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A B S T R A C T
Graphs are ubiquitous in real-world applications, such as computation graphs and social net-
works. Partitioning large graphs into smaller, balanced partitions is often essential, with the bi-
objective graph partitioning problem aiming to minimize both the“cut” across partitions and the
imbalance in partition sizes. However, existing heuristic methods face scalability challenges or
overlook partition balance, leading to suboptimal results. Recent deep learning approaches, while
promising, typically focus only on node-level features and lack a truly end-to-end framework,
resulting in limited performance. In this paper, we introduce a novel method based on graph
neural networks (GNNs) that leverages multilevel graph features and addresses the problem
end-to-end through a bi-objective formulation. Our approach explores node-, local-, and global-
level features, and introduces a well-bounded bi-objective function that minimizes the cut while
ensuring partition-wise balance across all partitions. Additionally, we propose a GNN-based
deep model incorporating a Hardmax operator, allowing the model to optimize partitions in
a fully end-to-end manner. Experimental results on 12 datasets across various applications
and scales demonstrate that our method significantly improves both partitioning quality and
scalability compared to existing bi-objective and deep graph partitioning baselines.

1. Introduction
Graphs are ubiquitous in the real world and can be used to represent objects and their relationships, such as social

networks Zhou, Liu, Ding, Jin and Li (2023); Ma, Zhang, Ma and Ma (2020), modules in biology Ma, Sun and Qin
(2017); Ma, Zhao and Wu (2022); Ma, Tang, Wang, Guo and Gao (2016), and computation graphs Tanaka, Taura,
Hanawa and Torisawa (2021). In computational intensive applications, such as distributed computing Tanaka et al.
(2021), an input graph is usually partitioned into 𝐾 partitions to be processed by 𝐾 devices. The bi-objective K-way
graph partitioning problem aims to divide the nodes in a graph into 𝐾 partitions, such that the partitions are balanced
with similar sizes and the “cut” between different partitions are minimized. The size of a partition is usually defined as
the sum of weights of nodes in that partition, whereas the cut is measured as the sum of weights of the edges between
different partitions.

Solving the graph partitioning problem will boost developments of various applications, such as distributed
computing Shao, Li, Gu, Yin, Li, Miao, Zhang, Cui and Chen (2024); Ni, Li, Yu, Zhou and Wu (2020) and VLSI
design Bustany, Gasparyan, Kahng, Koutis, Pramanik and Wang (2023). When performing distributed graph analysis
tasks, minimizing the cut saves as much connectivity information as possible in the graph, and keeping the partitions
in similar sizes helps balance the workloads among processors to approximate the linear speedup. Moreover, graph
partitioning is a crucial step in VLSI design. Minimizing the cut between subcircuits can decrease circuit delay, and
achieving balanced partitions helps in avoiding bottlenecks and ensuring uniform resource utilization. Hence, how to
derive the partitions with both minimized cut and balanced sizes has become an urgent research topic.

Existing literature on the bi-objective optimization problem are mainly based on genetic algorithms Baños, Gil,
Montoya and Ortega (2004); Farshbaf and Feizi-Derakhshi (2009). However, they incur high time costs to find good
partitions in large graphs. Other heuristic methods show better scalability and partitioning quality by modeling the
partitioning problem as a constrained single-objective optimization problem. That is, they first fix the size of the biggest
partition to satisfy a given constraint, then aim to find the minimum cut. However, such a formulation suffers from two
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major limitations. First, these works only consider nodes and edges in a local view, ignoring a global view of the graph,
resulting in inferior partitions. Second, they only concern with the size of the biggest partition, ignoring partition-wise
balance across all partitions.

On another line, the success of graph neural networks (GNNs) has inspired several GNN-based graph partitioning
models which divide nodes by embedding their features into 𝐾 dimensions Gatti, Hu, Smidt, Ng and Ghysels (2022);
Gatti and Hu (2022); Nazi, Hang, Goldie, Ravi and Mirhoseini (2019) and predicting the assignment probability
distribution on each dimension representing a partition. These methods usually feed node weights into GNNs as a
node-level feature, lacking a broader local or even global view of the graph, which leads to inferior performance
on partitioning, especially for unweighted graphs (nodes and edges without features). Furthermore, none of these
works is truly end-to-end. Specifically, their training process optimizes a soft assignment matrix containing the
probability distribution, which cannot reflect the true partitioning quality resulting inferior performance. Moreover,
actual partitions are discrete requiring a hard assignment matrix. The discrepancy between soft and hard assignment
matrices can degrade the performance which will be shown in our experiment.

To address the issues of existing studies, we propose a novel deep graph partitioning method, which exploits
multilevel graph features and contains a GNN-based model to optimize a well bounded bi-objective function in an
end-to-end manner. Specifically, we tackle the following challenges in our model design.

Challenge 1: Multilevel graph features Exploiting more graph features is necessary and beneficial for generating
high quality partitions. The chosen graph features should aid in characterizing nodes, be aligned with graph partitioning
objectives and be easily accessible. Besides the node weight feature, we further consider adjacency encoding, i.e.,
adjacent matrix, as the local feature, which includes the local neighborhood of the node and is crucial for minimizing
the cut. This feature is also handy and memory efficient for large graphs, since adjacency encoding can be stored as a
sparse matrix Fey and Lenssen (2019). Finally, as a global-level feature, position encoding is calculated based on the
shortest path between nodes, which is important to generating partitions that are consistent with the global topology.

Challenge 2: Bounded bi-objective function While the cut objective has been standard, such as the normalized
cut Shi (2003) adopted in this paper, the balance objective is not well studied. Previous works either neglect
the consideration of partition-wise balance or usually present an unbounded balance objective resulting in a large
optimizing space Baños et al. (2004); Farshbaf and Feizi-Derakhshi (2009); Gatti et al. (2022); Gatti and Hu (2022);
Nazi et al. (2019). We propose a bounded partition-wise balance objective function that encourages each partition to
be perfectly balanced. Notably, we establish that the balance objective function can be bounded just as the normalized
cut, implying that the two objectives can be combined and optimized smoothly in a bi-objective formulation.

Challenge 3: End-to-end optimization Existing deep learning-based graph partitioning works cannot optimize
the hard assignment matrix (i.e, explicit partitions) directly. Although the hard assignment matrix can be obtained by
applying the argmax operation on the soft assignment matrix, argmax is not differentiable and is thus incompatible
with gradient-based optimization. To address this issue, we propose a differentiable Hardmax operator, which builds
a tight connection between hard and soft assignment matrices and enables our model to optimize and output the hard
assignment matrix directly.

In summary, our contributions in this work can be summarized as follows:
• To the best of our knowledge, for the bi-objective graph partitioning problem, we propose the first end-to-end

deep partitioning method, demonstrating the promising potential of deep end-to-end models over both existing
traditional heuristic and learning-based methods.

• We explore efficient multilevel (node-, local-, and global-) features aligning with graph partitioning objectives.
A bounded bi-objective function is further proposed which considers both the cut and partition-wise balance
to guide the model to generate high quality partitions. Moreover, we design a GNN model with the Hardmax
operator to optimize hard assignments in an end-to-end manner.

• We conduct extensive experiments on 12 real-world datasets in various domains and scales, and the results
demonstrate the notable improvement in partitioning quality and scalability than existing bi-objective baselines
and deep graph partitioning baselines.

2. Related Work
In this section, we first introduce heuristic methods, followed by deep learning based graph partitioning works.
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2.1. Node Partitioning and Edge Partitioning
In the graph partitioning problem, there are two main categories: node partitioning and edge partitioning

Çatalyürek, Devine, Faraj, Gottesbüren, Heuer, Meyerhenke, Sanders, Schlag, Schulz, Seemaier et al. (2023). The
node partitioning method, which we focus on in this paper, attempts to evenly assign nodes to partitions by cutting the
edges, thereby minimizing the number of cut edges. In contrast, the edge partitioning method aims to evenly distribute
edges across partitions by cutting the nodes, thus minimizing the number of cut nodes. Node partitioning is commonly
adopted for load balancing in parallel computing Shao et al. (2024), whereas edge partitioning is frequently utilized in
distributed graph processing, particularly for power-law graphs Hanai, Suzumura, Tan, Liu, Theodoropoulos and Cai
(2019).
2.2. Heuristic K-way Graph Partitioning Methods

Existing bi-objective graph partitioning methods are based on evolutionary algorithms. The algorithms can be
adopted to directly minimize the cut and the size of the biggest partition Baños et al. (2004); Farshbaf and Feizi-
Derakhshi (2009). Besides the two objectives, other researchers consider minimizing the spread of a partition in a
direction in order to make the partition of compact shape Datta, Figueira, Fonseca and Tavares-Pereira (2008); Datta
and Figueira (2011). However, due to a large number of iterations required by evolutionary algorithms to converge,
these works are time-consuming for partitioning large graphs.

Most existing graph partitioning works formulate the graph partitioning problem as a constrained single-objective
optimization Çatalyürek et al. (2023); Sanders and Schulz (2013), and solve it follow a multilevel paradigm
?Gottesbren, Heuer, Sanders, Schulz and Seemaier (2021), such as Metis Karypis and Kumar (1998a) and Scotch
Chevalier and Pellegrini (2008). Specifically, they aim to find the minimum cut while ensuring the size of the biggest
partition satisfy a given constraint. To achieve this, they first reduce the sizes of a graph to speedup (coarsening level),
partition the reduced graph (partitioning level), and subsequently refine partitions to recover the graph (refining level).
However, these works only consider nodes and edges in a local view, ignoring a global view of the graph, resulting in
inferior partitions. Furthermore, they only concern the imbalance degree defined by the size of the biggest partition,
ignoring a partition-wise balance across all partitions. Moreover, if they set the constraint as perfect balance (i.e., the
biggest size equals to total number of nodes divided by 𝐾), the cut of partitions will usually be very high. That is, these
methods are single-objective driven, which are difficult to generate as minimized and balanced partitions as possible.
Finally, these methods require the input graphs to be undirected, connected, and free of self-loops. Checking these
requirements for the graphs will incur additional time costs before partitioning.
2.3. GNN-based Graph Partitioning Methods

Graph neural networks (GNNs) Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson (2023) can learn node, edge
and structure representations in a graph, which has inspired GNN-based single- and multi- level graph partitioning
models.

Regarding the single level partitioning methods, researchers first propose their bi-objective partitioning functions,
and then design neural networks optimizing soft assignments directly to minimize the functions Shao, Wang, Zhao, Ma
and Liu (2023); Nazi et al. (2019); Liu, Wang, Cao, Liu and Shen (2022); Cai, Guo and Huang (2024), such as GAP
Nazi et al. (2019) and GON Liu et al. (2022). For example, GAP Nazi et al. (2019) is a deep approximate partitioning
model, which is trained to learn soft assignments of partitions and tested to partition unseen graphs showing stronger
generalizability than multilevel graph partition methods. In GON, the authors propose a variant of the normalized cut
Shi and Malik (2000) as the edge-cut objective and a regularization loss as the balance objective where minimizing the
former boosts strongly connected nodes to be partitioned together and minimizing the later encourages the partitions
to hold similar size. Some graph pooling works Bianchi, Grattarola and Alippi (2020); Duval and Malliaros (2022);
Tsitsulin, Palowitch, Perozzi and Müller (2023) can be categorized into the single level partitioning, because they share
the similar idea of GON to learn more abstract and coarser representations of the graphs. For example, the loss functions
of HoscPool Duval and Malliaros (2022) and DMoN Tsitsulin et al. (2023), contain a cut loss and a orthogonality loss.
However, the above balance losses are only designed for the graphs with unweighted nodes. Moreover, due to without
sufficient input features, these works usually output empty partitions.

Following the multilevel graph partitioning paradigm, deep multilevel methods are proposed Gatti et al. (2022). The
graph firstly is coarsened, then a graph embedding module based on GNNs is designed to learn spectral embedding
of the coarsened graph. Finally a partition module is used to generate the soft assignment matrix. The embedding
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module and the partition module are trained by different objective functions. However, this method can only perform bi-
partition, not the general K-way (𝐾 ≥ 2) graph partitioning. Besides GNNs, the authors integrated Deep Reinforcement
Learning algorithms into the multilevel paradigm Gatti and Hu (2022). For example, after coarsening graphs as in
Gatti et al. (2022), GraphSAGE Hamilton, Ying and Leskovec (2017) is adopted to learn node embeddings and A2C
Williams (1992) algorithm is used for initial partitioning and refinement. From their experiments, they show the
method generalizes well to unseen graphs, but do not show better performance than heuristic multilevel graph partition
baselines in terms of cut or balance.

Notably, all the above GNN-based methods only adopt the node weight as features, without exploring multilevel
graph features. Moreover, their balance objectives are only for unweighted graphs or usually are unbounded resulting
in a large optimization space. Finally, they are not able to optimize explicit partitions in an end-to-end manner leading
to inferior partitioning performance.
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Figure 1: Overall framework of our proposed method for deep graph partitioning.

3. Proposed Method
In this section, we first present the bi-objective graph partitioning problem. Then, we explore how multilevel

features can be utilized and why they can improve the partitioning quality. Finally, we illustrate our end-to-end model
architecture.
3.1. Bi-objective Function

In this section, we introduce two optimization objectives for the K-way weighted graph partitioning. The first is the
well-established normalized cut Shi (2003), and the second is our proposed partition-wise balance metric. These are
detailed in the following sections.
3.1.1. The Normalized Cut Objective Function

In Shi (2003), the authors demonstrate that in the normalized form, minimizing the cuts between partitions is
equivalent to maximizing the associations within partitions based on the fact that the total number of edges is fixed.
Most existing deep partitioning works Nazi et al. (2019); Liu et al. (2022); Gatti et al. (2022); Tsitsulin et al. (2023)
use variants of the normalized cut, such as GAP, which cannot reflect the true number of cut edges. In this paper,
we adopt the standard normalized cut Shi (2003), which is measured by associations within partitions revealing the
real partitioning quality, as our edge-cut objective in this paper. Moreover, for easy of implementation, we choose to
minimize the negative normalized cut denoted as 𝐿𝑐 , shown in Eq. 1:

𝐿𝑐 = − 1
𝐾

tr
(

𝐗⊤𝐖𝐗
𝐗⊤𝐃𝐗 + 𝐈𝐾 × 10−3

)

. (1)

In Eq. 1, 𝐾 is the number of desired partitions, and 𝐗 is an 𝑁 × 𝐾 node assignment matrix with binary elements,
where 𝑁 represents the number of nodes. An element 𝐗𝑖𝑗 = 1 indicates that node 𝑖 is assigned to partition 𝑗, while
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𝐗𝑖𝑗 = 0 indicates otherwise. 𝐖 is the weighted adjacency matrix, 𝐃 is the degree matrix of 𝐖, 𝐈𝐾 denotes a 𝐾 × 𝐾
identity matrix and tr(⋅) represents the trace of a matrix.

In Eq. 1, both the numerator and denominator are diagonal matrices. The 𝐾 diagonal values in the numerator show
the sums of edges staying in each partition, and the diagonal values in the denominator represent the sums of both
staying and escaping edges in each partition. Thus, it is easy to see Eq. 1 is bounded between 0 and 1, and maximizing
Eq. 1 promotes the association within each partition. In addition, for more robustness optimization, we add a small
constant (10−3) into the denominator in Eq. 1. More details about this modification can be found in Appendix A.1.
3.1.2. The Balance Objective Function

Although the cut objective has been standard, such as the normalized cut 𝐿𝑐 adopted in this paper, the balance
objective is not well studied. Previous works either neglect the consideration of partition-wise balance or present an
unbounded balance objective resulting in a large optimizing space Baños et al. (2004); Farshbaf and Feizi-Derakhshi
(2009); Gatti et al. (2022); Gatti and Hu (2022); Nazi et al. (2019). To address these issues, we propose a well bounded
partition-wise balance objective function 𝐿𝑏 as shown in Eq. 2:

𝐿𝑏 =
1

√

𝐾(𝐾 − 1)𝑠
‖

‖

‖

𝐗⊤𝐒𝐗 − 𝑠 × 𝐈𝐾
‖

‖

‖𝐹
(2)

where 𝐒 ∈ ℝ𝑁×1 is the node weight feature, 𝑠 =
∑𝑁

𝑖=1 𝑠𝑖
𝐾 is the size of a perfectly balanced partition, and ‖ ⋅‖𝐹 indicates

the Frobenius norm.
The 𝐿𝑏 is a partition-wise balance objective, and minimizing 𝐿𝑏 encourages the size of each partition to as close to

the perfectly balanced size 𝑠 as possible. Specifically, both 𝐗⊤𝐒𝐗 and 𝑠×𝐼𝐾 are diagonal matrices, and the 𝑖th diagonal
value of 𝐗⊤𝐒𝐗 is the size of the 𝑖th partition. Since 𝑠 × 𝐈𝐾 represents perfectly balanced 𝐾 partitions, minimizing the
elements in Frobenius norm is actually balancing the sizes of different partitions. This puts a balance requirement across
all partitions, instead of just the biggest partition in traditional approaches Karypis and Kumar (1998a); Chevalier and
Pellegrini (2008).

Then we present our Theorem 1 which is well bounded just as the normalized cut (the proof can be found in
Appendix A.2), implying that the two objectives can be combined safely and optimized simultaneously. Moreover,
Theorem 1 indicates that the lower 𝐿𝑏 is, the more balanced partitions there are. In particular, when 𝐿𝑏 = 0, the
partitions are perfectly balanced.
Theorem 1. For any assignment matrix 𝐗, 0 ≤ 𝐿𝑏 ≤ 1.

Compared with balance objectives proposed by Nazi et al. (2019); Tsitsulin et al. (2023); Duval and Malliaros
(2022), our 𝐿𝑏 has three advantages. Firstly, our balance metric accurately represents the real sizes of each partition
because it operates on hard assignments, whereas they uses soft assignments (the sum of all probabilities in 𝑖 th column
is the size of 𝑖 th partition). Consider an extreme case when the model set equal probabilities on all partitions for each
node, their balance metrics will consider this is perfect balanced, which is incorrect. Secondly, our balance metric is
well-bounded and can be safely optimized alongside the normalized cut objective. Lastly, our metric accommodates
both weighted and unweighted nodes, while they are designed solely for unweighted nodes.
3.1.3. Bi-objective Function and Optimization

Based on 𝐿𝑐 and 𝐿𝑏, the bi-objective function given by
𝐿 = 𝛼𝐿𝑐 + 𝐿𝑏, (3)

where 𝛼 > 0 is a hyper-parameter that controls the trade-off between the two losses, and −𝛼 ≤ 𝐿 ≤ 1. When 𝛼 > 1,
𝐿𝑐 will preferred over 𝐿𝑏, and vice versa.

In previous sections, we show that minimizing the normalized cut 𝐿𝑐 encourages low edge-cut between partitions,
and minimizing our 𝐿𝑏 generates more balanced partitions which also has the exact same value range with 𝐿𝑐 .Therefore, 𝐿 = 𝐿𝑐 + 𝐿𝑏 can be considered as the metric representing the overall partitioning quality and the lower 𝐿
value means higher quality of partitions.

In the next sections, we will introduce how to optimize 𝐿 efficiently from perspectives of graph features and model
designing.
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3.2. Node-level, Local and Global Features
Carefully designed graph features help to optimize the bi-objectives efficiently. Input features from different

perspectives enhance the expressiveness of graph neural networks, to better distinguish nodes and structures in a graph
for the 𝐾-way partitioning problem.

In Figure 1 (a), we show a weighted graph where nodes are represented by different colors, and the numbers on
nodes represent nodes’ sizes and the numbers on edges represent the edge weights. Ideally, the extracted graph features
should be synergistic with the bi-objective and easy to obtain. To achieve this, we explore rich multilevel (node-, local-
and global-) features as input to our deep partitioning model. Specifically, we extract three types of feature from a
graph at different levels, i.e., Node Size Feature at the node-level, Adjacency Feature at the local level and Position
Feature at the global level, as shown in the Figure 1 (b).

Firstly, the node size feature is necessary for balancing partitions and is usually used as the default node features.
Note that, the size of a node can be user-defined. For example, for a computation graph where a node represents
an operator, e.g. a convolution operator, the node size can be defined as the operator’s execution time. Secondly,
the adjacency feature, i.e., the weighted adjacency matrix 𝐖 of a graph, shows the neighbors of a node and their
relationships (i.e. the edge weights), which provides a local view of each node in a graph and is essential to the
calculation of cut. Note that, although the adjacency feature in Figure 1 (b) and the Adj in Figure 1 (c) represent the
same matrix, they leverage adjacency information differently. Specifically, the adjacency feature is fed into our model
as graph features, whereas the Adj functions as the node’s neighbor indicator for GNNs This feature is still feasible
when dealing with large graphs, since the adjacency matrix can be stored as a sparse matrix which is both computation
and memory efficient. Finally, for the position feature, we represent the position encoding of a node as the shortest path
of the node to other nodes, which is computed by Dijkstra’s algorithm and presents a global position of a node in the
whole graph. This feature provides more comprehensive information than the adjacency feature, and is important to
minimize edge cut between partitions. Due to the algorithm’s complexity, position encoding is implemented exclusively
for small graphs.
3.3. Deep graph partitioning Model

Our deep graph partitioning model includes two main modules, as sketched in Figure 1 (c), the learning module and
partitioning module. The feature learning module learns the multilevel features (𝐒,𝐀,𝐏) and outputs node embeddings.
Then, in the partitioning module, we transform the node embeddings into a 𝐾-dimensional space where the 𝑖th
dimension represents the 𝑖th partition. After this, a softmax layer is applied to generate a soft assignment matrix
𝐗soft where 𝐗𝑖𝑗 ∈ 𝐗soft means the probability of the 𝑖th node belonging to the 𝑗th partition. Finally, to optimize
hard assignments directly, we propose a Hardmax operator which drives the hard assignment matrix 𝐗 from 𝐗soft in a
differentiable way. Next, we elaborate each module.

The feature learning module contains three multi-layer perceptron (MLP) layers and one GNN layer. The MLP
layers learn input features (𝐒(0), 𝐀(0), 𝐏(0)) independently and project them into appropriate dimensions for subsequent
layers. The output of MLP layers will be concatenated and fed into a GNN layer to generate nodes embeddings 𝐗(1)

as the output of the module. Then, in the partitioning module, a partitioning GNN projects 𝐗(1) into 𝐾 dimensional
space where each dimension corresponds to one partition. Next, a softmax layer is adopted to output a soft assignment
matrix 𝐗soft indicating probability distributions of each node over the 𝐾 partitions.

However, as discussed in Section 1, actual partitioning requires discrete assignments, which can be suboptimal
if a hard assignment matrix is not directly learned as shown in our experiment Section 4.5.1. Thus, we empower the
model to optimize the hard assignment matrix 𝐗 in an end-to-end manner. Note that the optimization process includes
forward and backward propagation. In the forward propagation, the hard assignment matrix 𝐗 is easily obtained using
the argmax operator on 𝐗soft. However, when performing backpropagation, 𝐗 is difficult to be optimized directly,
because it is very sparse and the argmax operator cannot be differentiated .

To fix this, we propose a differentiable Hardmax operator to optimize and output 𝐗 as shown in Eq. 4.
𝐗 = Hardmax(𝐗soft)
= no_grad(argmax(𝐗soft) − 𝐗soft) + Xsoft (4)

In the backpropagation, to optimize 𝐗, we use the no−grad operator to stop the gradient calculation of
“argmax(𝐗soft) − 𝐗soft” and ensure Eq. 4 is differentiable. In the forward propagation, the no−grad operator will be
transparent and 𝐗 = argmax(𝐗soft), which is the output of our model and used for the calculation of our bi-objective.
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To be more specific, since 𝐗 are only influenced by the maximum probability in each row in 𝐗soft, it is equivalent
to optimizing the positions of the maximum values in 𝐗soft. Thus, in the back propagation, we use 𝐗soft to replace 𝐗.
Moreover, because of the guidance of the objective value from 𝐗, optimizing 𝐗soft finds a better partition assignment
𝐗. Finally, 𝐗soft is a dense matrix which helps solve the sparsity issue when optimizing.

The no−grad operator is provided in deep learning libraries such as Pytorch Paszke, Gross, Massa, Lerer, Bradbury,
Chanan, Killeen, Lin, Gimelshein, Antiga et al. (2019), and enjoys widespread use, such as in Gumbel Softmax Jang,
Gu and Poole (2022). Our contribution is introducing the Hardmax within the realm of graph partitioning, which is a
key to improve partition quality.
3.4. The Graph Partitioning Algorithm

Our optimizing algorithm follows the typical training process in deep learning. Deep graph partitioning model
learns the multilevel features and generates partitions to minimize the bi-objective function with the gradient descent
optimizer. The partitioning with the minimum bi-objective function value during optimizing will be returned as the
algorithm results.

We outline the optimizing process in Algorithm 1. Given a graph 𝐺, we first extract the multilevel features from
it (line 1-4). Specifically, the node size feature can be user-defined, or all are set to 1 as default, the local feature is
represented as the weighted adjacency matrix 𝑊 , and the global feature is the node-pair shortest path from Dijkstra’s
algorithm. Next, we initialize our model 𝑀 with initial random parameters 𝜃(0), and feed features into 𝑀 (line 5).
During the optimization (lines -13), 𝑀 outputs a soft assignment matrix 𝑋′

𝑠𝑜𝑓𝑡, and our proposed Hardmax takes as
input and outputs a hard assignment matrix 𝑋′

ℎ𝑎𝑟𝑑 . Then, we calculate the bi-objective value 𝑙 based on 𝑋′
ℎ𝑎𝑟𝑑 (line

9). When the bi-objective value 𝑙 becomes lower than the previous iteration, the assignment matrix 𝐗 is updated to
𝑋′

ℎ𝑎𝑟𝑑 (lines 10-11). In line 8, 𝐗 is used for backpropagation and updating 𝑀’s parameters. After that, we update the
current iteration (line 13) and continue to the next iteration. When enough number of iterations are performed, our
model converges and the training ends. The best partition found at the end of the training is then returned (line 14).

Algorithm 1: Our Deep Graph Partitioning Algorithm
Input: Graph 𝐺; Bi-objective function 𝐿;

Partition model 𝑀 with initial parameters 𝜃(0);
Number of partitions 𝐾 and iterations 𝐼𝑡𝑒𝑟.

Output: A hard node assignment Matrix 𝐗.
1 Extract multilevel features:
2 The node-level user-defined feature: 𝐒(0);
3 The local feature: 𝐀(0) ← 𝐖;
4 The global feature 𝐏(0) ← Dijkstra-algorithm(W);
5 Initialize and feed features into 𝑀(𝐒(0),𝐀(0),𝐏(0));
6 While 𝑖 < 𝐼𝑡𝑒𝑟:
7 𝐗′

𝑠𝑜𝑓𝑡 ← 𝑀 ;
8 𝐗′

ℎ𝑎𝑟𝑑 ← 𝐻𝑎𝑟𝑑𝑚𝑎𝑥(𝐗′
𝑠𝑜𝑓𝑡);

9 𝑙 ← 𝐿(𝐗′
ℎ𝑎𝑟𝑑);

10 If 𝑙(𝑖) < 𝑙(𝑖−1):
11 𝑋 ← 𝐗′

ℎ𝑎𝑟𝑑 ;
12 Backpropagation: 𝜃(𝑖+1) ← 𝜃𝑖 − 𝛼 𝜕𝑀(𝐗,𝜃𝑖)

𝜕𝜃𝑖 ;
13 𝑖 ← 𝑖 + 1;
14 Return 𝐗;

From Algorithm 1, the partitions are directly returned when training ends. That means no separate testing phase is
required in our approach.
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Table 1
Summary of datasets.

Datasets Num. of Nodes Num. of Edges Description

Bert-3 235 250 Computation graphs2
Bert-12 783 843 Computation graphs2

PT 1,912 32,255 Social Networks3
add20 2,395 7,462 20-bit adder4

BlogCatalog 5,196 171,743 Social Networks3

Flickr 7,575 239,738 Social Networks3

musae-github 37,700 289,003 Social Networks5
twitch_gamers 168,114 6,797,557 Social Networks5

yelp 716,847 13,954,819 Social Networks5

com-youtube 1,134,890 2,987,624 Social Networks5

com-LiveJournal 3,997,96 34,681,18 Social Networks5

soc-LiveJournal1 4,847,571 68,993,773 Social Networks5

4. Experiment
We evaluate the benefits of our method against 12 state-of-the-art approaches on 12 datasets, with the goal of

answering the following research questions:
• Q1 Can our method yield higher quality partitions than state-of-the-art approaches?
• Q2 What is the computational time required by our model to finish partitioning?
• Q3 Can our method optimize partitions with preference in lower cut or lower imbalance?
• Q4 Can the Hardmax operator improve partitioning quality, and how does our method perform with different

combinations of inputs?
• Q5 How does better partitions benefit downstream tasks?

We first introduce the datasets and baselines, then we will answer these questions sequentially.
4.1. Datasets, Baselines and Experiment Settings
4.1.1. Datasets

We validate our method using 12 real-world graph datasets, as shown in Table 1, with node counts ranging
from hundreds to millions, covering various fields. Small and medium-scale graphs from real-world applications are
considered to showcase our method’s applicability across different scales and to cater to resource-limited devices
like IoT devices. For example, the Bert-3 graph, containing only 235 nodes, is a computation graph constructed
from a trained deep learning model with three transformer blocks Tarnawski, Phanishayee, Devanur, Mahajan and
Nina Paravecino (2020). For computation graphs, a node represents an operator, e.g. a convolution operator, an edge
represents a variable. In computation graphs, a node represents an operator (e.g., a convolution operator), and an edge
represents a variable. The operator size is the memory usage of its associated weights, and the edge weight is the
communication cost for transferring variables through a PIE bus. Bert-3 and Bert-12 have both node and edge weights,
while the other 10 graphs are unweighted. For unweighted graphs, all node sizes and edge weights are set to 1.
4.1.2. Baselines

In the performance comparison on graph partition, we consider 12 state-of-the-art baselines.
Bi-objective Graph Partition. In Baños et al. (2004); Farshbaf and Feizi-Derakhshi (2009), the authors both proposed

2https://github.com/msr-fiddle/dnn-partitioning,
3https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html,
4https://chriswalshaw.co.uk/partition, ,
5https://snap.stanford.edu/data,
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genetic algorithms based on Pareto optimization to minimize the cut and the imbalance. We reproduced their methods
using the NSGA-II genetic algorithm Deb, Pratap, Agarwal and Meyarivan (2002) as they did. The population size is
set 1, 000 and the generation is set 100. We call the reproduced baseline Genetic Algorithm.
Single-objective Graph Partition. The Multi-class Spectral Clustering Shi (2003), which aims optimize the normal-
ized cut 𝐿𝑐 only, is considered as one baseline.
Constraint Single-objective Graph Partition. As discussed in Related Work, multilevel constraint single-objective
methods are strong baselines for the graph partitioning problem. We choose two well-known multilevel baselines, i.e.,
Metis and Scotch Karypis and Kumar (1998b); Chevalier and Pellegrini (2008) with their default imbalance settings
0.05 for Metis and 0.03 for Scotch.
Deep Graph partition. GAP Nazi et al. (2019) and GON Liu et al. (2022) are adopted as baselines, as they have
the normalized cut objective as ours and their own balance objectives. Note that, the official implementation of GAP
is inefficient and time-consuming, and we only report GAP’s results on small scale graphs. For GON, since it is not
open-source, we implement it following their methodology description and parameter settings, and will open source
our baseline implementations. Additionally, it takes the identity matrix as the node feature matrix which has 𝑁 ×𝑁
dimension and may suffer scalability issue in memory usage for large scale graphs. To this end, we optimize it and use
the sparse matrix to represent the identity matrix. Other deep graph partitioning methods Gatti and Hu (2022); Gatti
et al. (2022) still follow the multilevel partitioning diagram, and only show similar performance with Metis and Scotch.
If we can show better performance than Metis and Scotch, it is reasonable to infer we also outperform than Gatti and
Hu (2022); Gatti et al. (2022).
Partitioning using Graph Pooling. DMoN Tsitsulin et al. (2023) and HoscPool Duval and Malliaros (2022) are two
graph pooling layers and both contain the normalized cut loss and orthogonality loss. The losses are suitable for graph
partition problem. We implement the two works using two GraphSAGE layers and one pooling layer.
Two-stage Partitioning Approaches. We consider the two-stage framework: learning embeddings then partitioning.
Usually, the reconstruction loss between predicted 𝐴𝑑𝑗′ and the adjacency matrix 𝐴𝑑𝑗 is used in first stage, which
is measured by the binary cross entropy. In the second phase, clustering methods will assign nodes into different
partitions. We implement it using GraphSAGE Hamilton et al. (2017) and DAEGC Wang, Pan, Hu, Long, Jiang and
Zhang (2019) to learn embeddings and using K-means Wu, Liu and Ma (2021) to cluster. For a fair comparison, these
methods use two GNNs layers as ours. Due to running this framework is very time-consuming, we only report their
results with small scale graphs.
Heuristic Community Detection Methods. Some heuristic community detection methods also consider the impor-
tance of number of edges within a intra-community or across inter-communities. For example, the Girvan Newman
algorithm Girvan and Newman (2002) removes the edge with the highest betweenness centrality between inter-
communities. The Greedy Modularity Maximization method Clauset, Newman and Moore (2004) finds the community
with the largest modularity. Generally, the modularity shows how many edges remain within a community.
Note that, following existing deep graph partition works Gatti et al. (2022); Bianchi et al. (2020); Liu et al. (2022),
although Spectral Clustering and Community Detection Methods are belong to graph clustering methods which do not
have the balanced partitioning constraint, they are related with the normalized cut objective, i.e. 𝐿𝑐 and show good
performance for the bi-objective problem.
4.1.3. Experiment Settings

We conduct our experiments on an AMD EPYC 7543 CPU with 32 cores and a NVIDIA A40 GPU. We implement
our model using Pytorch and integrate two GraphSAGE layers as our learning GNN layer and partitioning GNN layer,
respectively. Our learning rate is 0.005. We set 𝛼 in Eq. 3 as 10 and 1 for weighted and unweighted datasets, respectively.
The number of training epochs is 500 with early stopping patience 100. These parameters are used for all experiments.
For the baselines relying on node features, such as deep learning based baselines, we use the node size as the input
feature for them as the default tradition. Besides node size feature, for datasets with less than ten thousands of nodes, we
input both adjacency and position features into our method, while considering the scalability, we only adopt adjacency
feature without position feature for large datasets. For all baselines and our method, we run 10 times using different
seeds and pick the best result.
4.2. Evaluation on Partitioning Quality

To answer Q1, we conduct 3 sub-experiments in this section. The first experiment aims to show the overall
performance, and the remaining experiments are for separate partition measurement metrics.
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Table 2
The 𝐿 value on 12 datasets.

Datasets Bert-3 Bert-12 PT

Methods
K 2 6 10 2 6 10 2 6 10

Genetic Algorithm -0.9751 ∅ ∅ -0.6074 -0.1814 ∅ -0.5203 ∅ ∅
Spectal Clustering -0.9298 -0.5144 -0.4828 -0.5579 -0.712 -0.729 0.4138 -0.0942 -0.2215

Metis -0.4629 -0.4573 -0.3814 -0.2859 -0.6507 -0.6317 -0.728 -0.4853 -0.4003
Scotch -0.9727 -0.3753 ∅ -0.997 -0.89 -0.9066 -0.7181 -0.4714 -0.3963
GON 0.9142 ∅ ∅ 0.9288 ∅ ∅ 0.9142 ∅ ∅
GAP 0.4649 0.7722 0.3822 0.8964 0.4426 0.523 -0.1106 0.0648 0.0836

Greedy Modularity -0.7785 -0.5085 -0.4487 -0.15 -0.6133 -0.6111 -0.6991 0.1913 0.3788
Girvan Newman -0.6118 -0.5118 -0.4086 -0.237 -0.6798 -0.7732 × × ×

DAEGC 0.6748 0.3136 0.6037 0.5251 0.3377 0.3635 0.519 -0.0863 -0.0953
GraphSAGE 0.4649 0.7722 0.3822 0.8964 0.4426 0.523 -0.5407 -0.1438 -0.1108
HoscPool -0.4252 ∅ ∅ -0.6389 ∅ ∅ -0.7109 ∅ ∅
DMoN -0.8031 -0.0981 ∅ -0.8353 0.0466 ∅ -0.7093 0.053 ∅

Our Method -0.9815 -0.5431 -0.5018 -0.9981 -0.9514 -0.9236 -0.7831 -0.5132 -0.4306

Datasets add20 BlogCatalog Flickr

Methods
K 2 6 10 2 6 10 2 6 10

Genetic Algorithm -0.5145 ∅ ∅ -0.5195 × × × × ×
Spectal Clustering 0.454 0.1523 0.0827 0.3211 0.2096 0.2767 -0.5472 -0.0537 0.0224

Metis -0.8734 -0.7833 -0.7402 -0.6795 -0.4466 -0.3656 -0.664 -0.3137 -0.2444
Scotch 0.553 0.3712 0.2925 -0.6717 -0.4259 -0.3487 -0.4438 -0.2369 -0.1646
GON -0.4350 ∅ ∅ 0.5116 0.6220 ∅ ∅ ∅ ∅
GAP -0.8293 -0.7605 -0.7368 -0.5407 -0.1438 -0.1108 -0.376 -0.0597 0.0999

Greedy Modularity 0.0829 -0.1304 -0.1964 -0.604 0.032 0.0286 -0.4839 0.2121 0.3328
DAEGC 0.6328 0.2204 0.1801 0.5562 0.4416 0.5379 0.7070 0.7400 0.8027

GraphSAGE 0.553 0.3712 0.2925 -0.1106 0.0648 0.0836 -0.3760 -0.0597 0.0999
HoscPool -0.7781 ∅ ∅ -0.7631 ∅ ∅ -0.6631 ∅ ∅
DMoN -0.5604 0.16 ∅ -0.765 ∅ ∅ -0.6856 0.4983 ∅

Our Method -0.8976 -0.7987 -0.7464 -0.7831 -0.5132 -0.5132 -0.7263 -0.3801 -0.2958

Datasets musae-github twitch_gamers yelp

Methods
K 2 6 10 2 6 10 2 6 10

Metis -0.7640 -0.5632 -0.5268 -0.7156 -0.5526 -0.4788 -0.8844 -0.7474 -0.6859
Scotch -0.7594 -0.5842 -0.4946 -0.6686 -0.5749 -0.4920 -0.8614 -0.7950 -0.7346

HoscPool -0.5853 ∅ ∅ × × × × × ×
GON -0.1880 ∅ ∅ 0.4135 ∅ ∅ -0.4869 ∅ ∅

DMoN -0.6884 ∅ ∅ × × × × × ×
Our Method -0.8253 -0.6044 -0.5286 -0.7993 -0.5931 -0.5213 -0.9202 -0.8021 -0.7299

Datasets com-youtube com-LiveJournal soc-LiveJournal1

Methods
K 2 6 10 2 6 10 32 64 128

Metis -0.8892 -0.8237 -0.7766 -0.8924 -0.8264 -0.8033 - - -
Scotch -0.7950 -0.7694 -0.7457 -0.8569 -0.8217 -0.7833 - - -
GON -0.3726 ∅ ∅ -0.2022 ∅ ∅ -0.6485 0.3962 ∅

Our Method -0.9035 -0.8465 -0.8061 -0.9275 -0.8448 -0.8145 -0.7802 -0.745 -0.7026

- The best 𝐿 is bolded;
- The second best 𝐿 is underlined;
- ∅: Exist empty partitions;
- ×: Timeout;
- −: Method not applicable.

4.2.1. Evaluation on Overall Quality of Partitions
In Section 3.1.3, we show 𝐿 can represent the overall partitioning quality, and in Table 2, we report 𝐿 values of 9

baselines on 12 datasets. 𝐾 ∈ {2, 6, 10} are chosen, because we have observed that the results show a decreasing trend
with 𝐾 gradually increasing, and it would be redundant and crowded if we put all results. Following the tradition of
previous works Karypis and Kumar (1998a); Chevalier and Pellegrini (2008), we choose the even numbers for 𝐾 . Note
that, our method is flexible for both even and odd 𝐾 values, and the evaluation on different 𝐾 values is conducted in
Section A.7. In Table 2, at each column, we bold the best 𝐿 and underline the second best 𝐿. We use ‘∅’ to represent
baselines generate empty partitions which contain no nodes inside. We terminate baselines which run over 10 minutes
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and mark this case using ’×’. Since some baselines have the scalability issue, such as GAP and Spectral Clustering,
fewer baselines are shown in Table 2 for large scale graphs.

Firstly, the Table 2 shows that our method achieves the best 𝐿 value on most datasets, which demonstrates our
method can generate higher qualify partitions than baselines.

Secondly, compared with the bi-objective Genetic Algorithm, GAP and GON, our method achieves large margin
improvements both in partitioning quality and scalability. For example, without partition-wise balance objective, there
are empty partitions in Genetic Algorithm’s solutions, which means the sizes of partitions are very unbalanced. Lacking
of multilevel graph features and end-to-end optimizing, Partitioning quality of GAP and GON is also unsatisfying,
especially on weighted graphs. Furthermore, for the scalability, ten thousands scale graphs can be challenging for
the two baselines. The scalability issue also lies in Spectral Clustering algorithm and heuristic community detection
baselines. Because our model architecture is simple and multilevel features are feasible for large scale graphs, our
method is able to partition million scale graphs. For the two-stage baselines GraphSAGE and DAEGC, the results,
shown in Table 2, indicate that they perform poorly in terms of partition quality. This suggests that while they may
be effective for graph clustering, they are not directly suitable for the graph partitioning task. As for graph pooling
methods, i.e., HoscPool and DMoN, with the guidance of the similar loss function as ours, they can show good results
in few cases. For example, in BlogCatalog dataset, DMoN shows the second-best 𝐿 value. However, there are two
limitations in these methods. The first is these methods often generate empty partitions when they meet large 𝐾 , as
lack of multilevel features, they can not distinguish and partition nodes in a high dimension space. The second is that
they cannot optimize and output the node assignment matrix 𝐗, which leads to inferior partitioning quality.

Finally, the Table. 2 shows that constraint single-objective methods, i.e. Metis and Scotch, are strong baselines. The
multilevel partitioning paradigm enables them to process large graphs. However, they cannot optimize partitions in an
end-to-end manner and lack of multilevel features to facilitate partitioning, thus their partitioning quality is inferior
to ours. Moreover, these methods require the input graphs to be undirected, connected, and free of self-loops, making
them unsuitable for partitioning the soc-LiveJourna1 graph, which is directed. We also use the biggest dataset soc-
LiveJourna1 to show our model can generate over one hundred partitions without empty partitions, which demonstrates
the effectiveness of our partition-wise balance metric 𝐿𝑏.
4.2.2. Evaluation on Normalized Cut and Partition-wise Balance

In this experiment, we evaluate how our method performs on the normalized cut 𝐿𝑐 and partition-wise balance 𝐿𝑏.The results are shown in Figure 2. There are two sub-figures for each dataset showing the normalized cut (left) and
balance (right) objective values. Among the compared baselines, since GAP and GON have the scalability issue, we
only report their results on the small scale graphs.
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Figure 2: The objective values of Normalized Cut (𝐿𝑐) and Partition-wise Balance (𝐿𝑏). (The lower, the better)

From this figure, we observe that, for normalized cut, GAP and GON show the worst performance on PT
and BlogCatalog graphs. This is because GAP and GON tend to generate empty partitions when 𝐾 is large (e.g.,
𝐾 ∈ 4, 6, 10). The normalized cut metric considers the association within each partition, so the presence of empty
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partitions results in higher normalized cut. Moreover, empty partitions also lead to very unbalanced partitions, therefore
the two methods also have higher 𝐿𝑏.For traditional baselines, the Figure 2 shows that, compared with Scotch and Metis, our method achieves both
lower cut and balance objective values in most situations. Although, Spectral Clustering always achieves the lowest
cut objective value, these partitions are very imbalanced as shown in PT and BlogCatalog datasets. This experiment
demonstrates that our superior overall partitioning quality in the last experiment is contributed by optimizing both the
cut and balance objectives.

The right sub-figures for each dataset also show our method has lower balance objective values than baselines
in most cases, which means these partitions are more balanced. For example, when 𝐾 = 2 in PT and BlogCatalog
datasets, our method drives the optimal balance value (𝐿𝑏 = 0) and finds perfect balanced partitions.
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Figure 3: Comparison on Edge-Cut and Imbalance. (The lower, the better)

4.2.3. Evaluation on Edge-cut and Imbalance
The edge-cut and the degree of imbalance are also common metrics for measuring partition quality. The edge-cut

is calculated by counting the number of cut edges across partitions. The imbalance degree is the ratio of the biggest
partition’s size to the perfect balanced size, which is defined as follows:

Imbalance =
max{

∑

𝑣∈𝕍𝑖
𝑠𝑣|𝑖 ∈ {1, ⋅ ⋅ ⋅, 𝐾}}

𝑠
− 1.

We use four datasets and report the results with 𝐾 ∈ {4, 6, 10}. The results are shown in Figure 3. In this figure,
different colors represent different methods and different markers represent different 𝐾 values. The X-axis shows the
imbalance and the Y-axis shows the scaled edge-cut. With the same 𝐾 value, the markers located in the bottom-left
area indicate better partitions.

In Figure 3, on the smallest graph BlogCatalog, GAP and GON show very low edge-cut. The reason is that
empty partitions generated by GAP and GON lead to fewer non-empty partitions and consequently lower edge-cut.
Strictly speaking, the presence of empty partitions indicates that GAP and GON cannot perform 𝐾-way partitioning.
Additionally, empty partitions also result in high Imbalance value for the two baselines. The high Imbalance value
represents unbalanced partitions be consistent with the results and analysis in Section 4.2.2.

From Figure 3, we can observe that with the same 𝐾 , our method shows the lowest imbalance in most cases,
which illustrates the effectiveness of our proposed partition-wise balance objective. Moreover, the Figure 3 shows the
imbalance of Scotch and Metis is quite close or equal to the default imbalance setting (0.05 for Scotch and 0.03 for
Metis), which means they do not explore more balanced partitions. Finally, Spectral Clustering achieves the lowest
edge-cut in most cases, which demonstrates that maximizing the associations, i.e. the 𝐿𝑐 , leads to fewer cut edges.
However, its imbalance is usually the highest, which is consistent with the observation in Section 4.2.2.

The Figure 3 also shows our method only on BlogCatalog dataset has both lower edge-cut and imbalance than
Scotch and Metis. In other datasets, our method achieves comparable cut with the two baselines. The reason is that our
cut objective is not only the edge-cut, but the normalized version of it which considers both the cut between partitions
and association within partitions.
4.2.4. Evaluation on Remaining Edges and Balanced Constraint Metric

Considering comprehensive comparison, we further evaluate the quality of partitions generated by minimizing𝐿 by
adopting two new metrics, i.e., the remaining edge |ℰ𝑖𝑛| and balance constraint metric 𝐵𝐶𝐼 , from GON. Specifically,
|ℰ𝑖𝑛| indicates the number of remaining edges inside all partitions, and 𝐵𝐶𝐼 measures the difference between the
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overall balance condition of partitions and the perfect balance, which are formulated as follows:
{

|ℰ𝑖𝑛| = tr(𝐗⊤𝐖𝐗)
𝐵𝐶𝐼 = 1

𝐾
∑𝐾

𝑖=1
abs(|𝕍𝑖|−𝑠)

𝑠

where 𝐾 is the number of desired partitions, and 𝐗 is a node assignment matrix with binary elements, where 𝑁
represents the number of nodes. An element 𝐗𝑖𝑗 = 1 indicates that node 𝑖 is assigned to partition 𝑗, while 𝐗𝑖𝑗 = 0
indicates otherwise. 𝐖 is the weighted adjacency matrix, the 𝑖 th diagonal element in (𝐗⊤𝐖𝐗) represents the number
of remaining edges in the 𝑖 th partition, and tr(⋅) represents the trace of a matrix. For 𝐵𝐶𝐼 , |𝕍𝑖| indicates the sum of
node in the 𝑖 th partition and 𝑠 = ⌈

∑𝐾
𝑖=1 |𝕍𝑖|
𝐾 ⌉ is the size of a perfectly balanced partition. abs(⋅) function returns an

absolute value of a number.
In this experiment, we compare our method with 4 baselines (GON, GAP, Spectral Clustering, Metis and Scotch)

on the same graphs with the same 𝐾 values as in Section 4.2.3. However, due to the scalability issue of Spectral
Clustering and GAP, they cannot partition the graphs with more than 100, 000 nodes. Therefore, we can only report
their results on small scale graphs. The experimental results are shown in Figure 4, where with the same 𝐾 value, the
markers located in the bottom-right area indicate better partitions..

Figure 4 shows compared with baselines, our method achieves the lowest 𝐵𝐶𝐼 while comparable or even better
|ℰ𝑖𝑛|. Specifically, on the 4 datasets, our method shows the lowest 𝐵𝐶𝐼 with all 𝐾 value cases, which implies
minimizing our proposed 𝐿𝑏 brings more balanced partitions. For the |ℰ𝑖𝑛| metric, GAP, GON and Spectral Clustering
achieve better/higher values showing more remaining edges within partitions than other methods. However, the good
|ℰ𝑖𝑛| values from the three baselines come from at the cost of very unbalanced partitions showing as the worse 𝐵𝐶𝐼
values. For example, GAP and GON generate empty partitions. It is noteworthy that for the bi-objective partition
problem, both two objective values should be optimized as good as possible. Therefore, we argue that our method
shows superior performance than the baselines, because it achieves better trade-off between the two objectives. For
example, in graph yelp with 𝐾 = 10 and graph com-youtube with 𝐾 = 4, our method shows both highest |ℰ𝑖𝑛| values
as well as lowest 𝐵𝐶𝐼 values.
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Figure 4: Comparison on |ℰ𝑖𝑛| (The higher, the better) and 𝐵𝐶𝐼 (The lower, the better).

4.3. Evaluation on Running Time
This experiment is conducted for Q2 to show whether our method is computation-efficient. We used four large-scale

datasets and 𝐾 = 2. Baselines Metis and Scotch are compared to our method.
The Table. 3 shows Metis needs the least time to partition, and our method is faster than Scotch. Both Metis and

Scotch follow the multilevel procedure as introduced in Section 2.2, which brings high partitioning speed for large
graphs. Efficient C++ implementation of Metis further shortens the partitioning time cost. Our carefully designed graph
features and model help to fill this latency gap. Specifically, for large datasets, we only use node size and adjacency
features which are resource-efficient in terms of storage and computation. This is particularly advantageous for the
adjacency feature, often represented as a sparse matrix.

Additionally, our model comprises only five deep layers, which has few weights and can converge fast within a
few hundred of epochs. Figure 5, shows the objective values during the optimizing process on two datasets. We can
observe our model converges at less than 200 epochs.
4.4. Evaluation on Different 𝛼 Values

To answer Q3 (optimizing partitions with cut or balance preference), we conduct this experiment to show how
our method performs with different 𝛼 values in the objective function 𝐿. In this experiment, we assign 𝛼 with
Pengcheng Wei et al.: Preprint submitted to Elsevier Page 13 of 21
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Table 3
The running time on five datasets (unit: second).

Methods
Datasets

twitch gamers yelp com-youtube com-LiveJournal soc-LiveJournal1

Metis 2.316 3.640 2.136 19.47 -
Scotch 66.61 84.58 43.99 427.49 -

Our Method 27.92 30.96 24.93 226.48 406.33
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Figure 5: The objective values within 500 epochs.

{0.01, 0.1, 0.5, 1, 10, 20, 40, 60, 80, 100}. We run this experiment with 𝐾 = 10 on four datasets. When 𝛼 > 1, we
may prefer lower cut partitions. The results are shown in Figure 6. Note that, besides this, in Appendix A.4, we also
design an experiment show whether our method can generate edge balanced partitions when nodes’ degrees follow a
power-law distribution in many real world graphs.

Figure 6 shows, overall, there is non-linear trend of objective values as 𝛼 value increases. Specifically, as 𝛼 increase
from 0.01 to 10, all objective values decrease. The decreasing trend implies preferably optimizing 𝐿𝑐 also brings
lower 𝐿𝑏, since 𝐿𝑐 considers the association within each partition. However, as 𝛼 continues to increase to 100, 𝐿 and
𝐿𝑏 increase although 𝐿𝑐 decreases. This indicates that the benefit of focusing on optimizing 𝐿𝑐 diminishes, and the
drawback of neglecting 𝐿𝑏 becomes more pronounced. For instance, in PT dataset, 𝐿𝑏 from about 0.01 (𝛼 = 1) grows
over 0.15 (𝛼 = 40), and meanwhile 𝐿𝑐 from about −0.48 becomes very close to −0.52.

Based on the 𝐿 values in Figure 6, choosing 𝛼 from [0.5, 10] can bring high partitioning quality, and we find 𝛼 = 10
for weighted datasets and 𝛼 = 1 for unweighted datasets have overall better performance, i.e., lower 𝐿 value. Thus, we
choose the two 𝛼 values for the two kinds of datasets to run the previous partition evaluation experiments.
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Figure 6: The 𝐿𝑐 , 𝐿 and 𝐿𝑏 with different 𝛼 values.

4.5. Ablation Study
To answer Q4, we design two experiments to explore the effect of introducing the Hardmax operator into our model

and the performance of our model with different inputs. Moreover, we also show the results of our model with different
model architectures in Appendix A.5.
4.5.1. Effect of Hardmax operator

In this experiment, we remove the Hardmax operator from our model as a variant named Softmax only, and others
are remained as same. Then we run Softmax only on weighted graph Bert-12 and unweighted graph yelp with 𝐾 = 6.
The 𝐿𝑐 and 𝐿𝑏 values of Softmax only and With Hardmax are reported in Table 4.
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Table 4
The 𝐿𝑐 and 𝐿𝑏 values of Hardmax variants.

Datasets Bert-12 yelp

Models
𝐿𝑐 and 𝐿𝑏 𝐿𝑐 𝐿𝑏 𝐿𝑐 𝐿𝑏

Softmax only -0.9493 0.2617 -0.7021 0.6432 (∅)
With Hardmax -0.9826 0.0312 -0.8038 0.0017

- ∅: Exist empty partitions;

Table 4 shows that on the two datasets, the 𝐿𝑐 and 𝐿𝑏 values of With Hardmax are much lower than those of
Softmax only, especially for 𝐿𝑏. This indicates that the model guided by hard assignments can generate higher quality
partitions.

Figure 7 presents, for each epoch, the 𝐿𝑐 and 𝐿𝑏 values calculated by soft assignments of Softmax only (solid lines),
as well as the 𝐿𝑐 and 𝐿𝑏 values calculated by hard assignments derived from the soft assignments (dotted lines). We
can observe significant gaps between the soft objective values and the true/hard objective values. Moreover, Figure 7
(a) and (b) show that optimizing soft objectives cannot lead to lower true objective values in all situations. For example,
for the 𝐿𝑐 on yelp dataset, the lowest hard 𝐿𝑐 value appears at 10 epochs, but the Soft 𝐿𝑐 continues to be optimized
beyond this point until reaching the epoch limit. We can also observe that there are straight line trends of Soft 𝐿𝑏 on the
two graphs shown in Figure 7 (a) and (b). In Figure 7 (c), we show the zoomed in on Soft 𝐿𝑏 values where the Soft 𝐿𝑏is optimized in a very small range, resulting the straight line trend. For example, the Soft 𝐿𝑏 on yelp graph is optimized
from 0.447 to 0.445. Compared with Soft 𝐿𝑐 on yelp graph from 0.0 to −0.9 shown in Figure 7 (b), the difference of
Soft 𝐿𝑏 is subtle. Note that, Hardmax also helps optimizing 𝐿𝑐 metric. Specifically, our method optimizes and outputs
trustworthy hard assignments and 𝐿𝑐 values, reflecting true partitioning quality. Moreover, the improvement on 𝐿𝑐 can
also be observed in Table 4. For example, on yelp graph, 𝐿𝑐 is optimized from −0.7 on Softmax only to −0.8 on With
Hardmax.
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Figure 7: The comparison of objective values between hard and soft assignments.

4.5.2. Different Combinations of Inputs
In this experiment, we analyze the influence of different combinations of inputs on Bert-12 and soc-LiveJournal1

datasets with 𝐾 ∈ {2, 10}. As introduced in Section 3.2, we have three inputs, that is, the node size feature 𝐒, adjacency
feature 𝐀 and position feature 𝐏. Different combinations means that we remove one or two features from the three
inputs. For example, ‘Without 𝐀’ means we remove the adjacency feature and only feed the node size feature and
position feature into our model. Because the node size feature is usually fed as default node features, we do not have
the ‘Without 𝐒’ option. Moreover, since for large graphs, we do not use the position feature, on soc-LiveJournal1 we
only have ‘With 𝐀’ and ‘Without 𝐀’ options. The results of different combinations are shown in Figure 8. ‘∅’ means
there are empty partitions.

From Figure 8, we observe without the adjacency feature and position feature, our model shows the worst objective
value on all datasets and usually generates empty partitions. This means the two features are necessary and helpful for
generating 𝐾 high quality partitions.

The quality improvements on weighted datasets Bert-12, are more obvious than unweighted datasets soc-
LiveJournal1. On weighted datasets, without the position feature 𝐏, the performance on objective value decreases
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Figure 8: The bi-objective value 𝐿 with different inputs.

Table 5
The 𝐿 values with different GNN backbones.

Datasets Bert-12 com-youtube

GNNs
K

2 6 10 2 6 10

GAT -0.9937 -0.9697 -0.9355 -0.8941 -0.7981 -0.7361
GIN -0.9760 -0.9141 -0.9251 -0.8628 -0.8471 -0.8022

GraphSAGE -0.9981 -0.9514 -0.9236 -0.9035 -0.8465 -0.8061

- The best 𝐿 is bolded;
- The second best 𝐿 is underlined;

at a bigger space than without adjacency feature 𝐀. The reason may be 𝐏, which shows the shortest weighted path of
nodes to others, provides more information than 𝐴, since 𝐀 only contains the weight of nodes with their neighbours.
However, since 𝐏 is not available for large graphs, 𝐀 plays an important role in such situations. As seen with the
soc-LiveJournal1 dataset, the partitioning quality decreases without 𝐀, and the model can generate empty partitions
4.5.3. Different GNN Backbones

In this experiment, we explore the effect of different GNN backbones on the partitioning quality. We choose two
well-known GNN backbones, GAT Veličković, Cucurull, Casanova, Romero, Liò and Bengio (2018) and GIN Xu,
Hu, Leskovec and Jegelka (2018), and conducted this ablation experiment onboth weighted and unweighted graphs
(Bert-12 and com-youtube). We used implementations of GAT and GIN from PyTorch Geometric, with 4 attention
heads for GAT and other parameters (e.g., number of layers) consistent with those used for GraphSAGE.

The results, reported in Table 5, demonstrate that while GraphSAGE does not always achieve the lowest 𝐿 values,
it consistently shows more stable performance, achieving either the best or second-best results in most cases. The
simplicity of its architecture and the minimal tuning required contribute to its reliable performance, making it our
empirical choice for the GNN backbone.
4.5.4. Different Number of GNN Layers

This experiment investigates the impact of using different numbers of GNN layers on partitioning quality. Our
method consists of two modules: a graph learning module and a graph partitioning module, each originally containing
a single GNN layer. To explore the effect of additional layers, we created variants of our method by stacking 2, 4, and
8 GNN layers in each module and tested these variants on both weighted and unweighted datasets.

The results, presented in Table 6, reveal that increasing the number of GNN layers consistently leads to a decrease in
partitioning quality, especially as the number of partitions 𝐾 increases. For instance, on the Bert-12 graph with 𝐾 = 2,
the 𝐿 value drops from −0.9981 with 1 GNN layer to −0.6425 with 8 GNN layers. The performance degradation is
more pronounced for larger 𝐾 values, as seen in the results for the com-youtube graph.

The primary reason for this decline in performance is that more GNN layers require more epochs to converge.
However, in our experiments, the number of epochs was fixed at 500, leading to suboptimal convergence for deeper
models. Additionally, more GNN layers demand greater computational resources, such as GPU memory. To balance
partitioning quality and efficiency, we have opted to use a single GNN layer in our method.
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Table 6
The 𝐿 values with different numbers of GNN layers.

Datasets Bert-12 com-youtube

Methods
K

2 6 10 2 6 10

8 GNN layers -0.6435 -0.4524 -0.4036 -0.9079 -0.5957 -0.5478
4 GNN layers -0.9568 -0.7782 -0.8346 -0.9003 -0.7996 -0.7842
2 GNN layers -0.9893 -0.9166 -0.9078 -0.9094 -0.8071 -0.6486
1 GNN layer -0.9981 -0.9514 -0.9236 -0.9035 -0.8465 -0.8061

- The best 𝐿 is bolded;
- The second best 𝐿 is underlined;

Table 7
Different metric values for the community detection task.

Methods
Metrics Running Time (second) Modularity Purity

Metis 167.6 0.7036 0.1562
Our Method 153.7 0.7211 0.1698

4.6. Evaluation on the Community Detection Task
Graph partitioning is typically used as a preprocessing step to obtain smaller subgraphs and accelerate downstream

tasks, as directly applying such algorithms to large-scale graphs can be prohibitively time-consuming and sometimes
infeasible. A key challenge in graph/network analysis is community detection, where nodes are grouped into tightly
connected clusters that have more internal edges and fewer external ones Ma et al. (2020). To address Q5 (better
partitions benefit downstream tasks), similar to Stanton and Kliot (2012), we demonstrate that higher-quality partitions
result in reduced time to complete community detection tasks and lead to better-detected communities. In this
experiment, we use the well-known Louvain Algorithm Traag, Waltman and Van Eck (2019) to detect communities in
the com-youtube dataset, with Metis serving as the baseline.

The com-youtube graph is partitioned into two sub-graphs, and we run Louvain Algorithm on each sub-graph.
The total running time required for the task is determined by the longest running time among the two sub-graphs.
Furthermore, to evaluate the goodness of detected communities, we choose two metrics: Modularity and Purity
Chakraborty, Dalmia, Mukherjee and Ganguly (2017). The Modularity measures the goodness of communities from
the topology view which encourages nodes within the same community are densely connected to each other. The
Purity is to evaluate how well the communities aligns with a ground truth from a clustering task view. Note that, for
Modularity and Purity, higher values indicate better performance.

We run five times for each method and report the average of metric values which are shown in Table. 7.
Table. 7 shows partitions generated by our method need less time to complete Louvain Algorithm. The reason is

that the time complexity of this algorithm scales up with the number of nodes and our partitions are more balanced.
Moreover, we can observe communities detected from our partitions are better than Metis’s. The reason might be our
cut objective is the normalized cut rather than minimum cut adopted by Metis. Since minimizing normalized cut leads
to strong association within partitions and sparse disassociation between partitions, our detected communities have
higher Modularity, and nodes densely connecting to each other are tend to be the same community, i.e., higher Purity.

5. Conclusion
In this paper, we propose an end-to-end bi-objective GNN-based graph partitioning method, which employs

multilevel graph features, guides the partitioning with not only a lower cut but also a partition-wise balance requirement,
and optimizes and outputs the partitions in an end-to-end manner through our proposed Hardmax operator. Extensive
experiments on graph partitioning tasks demonstrate the effectiveness of our method. This work sheds light on applying
deep learning-based models in the graph partitioning problem, showcasing its superior learning ability in an end-to-end
manner.
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A. Appendices
A.1. The Modification on the Normalized Cut

During the optimizing process, all values in the 𝑗th column of 𝐗 sometimes can be 0 which means there is a empty
partition that contains no nodes inside. This will raise a zero division error and stop the optimizing process. To fix this,
we add a small constant (10−3) into the denominator in Eq. 1.

The small constant does not have a significant impact on 𝐿𝑐 , because for zero diagonal values in 𝐗⊤𝐃𝐗, the
association (i.e., the numerator of Eq. 1) is also 0, and for non-zero values in 𝐗⊤𝐃𝐗, they are usually much larger than
the small constant.
A.2. Proof of the Boundness of Balance Objective Function
Proof. Let 𝐏 = 𝐗⊤𝐒𝐗 and 𝐐 = 𝑠× 𝐈𝐾 . Both 𝐏 and 𝐐 are a diagonal matrix, and 𝐏𝑖𝑖 represents the size of 𝑖th partition.

We first prove the left inequality. According to the definition of the Frobenius norm, we have

‖𝐏 −𝐐‖𝐹 =

√

√

√

√

𝐾
∑

𝑖=1
(𝐏𝑖𝑖 − 𝑠)2 (5)

It is easy to find ‖ ⋅ ‖𝐹 ≥ 0. When for ∀𝑖,𝐏𝑖𝑖 = 𝑠, i.e. achieving perfect balance, 𝐿𝑏 = 0.
For the right inequality, we should note that 𝐏𝑖𝑖 ≤ 𝐾 ∗ 𝑠, because 𝐾 ∗ 𝑠 is the size of the whole graph. So, we have

𝐏𝑖𝑖 − 𝑠 ≤ (𝐾 − 1)𝑠. If ∃ 𝐏𝑖𝑖 ≥ 𝑠, then 𝐏𝑖𝑖 − 𝑠 ≥ 0 and (𝐏𝑖𝑖 − 𝑠)2 ≤ (𝐾 − 1)𝑠(𝐏𝑖𝑖 − 𝑠). Again using 𝐏𝑖𝑖 − 𝑠 ≤ (𝐾 − 1)𝑠,
we have 0 ≤ (𝐏𝑖𝑖 − 𝑠)2 ≤ [(𝐾 − 1)𝑠]2. If ∃ 0 ≤ 𝐏𝑖𝑖 < 𝑠, we have 0 < 𝑠 − 𝐏𝑖𝑖 ≤ 𝑠, and (𝐏𝑖𝑖 − 𝑠)2 = (𝑠 − 𝐏𝑖𝑖)2 ≤ 𝑠2.
Because 𝐾 > 1, 𝑠2 ≤ [(𝐾 − 1)𝑠]2. Thus, when ∃ 0 ≤ 𝐏𝑖𝑖 < 𝑠, we still have (𝐏𝑖𝑖 − 𝑠)2 ≤ [(𝐾 − 1)𝑠]2. For 𝐾 partitions,
we can get ∑𝐾

𝑖=1 |𝐏𝑖𝑖 − 𝑠|2 ≤ 𝐾[(𝐾 − 1)𝑠]2. Then, we will have

1
√

𝐾(𝐾 − 1)𝑠

√

√

√

√

𝐾
∑

𝑖=1
(𝐏𝑖𝑖 − 𝑠)2 ≤ 1. (6)

Finally, the right inequality is proved.
A.3. The Optimizing Algorithm
A.4. Evaluation on Edge Balanced Partitions

Many graphs used in this paper are power-law graphs, where a minority of hyper-nodes have a very large number of
neighbors and others have relatively few neighbors, such as social networks He Li and .etc (2022). If we consider edges
as the workload unit, the previous node-based balance objective 𝐿𝑏 may bring highly unbalanced workload partition
because of the hyper-nodes.

By slight modification on node-level features, our method can achieve edge balanced partitions. Specifically, since
a node’s degree represents the number of connected edges to it, we can define a node’s degree as its size feature. Then,
optimizing our 𝐿𝑏 with the new node-level feature will generate edge balanced partitions.

With above feature setting, we run this experiment on two large social network datasets and set 𝐾 = 2. The results
compared with Metis are shown in the Figure 9.

From the Figure 9, we can observe that the numbers of edges in our partitions are closer to the green dash line,
which is the perfect edge balanced value, than Metis. This experiment also shows our partition-wise balance function
𝐿𝑏 is flexible and effective with customized node features and balance definitions.
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Figure 9: Number of edges in each partition.

A.5. Different Model Architectures
In this experiment, we design one variants of our method. The modifications are made on the feature learning

module in our model. This variant is called ‘Concatenate All’ which concatenates the three inputs in columns manner
without the three MLP layers, and this is designed to see whether it is helpful learning features independently. The
results are shown in Figure 10.
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Figure 10: The bi-objective value 𝐿 with different model architectures.

Figure 10 also shows, on the weighted dataset Bert-12, ‘Concatenate All’ achieves the worse results, which indicates
it is better the features are learned individually. For the unweighted dataset, BlogCatalog, the performances of our
method and the variant are quite similar. In BlogCatalog, all values in 𝑆 and all non-zero values in 𝐴 are 1, and 𝑃 also
contains 𝐴’s information, and the features are redundant. Learning these features may help to distinguish nodes, but
may not be helpful for partitioning.
A.6. Evaluation on Different 𝐾 values

To demonstrate the flexibility of our method with various 𝐾 values, we performed partitioning with 𝐾 ∈ {2, 3, 4,
5, 6, 7, 8, 9, 10, 32, 64, 128} on the com-youtube graph. The results, compared with Metis and Scotch, are reported in
Table 8. Our method effectively partitions graphs with different 𝐾 values, whether even, odd, small, or large. Moreover,
as 𝐾 increases, the 𝐿 value decreases, indicating that partitioning a graph into a larger number of balanced partitions
with a low edge-cut becomes more challenging. Finally, across different 𝐾 values, our method consistently achieves the
lowest 𝐿 values compared to the baselines, following the same trend on the com-youtube dataset observed in Section
4.2.1.
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Table 8
The 𝐿 values on com-youtube graph.

Datasets com-youtube

Methods
K

2 3 4 5 6 7 8 9 10 32 64 128

Metis -0.8892 -0.8797 -0.8446 -0.8332 -0.8237 -0.8156 -0.7944 -0.7810 -0.7746 -0.6876 -0.6477 -0.6145
Scotch -0.7950 -0.8297 -0.7699 -0.7951 -0.7694 -0.7683 0.7527 -0.7512 -0.7457 -0.6580 -0.6255 -0.6021

Our Method -0.9035 -0.8992 -0.8654 -0.8436 -0.8465 -0.8315 -0.8192 -0.8215 -0.8061 -0.7205 -0.6788 -0.6343

- The best 𝐿 is bolded;
- The second best 𝐿 is underlined;
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