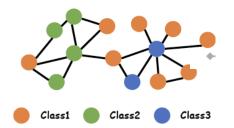

Exploring the Potential of Large Language Models for Heterophilic Graphs

Yuxia Wu*
Singapore Management University
yieshah2017@gmail.com

Yuan Fang Singapore Management University yfang@smu.edu.sg Shujie Li*
Beijing University of Post and
Telecommunication
shujieli@bupt.edu.cn

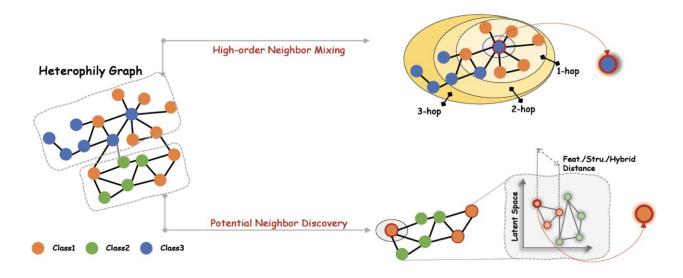
Chuan Shi
Beijing University of Post and
Telecommunication
shichuan@bupt.edu.cn

Motivation: LLM for Graph

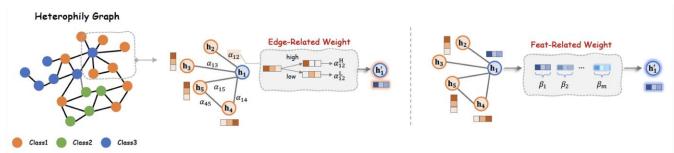

(a) GNN-centric methods.

(b) Symmetric methods.

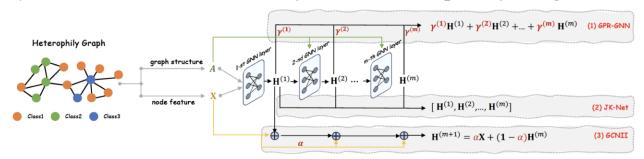
(c) LLM-centric methods.


Heterophily Graph

LLM for heterophilic graphs is largely unexplored.


Existing Methods: Non-local neighbor extension

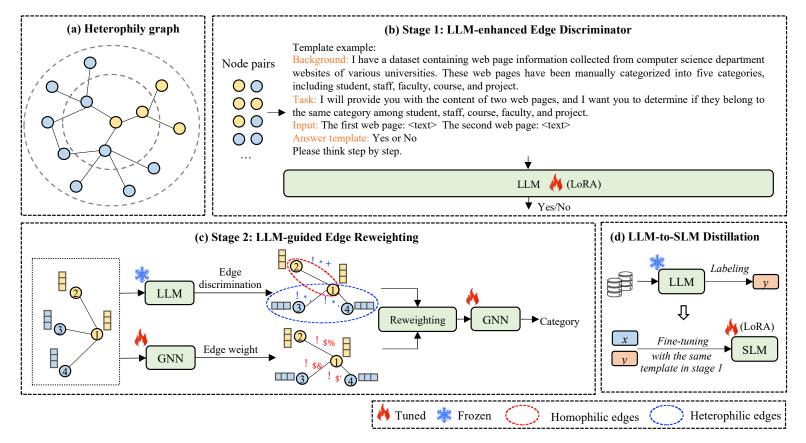
- High-order Neighbor Mixing: Mix latent information from neighbors at various distances
- Potential Neighbor Discovery: Identify suitable potential neighbors



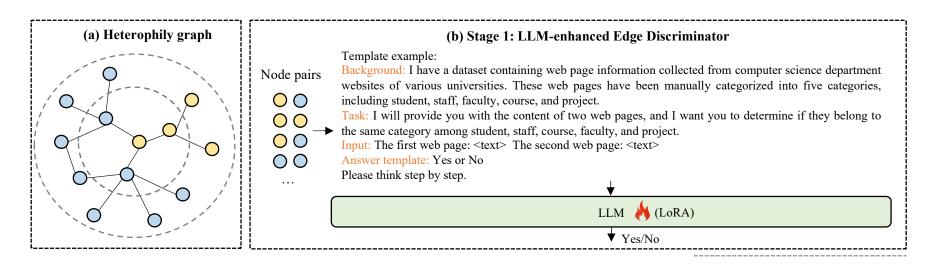
Existing Methods: Architectural Refinement

• Identifiable Message Aggregation: Learn adaptive edge-aware weights for homophilic and heterophilic edges

• Inter-Layer Combination: Shallow layers: local. Deeper layers: global.

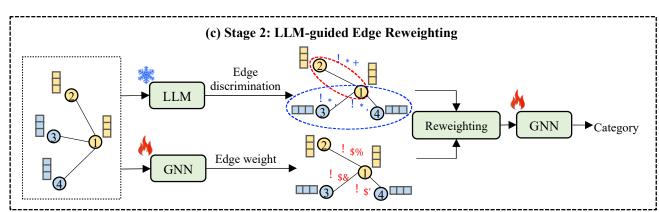


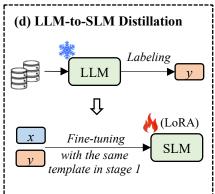
X. Zheng, et al. "Graph Neural Networks for Graphs with Heterophily: A Survey." ArXiv'24


Motivation

- Limitation of Current works:
 - Heterophily-specific GNNs: Overlook the rich textual content associate with the nodes (bag-of-words, shallow embedding)
 - LLM for graphs: No current works for heterophilic graph
- Research Questions:
 - ② Can LLMs be effectively adapted to characterize heterophilic contexts?
 - Can LLMs effectively guide the fine-grained integration of heterophilic contexts into graph models?

Proposed Method: LLM for Heterophilic Graphs (LLM4HeG)




LLM4HeG: LLM-enhanced Edge Discriminator

- Construct the ground truth labels from the training set.
- Design a language template to describe the task of heterophilic edge discrimination.
- Parameter-efficient fine-tuning LLM: LoRA

LLM4HeG: LLM-guided Edge Reweighting

Homophilic edges () Heterophilic edges

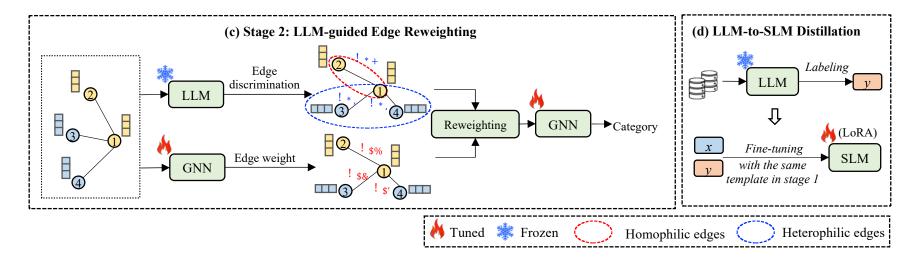
Edge weight from LLM:

$$w_{uv}^{\mathsf{LLM}} = \begin{cases} \tanh(w_{\mathsf{Ho}}) & \text{if } O_{\mathsf{LLM}}(u, v) = \mathsf{Yes}, \\ \tanh(w_{\mathsf{He}}) & \text{if } O_{\mathsf{LLM}}(u, v) = \mathsf{No}, \end{cases} \quad w_{uv} = \frac{1}{2} \left(w_{uv}^{\mathsf{LLM}} + w_{uv}^{\mathsf{G}} \right)$$

Learnable parameter for homophilic edges and heterophilic edges

Reweighting:

$$w_{uv} = \frac{1}{2} \left(w_{uv}^{\mathsf{LLM}} + w_{uv}^{\mathsf{G}} \right)$$


Various GNN models for heterophilic graph 1

FAGCN:
$$w_{uv}^{G} = \tanh\left(\mathbf{g}^{\top}\left[\mathbf{h}_{u} \parallel \mathbf{h}_{v}\right]\right)$$
,

GNN prediction:

$$\begin{aligned} & \mid \mathbf{h}_{v}^{(0)} = \sigma(\mathtt{LLM}(x_{v})\mathbf{W}_{e}), \\ & \mid \mathbf{h}_{v}^{(l)} = \epsilon \mathbf{h}_{v}^{(0)} + \sum_{u \in \mathcal{N}_{i}(v)} \frac{w_{uv}}{\sqrt{d_{u}d_{v}}} \mathbf{h}_{u}^{(l-1)}, \\ & \mid \mathbf{h}_{\mathrm{out}} = \mathbf{W}_{o} \mathbf{h}_{v}^{(L)}, \end{aligned}$$

LLM4HeG: LLM-to-SLM Distillation

- Teacher model: fine-tuned LLM in Stage 1
- Expanded label set:
 - Pseudo-labels for additional node pairs + ground-truth labels
 - Fine-tune small language model (SLM)
- Inference: SLM

Experiments: Datasets

We collect publicly available raw text directly from the original data providers.

Dataset	Classes	Nodes	Edges	$\mathcal{H}(G)$
Cornell	5	195	304	0.13
Texas	5	187	328	0.12
Wisconsin	5	265	530	0.20
Actor	5	4,416	12,172	0.56
Amazon	5	24,492	93,050	0.38

Table 1: Dataset statistics.

ly

The level of homophily

1 : perfect homophily

Dataset	Cornell	Texas	Wisconsin	Actor	Amazon
Training	4,186	3,741	7,626	36,248	23,210
Distillation*	916	991	1,299	1,781	11,422

^{*:} the number of additional samples for distillation.

Table 5: The number of node pairs in Stage 1 and distillation.

Experiment: Accuracy

C 11		****	.				
Cornell	Texas	Wisconsin	Actor	Amazon			
Classic GNNs							
52.86±1.8	43.64 ± 3.3	41.40 ± 1.8	$66.70{\scriptstyle\pm1.3}$	39.33 ± 1.0			
75.71±1.8	81.82 ± 2.5	80.35±1.3	$70.37 {\pm} 0.1$	46.63±0.1			
54.28±5.1	$51.36 {\pm} 2.3$	50.53±1.7	$63.74{\pm}6.7$	35.12±6.4			
Heterophily-specific GNNs							
69.76±3.0	79.09±3.5	80.18±1.9	70.73±0.9	47.09±0.3			
76.43±3.1	84.55 ± 4.8	83.16±1.4	$75.58{\pm}0.5$	49.83±0.6			
73.57±4.3	81.80 ± 4.1	76.31 ± 11.3	$73.81 {\pm} 0.3$	49.43±0.5			
66.19±2.8	80.00 ± 3.0	72.98±3.3	$72.49{\scriptstyle\pm1.0}$	44.90±0.3			
71.91±1.8	85.00 ± 2.3	79.30±2.1	$72.08 {\pm} 2.4$	47.79±1.6			
66.67±4.1	$85.00 {\pm} 2.0$	79.30±1.8	72.73 ± 0.8	47.38±0.2			
50.48±2.0	$65.00{\scriptstyle\pm1.2}$	57.89 ± 0.0	$67.78 {\pm} 0.3$	43.90±0.4			
LLM4HeG (fine-tuned LLM/SLMs and distilled SLMs)							
77.62 ±2.9	89.09 ±3.3	86.14±2.1	76.82 ±0.5	51.53±0.4			
75.48±2.1	80.00 ± 4.0	<u>86.49</u> ±1.9	$\underline{76.16} \pm 0.6$	51.52±0.5			
75.71±1.4	83.86±2.8	83.86±1.7	$74.99{\scriptstyle\pm0.5}$	52.33 ±0.6			
75.00±4.0	88.18±2.2	87.19 ±2.5	75.78 ± 0.2	51.51±0.4			
77.38±2.7	88.18±4.0	86.14±1.5	75.37±0.9	51.58±0.4			
	75.71±1.8 54.28±5.1 Hete 69.76±3.0 76.43±3.1 73.57±4.3 66.19±2.8 71.91±1.8 66.67±4.1 50.48±2.0 G (fine-tur 77.62±2.9 75.48±2.1 75.71±1.4 75.00±4.0	Classic 6 52.86±1.8 43.64±3.3 75.71±1.8 81.82±2.5 54.28±5.1 51.36±2.3 Heterophily-sp 69.76±3.0 79.09±3.5 76.43±3.1 84.55±4.8 73.57±4.3 81.80±4.1 66.19±2.8 80.00±3.0 71.91±1.8 85.00±2.3 66.67±4.1 85.00±2.0 50.48±2.0 65.00±1.2 G (fine-tuned LLM/S 77.62±2.9 89.09±3.3	Classic GNNs 52.86±1.8 43.64±3.3 41.40±1.8 75.71±1.8 81.82±2.5 80.35±1.3 54.28±5.1 51.36±2.3 50.53±1.7 Heterophily-specific GNNs 69.76±3.0 79.09±3.5 80.18±1.9 76.43±3.1 84.55±4.8 83.16±1.4 73.57±4.3 81.80±4.1 76.31±11.3 66.19±2.8 80.00±3.0 72.98±3.3 71.91±1.8 85.00±2.3 79.30±2.1 66.67±4.1 85.00±2.0 79.30±1.8 50.48±2.0 65.00±1.2 57.89±0.0 G (fine-tuned LLM/SLMs and d 77.62±2.9 89.09±3.3 86.14±2.1 75.48±2.1 80.00±4.0 86.49±1.9 75.71±1.4 83.86±2.8 83.86±1.7 75.00±4.0 88.18±2.2 87.19±2.5	Classic GNNs 52.86±1.8 43.64±3.3 41.40±1.8 66.70±1.3 75.71±1.8 81.82±2.5 80.35±1.3 70.37±0.1 54.28±5.1 51.36±2.3 50.53±1.7 63.74±6.7 Heterophily-specific GNNs 69.76±3.0 79.09±3.5 80.18±1.9 70.73±0.9 76.43±3.1 84.55±4.8 83.16±1.4 75.58±0.5 73.57±4.3 81.80±4.1 76.31±11.3 73.81±0.3 66.19±2.8 80.00±3.0 72.98±3.3 72.49±1.0 71.91±1.8 85.00±2.3 79.30±2.1 72.08±2.4 66.67±4.1 85.00±2.0 79.30±1.8 72.73±0.8 50.48±2.0 65.00±1.2 57.89±0.0 67.78±0.3 G (fine-tuned LLM/SLMs and distilled SL 77.62±2.9 89.09±3.3 86.14±2.1 76.82±0.5 75.48±2.1 80.00±4.0 86.49±1.9 76.16±0.6 75.71±1.4 83.86±2.8 83.86±1.7 74.99±0.5 75.00±4.0 88.18±2.2 87.19±2.5 75.78±0.2			

Table 2: Accuracy for node classification of different methods. (Best results bolded; runners-up underlined.)

- Heterophily-specific GNNs generally outperform classic GNNs
- Our methods consistently achieve the best performance
- Fine-tuned LLM > Fine-tuned SLMs
- Fine-tuned LLM ~= Distilled SLMs

-Directly fine-tune

⊢Distillation

We use the initial node features derived from the Vicuna 7B model for all methods.

Experiment: Analysis of edge discrimination by LLM/SLMs

Model	Cornell	Texas	Wisconsin	Actor	Amazon	Average
Vicuna 7B	65.71	64.00	92.66	81.50	44.68	69.71
Bloom 560M	47.62	26.51	71.62	79.02	56.26	56.21
Bloom 1B	40.86	23.91	79.76	79.52	59.89	56.78
7B-to-560M	50.85	64.86	80.75	81.03	50.77	65.65
7B-to-1B	51.72	80.00	75.95	80.47	51.48	67.92

Table 3: F1 scores for edge discrimination of fine-tuned LLM/SLMs and distilled SLMs.

- Fine-tuned LLM > Fine-tuned SLMs
- Fine-tuned LLM ~= Distilled SLMs

Experiment: Efficiency study

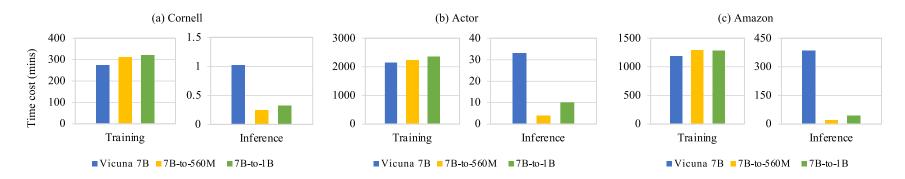


Figure 3: Analysis on the efficiency of the fine-tuned LLM and distilled SLMs.

- > Training time:
 - LLM: fine-tune time in Stage 1
 - ➤ Distilled SLMs: fine-tuning LLM + generating the pseudo-labels + fine-tuning the SLM
- The inference time of SLMs are significantly lower than LLMs
- The distilled SLMs can be more easily deployed

Experiment: Plug-and-play with various backbones

	Cornell	Texas	Wisconsin	Actor	Amazon
GCN	52.86±1.8	43.64±3.3	41.40±1.8	66.70±1.3	39.33±1.0
+LLM4HeG	$66.19 {\pm} 1.0$	$68.18 {\pm} 2.0$	76.84±2.6	71.68 ± 1.0	40.98 ± 0.7
GAT	54.28±5.1	51.36±2.3	50.53±1.7	63.74±6.7	35.12±6.4
+LLM4HeG	58.57±4.9	58.18±2.3	57.54±6.1	70.78 ± 0.7	36.01±5.8
H2GCN	69.76±3.0	79.09±3.5	80.18±1.9	70.73±0.9	47.09±0.3
+LLM4HeG	76.43±3.6	84.77±1.0	86.49±1.1	74.51 ± 0.6	52.14 ± 0.4
FAGCN	76.43±3.1	84.55±4.8	83.16±1.4	75.58±0.5	49.83±0.6
+LLM4HeG	77.62±2.9	89.09±3.3	86.14±2.1	76.82±0.5	51.53±0.4

Table 4: The accuracy for node classification of LLM4HeG with different backbones.

- Our method can be integrated with various GNN backbones.
- Our method enhances the performance of various backbones.

Summary:

- We explored the potential of LLMs to enhance the performance of GNNs for node classification on heterophilic graphs.
- We introduced a novel two-stage framework LLM4HeG, including an LLM-enhanced edge discriminator and an LLM-guided edge reweighting module.
- We implemented model distillation techniques to create smaller models that achieve much faster inference while maintaining competitive performance.

Thanks & QA

Our paper: https://arxiv.org/pdf/2408.14134

Homepage: https://yuxiawu.github.io/