷ) ∧ (Yξc ̸= ŷ))

then take the probability form and use the disjointness of
Yξc = ŷ and Yξc ̸= ŷ:

P (Yξ = ŷ) = P (Yξc = ŷ) + P (Yξ = ŷ,Yξc ̸= ŷ)

then:
PNS(ξ) =P (Yξ = ŷ)− P (Yξc = ŷ)

=P (Yξ = ŷ) + P (Yξc ̸= ŷ)− 1

Appendix A.3. Proof of Proposition 1

Proof. In a graph neural network, each node’s hidden rep-
resentation in each hidden layer can be written as func-
tions of entries of graph and all nodes’ representations in
the previous layer, i.e.,

∀v∀k(h(k)
i = f

(k)
θ (E∗,i,H

(k−1))),

where h
(k)
v denotes the hidden representation of node v in

k-th layer, H(k−1)) denotes the hidden representations of
all nodes in (k− 1)-th layer, E∗,i denotes the entries from
all nodes to node i. Then for all nodes’ representations,
we have,

∀k(H(k) = f
(k)
θ (E,H(k−1))),
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where E denotes the edges of the graph.

The output variable Y is determined by all nodes’ rep-

resentations in l-th layer by a read-out function f
(l+1)
θ

(specifically, a node-level read-out for node classification
task and a graph-level read-out for graph classification
task), i.e.,

Y = f
(l+1)
θ (H(l)).

And for the input variables E and X, they are deter-
mined by a set of exogenous U, i.e.,

E,X = f (0)(U).

Thus, the structure of those variables
can be equivalently expressed by a SCM

M({X,E,H(1), ...,H(l),Y},U, {f (0), f
(1)
θ , ..., f

(l+1)
θ }).

Appendix A.4. Proof of Proposition 2

Proof. Start from the output variable Y, the correspond-

ing causal mechanism function Y = f
(l+1)
θ (H(l)) can be

substituted as

Y = f
(l+1)
θ (f

(l)
θ (E, f

(l−1)
θ (E, ...f

(1)
θ (E,X)))).

Thus, we can obtain a new causal mechanism fθ that is
a mapping from E,X to Y, i.e.,

Y = fθ(E,X).

Hence, we can obtain a reduced SCM
M({E,X,Y},U, {f (0), fθ}).

Appendix A.5. Proof of Proposition 3

Proof. First, we can derive lower bounds of both PN and
PS as follows.

PN(ξ) =P (Yξc ̸= ŷ|ξ,Y = ŷ)

=
P (Yξc ̸= ŷ, ξ,Y = ŷ)

P (ξ,Y = ŷ)

Propostion 2
=

P (Yξc ̸= ŷ, ξ,Yξ = ŷ)

P (ξ,Y = ŷ)

=
P (Yξc ̸= ŷ,Yξ = ŷ)P (ξ)

P (ξ,Y = ŷ)

=
P (Yξc ̸= ŷ,Yξ = ŷ)

P (Y = ŷ|ξ)

≥max{0, P (Yξc ̸= ŷ) + P (Yξ = ŷ)− 1}
P (Y = ŷ|ξ)

=max{0, P (Yξc ̸= ŷ)− 1

P (Y = ŷ|ξ) + 1}

PS(ξ) =P (Yξ = ŷ|ξc,Y ̸= ŷ)

=
P (Yξ = ŷ, ξc,Y ̸= ŷ)

P (ξc,Y ̸= ŷ)

Propostion 2
=

P (Yξ = ŷ, ξc,Yξc ̸= ŷ)

P (ξc,Y ̸= ŷ)

=
P (Yξ = ŷ,Yξc ̸= ŷ)P (ξc)

P (ξc,Y ̸= ŷ)

=
P (Yξ = ŷ,Yξc ̸= ŷ)

P (Y ̸= ŷ|ξc)

≥max{0, P (Yξc ̸= ŷ) + P (Yξ = ŷ)− 1}
P (Y ̸= ŷ|ξc)

=max{0, P (Yξ = ŷ)− 1

P (Yξc ̸= ŷ)
+ 1}

Altering the event ξ with the explanation event (E =
E′

i,X = X ′
i), and under the SCM depict in Proposition 2,

the lower bounds of PN and PS after intervening on both
E and X (replacing causal mechanism from U to E and
X), we have:

PNe,f
lb (E′

i, X
′
i) = max{0, Pθ(Y ̸= ŷ|(E = E′

i,X = X ′
i)

c)− 1

Pθ(Y = ŷ|E = E′
i,X = X ′

i)
+1},

PSe,f
lb (E′

i, X
′
i) = max{0, Pθ(Y = ŷ|E = E′

i,X = X ′
i)− 1

Pθ(Y ̸= ŷ|(E = E′
i,X = X ′

i)
c)

+1}.

Appendix B. Optimization Details of the PN and
PS Lower Bounds

In practice, directly optimizing the lower bounds of PN
and PS in Proposition 3 for NSEG(PNe) and NSEG(PSe)
often leads to suboptimal solutions, manifested by the
dominance of the denominator in the optimization, while
the numerator remains nearly unchanged. To alleviate this
issue, since these two bounds are not the primary focus of
this work, we simply fix their denominators and optimize
only the numerators to avoid suboptimal solutions. Math-
ematically, combining the previously discussed continuous
mask and sampling strategy, the objective functions for
optimizing PNe,f

lb and PSe,flb are as follows.

PNe,f
lb =− P00Eϵe,ϵf [f

ŷ
θ ((1−Me + ϵe)⊙Ei, (1−Mf + ϵf )⊙Xi)]

− P01Eϵe [f
ŷ
θ ((1−Me + ϵe)⊙ Ei,Mf ⊙Xi)]

− P10Eϵf [f
ŷ
θ (Me ⊙ Ei, (1−Mf + ϵf )⊙Xi)] + 1,

PS
e,f
lb = f ŷ

θ (Me ⊙ Ei,Mf ⊙Xi).

For tasks requiring higher precision in the PN and PS lower
bounds, we can apply existing approaches such as alternat-
ing optimization of the numerator and denominator [9].

Appendix C. Details of Experiment Setup

Appendix C.1. GNN Training Setup

In this section, we introduce the training setup and
training result of the GNN we explain. For the GNN
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training, we employ three layers of Graph Convolutional
Networks (GCNs) [23] with ReLU activation. For node
classification task, the dimensions of the hidden layers are
16, 32, and 16 respectively, followed by a fully connected
layer as the output layer. For graph classification task,
the dimensions of the hidden layer in graph classification
task are 16, 32, and 16, and after the last GCN layer, a
sum-based read-out is used to obtain a graph represen-
tation, followed by a fully connected layer as the out-
put layer. For all datasets, we split train/val/test with
80 %/10 %/10 %. The hyperparameter setting and test ac-
curacy of the trained GNN model are shown in Table C.5.

Appendix C.2. Baselines

GNNExplainer. The goal of GNNExplainer is to iden-
tify a subgraph G′

i and the associated features X ′
i that

are important to GNN’s prediction ŷ. The objective of
GNNExplainer is to maximize the mutual information be-
tween the subgraph explanation and the GNN model out-
come. Intuitively, if knowing the information of the sub-
graph G′

i and its associated features X ′
i can reduce the

uncertainty of Y, then G′
i and X ′

i are good explanations
for the GNN prediction. Equivalently, the mutual informa-
tion objective captures the sufficiency aspect in producing
an explanation.

max
G′

i,X
′
i

MI(Y; (G′
i, X

′
i))

where MI quantifies the change in the probability of the
prediction ŷ when the input is limited to (G′

i, X
′
i). In par-

ticular, GNNExplainer converts the discrete optimization
problem into continuous optimization and leverages train-
able edge mask Me and feature mask Mf in optimization,
where the objective is derived as follow.

min
Me,Mf

H(Y|G = Gi ⊙Me,X = Xi ⊙Mf )

Notably, the X ′
i in GNNExplainer is quite different from

the X ′
i in NSEG, where the former is a feature dimension-

wise explanation while the latter is a node-wise explana-
tion. In implementations, we adopt the original settings
where for node classification task the l-hop subgraph of
the target node is extracted, where l denotes the num-
ber of graph convolution layers. For hyper-parameter that
controls the mask size regularization, we select [0.01, 0.01,
0.01, 0.005, 0.005] for BA-Shapes, Tree-Cycles, Tree-Grid,
Mutagenicity, and MSRC 21, respectively. For hyper-
parameter that controls the entropy regularization, we set
it to 1.0 for all datasets.

PGExplainer. Though PGExplainer shares the same
objective with GNNExplainer, i.e., maximizing the mu-
tual information between the subgraph explanation and
the GNN outcome, PGExplainer spends way less time in
inference than GNNExplainer. To achieve this, the key
idea of PGExplainer is to learn a mapping from the graph
representation space to subgraph space parameterized by

ω, and the subgraphs are sampled from the distribution
q(ω). The parameterized mapping gives PGExplainer the
inductive ability, which means the explainer once trained,
it does not need to be retrained to explain different in-
stances. In particular, the objective of PGExplainer is
shown as follows.

min
ω

EG′
i∼q(ω)H(Y|G′

i),

where the sampling process G′
i ∼ q(ω) is approximated via

determinant function of parameters ω, temperature τ , and
an independent random variable ϵ ∼ U(0, 1):

G′
i = fω(Gi, τ, ϵ).

In implementations, we adopt the original annealing
schedule of τ , i.e., τt = (τT /τ0)

t, where τ0 and τT are set
to 5.0 and 2.0, respectively. For node classification task
the l-hop subgraph of the target node is extracted, where
l denotes the number of graph convolution layers. For the
hyper-parameter that controls the mask size regulariza-
tion, we select [0.01, 0.01, 0.01, 0.05, 0.05] for BA-Shapes,
Tree-Cycles, Tree-Grid, Mutagenicity, and MSRC 21, re-
spectively. For the hyper-parameter that controls the en-
tropy regularization, we set it to 1.0 for all datasets.

PGM-Explainer. A Probabilistic Graphical Model
(PGM) is utilized as a surrogate in PGM-Explainer to gen-
erate explanations for GNN. The goal of PGM-Explainer is
to learn a Bayesian network upon the local perturbation-
prediction dataset to identify significant nodes. Specifi-
cally, to obtain the local perturbation-prediction dataset,
PGM-Explainer randomly perturbs the node features of
several random nodes, then records a random variable in-
dicating whether its features are perturbed and its influ-
ence on the GNN predictions. After obtaining the local
dataset, the Grow-Shrink (GS) algorithm is leveraged to
reduce the size of the local dataset, then an interpretable
Bayesian network is employed to fit the local dataset and
to explain the GNN model. For hyper-parameters settings,
we set the probability of perturbation to 0.5, the predic-
tion difference threshold to 0.1, the number of samples to
50, and the p-value for the conditional independence test
to 0.05.

CF-GNNExplainer. Different from GNNExplainer and
PGExplainer whose objective is to generate subgraphs
that are especially relevant for a particular prediction, the
goal of CF-GNNExplainer is to generate a counterfactual
explanation that can flip the model prediction. The nature
of counterfactual explanation [29] is that the explanation
can flip the model prediction subject to a minimal pertur-
bation on data, which is equivalent to the nature of the
necessary explanation. To generate the counterfactual ex-
planation G′

i, the objective of CF-GNNExplainer is given
as follows.

max
G′

i

Lpred(Gi, G
′
i) + βLdist(Gi, G

′
i),
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Table C.5: The hyperparameter setting and test accuracy of GNN.
BA-Shapes Tree-Cycles Tree-Grid BA2Motif Mutagenicity MSRC 21

lr 0.001 0.001 0.001 0.01 0.001 0.001
# of GNN layers 3 3 3 3 3 3
# of epochs 2000 2000 2000 2000 500 500
dropout 0 0 0 0 0.5 0.5
optimizer Adam Adam Adam Adam Adam Adam
weight decay 0 0 0 0 5e-4 5e-4
accuracy 0.957 0.903 0.927 1.0 0.761 0.983

where Lpred(Gi, G
′
i) stands for the prediction loss aim-

ing to obtain G′
i that can flip the model prediction, and

Ldist(Gi, G
′
i) stands for the distance loss aiming to achieve

minimum perturbation. In implementations, we adopt
the original settings where for node classification task the
(l+1)-hop subgraph of the target node is extracted, where
l denotes the number of graph convolution layers. For β
we select [0.05, 0.05, 0.05, 0.01, 0.01] for BA-Shapes, Tree-
Cycles, Tree-Grid, Mutagenicity, and MSRC 21, respec-
tively.

CF2. CF2 produces a trade-off explanation between ne-
cessity and sufficiency by taking insights into counterfac-
tual and factual reasoning from causal inference theory.
The objective of CF2 is to minimize the complexity of
the explanation, subject to the explanation strength being
strong enough. The explanation strength can be divided
into two parts, the counterfactual explanation strength Sc

and the factual explanation strength Sf , and a hyperpa-
rameter is introduced to control the trade-off between the
two. Formally, the objective of CF2 is shown as follows.

min
G′

i,X
′
i

C(G′
i) s.t. αSf (G

′
i, X

′
i) + (1− α)Sc(G

′
i, X

′
i) > λ,

where C(G′
i, X

′
i) measures the complexity of the explana-

tion G′
i, and X ′

i is similar to the X ′
i of GNNExplainer

as we mentioned before. For implementations, we adopt
the original settings where α is set to 0.6 for all datasets,
and λ is set to [500, 500, 500, 1000, 1000] for BA-Shapes,
Tree-Cycles, Tree-Grid, Mutagenicity, and MSRC 21, re-
spectively. Also for node classification task the l-hop sub-
graph of the target node is extracted, where l denotes the
number of graph convolution layers.

Appendix C.3. Hardware and Software

For hardware, our experiments are conducted on on a
Linux machine with Nvidia GeForce RTX 2080 Ti with 11
GB memory. For software, we implement our NSEG in
Deep Graph Library (DGL) with Pytorch. For the imple-
mentations of the baseline approaches, we follow and mod-
ify the following codes: GNNExplainer1, PGExplainer2,
PGM-Explainer3, CF-GNNExplainer4, and CF2 5.

1https://github.com/RexYing/gnn-model-explainer
2https://github.com/flyingdoog/PGExplainer
3https://github.com/mims-harvard/GraphXAI/tree/main/

graphxai/explainers/pgm_explainer
4https://github.com/a-lucic/cf-gnnexplainer
5https://github.com/chrisjtan/gnn_cff

Appendix D. More Experimental Results

Appendix D.1. Result on GIN Architecture

In this subsection, we showcase the additional experi-
mental results on GIN [55] architecture besides the GCN
architects, where the results of Fid+c, Fid-c and charactc

are given in Table D.6, and the results of Recall@K and
ROC-AUC are given in Table D.7. We observe that our
NSEG achieves the best Fid+c, Fid-c and charactc com-
pared with other approaches except for Fid-c and charactc

on Tree-Grid dataset (NSEG also achieve the second best).
Besides, our NSEG achieves the best Recall@K on BA-
Shapes and Tree-Grid, while achieving the second winner
on the remaining metrics.

Appendix D.2. More Qualitative Studies

We further illustrate the necessary and sufficient expla-
nation obtained by our approach through visualization in
more case studies. The visualization of explanations of
Mutagenicity is shown in Figure D.11, while the visualiza-
tion of explanations of MSRC 21 is shown in Figure D.12.
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Table D.6: Comparison of Fid+c(%), Fid-c (%) and charactc (%) of the explanations on GIN architecture. Mean and standard deviation are
reported.

Node Classification
BA-Shapes Tree-Cycles Tree-Grid

Fid+c (↑) Fid-c (↓) charactc (↑) Fid+c (↑) Fid-c (↓) charactc (↑) Fid+c (↑) Fid-c (↓) charactc (↑)
Random 62.50±0.00 62.45±0.10 46.91±0.08 45.56±2.76 47.44±3.17 48.80±2.92 98.75±0.00 98.75±0.00 2.47±0.00
GuidedBP 61.75±0.00 62.50±0.00 46.66±0.00 61.39±0.00 63.61±0.00 45.69±0.00 98.75±0.00 98.75±0.00 2.47±0.00
GNNExplainer 62.00±0.00 62.00±0.00 47.12±0.00 96.48±0.69 9.07±1.25 93.62±0.98 98.75±0.00 98.75±0.00 2.47±0.00
PGExplainer 48.50±10.49 62.50±0.00 41.78±4.28 44.07±26.47 42.96±29.19 49.60±27.96 95.51±2.67 98.75±0.00 2.47±0.00
CFGNNExplainer 62.75±0.50 62.50±0.00 46.94±0.14 98.33±0.00 81.81±0.14 30.71±0.20 98.47±0.28 98.75±0.00 2.47±0.00
CF2 62.50±0.00 58.00±0.00 50.24±0.00 100.00±0.00 0.00±0.00 100.00±0.00 98.75±0.00 98.75±0.00 2.47±0.00
NSEG(PNSe) 62.50±0.00 58.00±0.00 50.24±0.00 100.00±0.00 0.00±0.00 100.00±0.00 100.00±0.00 98.75±0.00 2.47±0.00

Graph Classification
BA2 Motif Mutagenicity MSRC 21

Fid+c (↑) Fid-c (↓) charactc (↑) Fid+c (↑) Fid-c (↓) charactc (↑) Fid+c (↑) Fid-c (↓) charactc (↑)
Random 49.50±0.00 49.50±0.00 49.99±0.00 55.84±1.38 54.96±1.49 49.85±1.20 2.88±0.63 93.04±0.98 3.98±0.52
GuidedBP 49.50±0.00 49.50±0.00 49.99±0.00 66.80±0.00 29.60±0.00 68.55±0.00 39.2±0.00 34.00±0.00 49.19±0.00
GNNExplainer 43.67±0.24 49.50±0.00 46.84±0.14 92.67±0.50 0.53±0.19 95.95±0.27 59.47±0.69 2.80±0.45 73.79±0.59
PGExplainer 49.50±0.00 49.50±0.00 49.99±0.00 61.47±0.38 58.27±0.38 49.71±0.35 38.27±10.01 24.40±4.73 50.56±9.67
CFGNNExplainer 48.00±1.08 49.50±0.00 49.21±0.57 66.40±1.99 14.53±0.19 74.72±1.28 15.73±0.69 97.20±0.00 4.75±0.03
CF2 49.50±0.00 49.50±0.00 49.99±0.00 100.00±0.00 0.00±0.00 100.00±0.00 87.60±0.00 1.20±0.00 92.86±0.00
NSEG(PNSe) 49.50±0.00 23.50±0.71 60.11±0.22 96.13±0.19 0.40±0.00 97.84±0.10 90.40±0.00 0.40±0.00 94.78±0.00

Table D.7: Comparison of Recall@K (%) and ROC-AUC (%) of the explanations on GIN architecture. Mean and standard deviation are
reported.

BA-Shapes Tree-Cycles Tree-Grid BA2Motif Mutagenicity
Recall@K ROC-AUC Recall@K ROC-AUC Recall@K ROC-AUC Recall@K ROC-AUC Recall@K ROC-AUC

Random 33.33±0.38 50.09±0.29 66.94±0.31 50.82±0.38 64.04±0.26 49.82±0.21 22.22±1.23 50.46±1.00 40.20±0.87 49.71±0.85
GuidedBP 77.77±0.00 98.98±0.00 76.85±0.00 73.04±0.00 74.83±0.00 71.31±0.00 36.90±0.00 73.28±0.00 76.67±0.00 80.07±0.00
GNNExplainer 62.58±0.00 74.89±0.00 67.40±0.24 52.38±1.09 73.40±0.11 65.24±0.02 20.15±0.42 51.59±0.09 35.56±0.65 53.64±0.07
PGExplainer 82.54±8.43 99.14±0.47 78.53±5.87 75.68±5.39 67.20±1.21 59.48±7.59 24.63±10.33 63.66±5.49 40.84±24.44 50.06±25.12
CFGNNExplainer 68.59±0.24 62.57±0.11 70.98±0.24 64.91±0.11 69.82±0.18 62.69±0.17 27.50±0.10 57.31±0.02 76.66±0.20 78.54±0.07
CF2 61.67±0.10 65.76±0.09 74.68±0.25 72.76±0.00 64.26±0.07 54.49±0.04 18.86±0.13 55.84±0.03 53.70±0.28 62.80±0.29
NSEG(PNSe) 65.43±0.05 79.63±0.03 78.35±0.07 73.31±0.05 65.23±0.06 58.71±0.04 37.35±0.73 70.74±0.51 78.13±0.30 74.82±0.19
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Figure D.11: Explanations of GNNExplainer, PGExplainer, CF-GNNExplainer, CF2, NSEG(PNSe), and NSEG(PNSe,f ) on various Muta-
genicity instances obtained by threshold, where the explanations are highlighted in blue.

21



GNNExplainer PGExplainer CF-GNNExplainer CF2 NSEG(PNSe) NSEG(PNSe,f)

● book ● voidPrediction: “book”

(a)

GNNExplainer PGExplainer CF-GNNExplainer CF2 NSEG(PNSe) NSEG(PNSe,f)

● dog ● voidPrediction: “dog”

(b)

GNNExplainer PGExplainer CF-GNNExplainer CF2 NSEG(PNSe) NSEG(PNSe,f)

● flower ● voidPrediction: “flower”

(c)

GNNExplainer PGExplainer CF-GNNExplainer CF2 NSEG(PNSe) NSEG(PNSe,f)

● face  ● body  ● book ● voidPrediction: “face, body”

(d)

Figure D.12: Explanations of GNNExplainer, PGExplainer, CF-GNNExplainer, CF2, NSEG(PNSe), and NSEG(PNSe,f ) on various MSRC 21
instances obtained by threshold, where the explanations are highlighted in blue.
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