





# Exploring the Potential of Large Language Models for Heterophilic Graphs

Yuxia Wu\* Singapore Management University

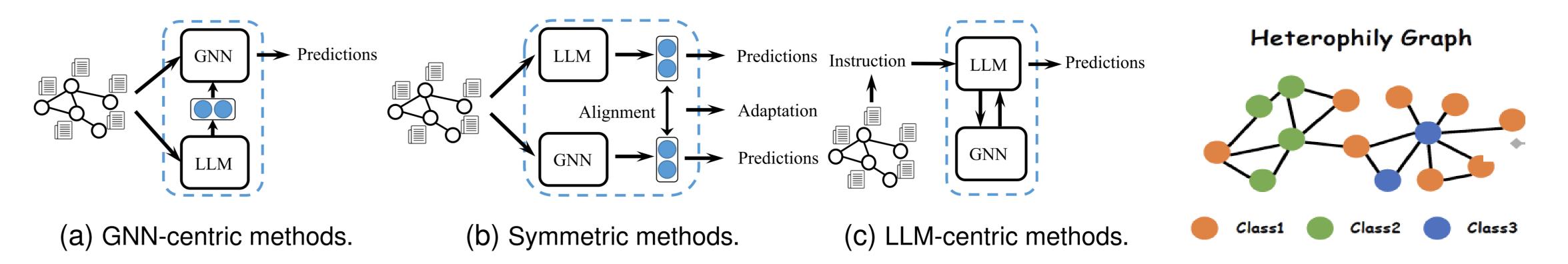
Shujie Li\* Beijing University of Post Singapore Management and Telecommunication

Yuan Fang University

Chuan Shi Beijing University of Post and Telecommunication

## Motivation

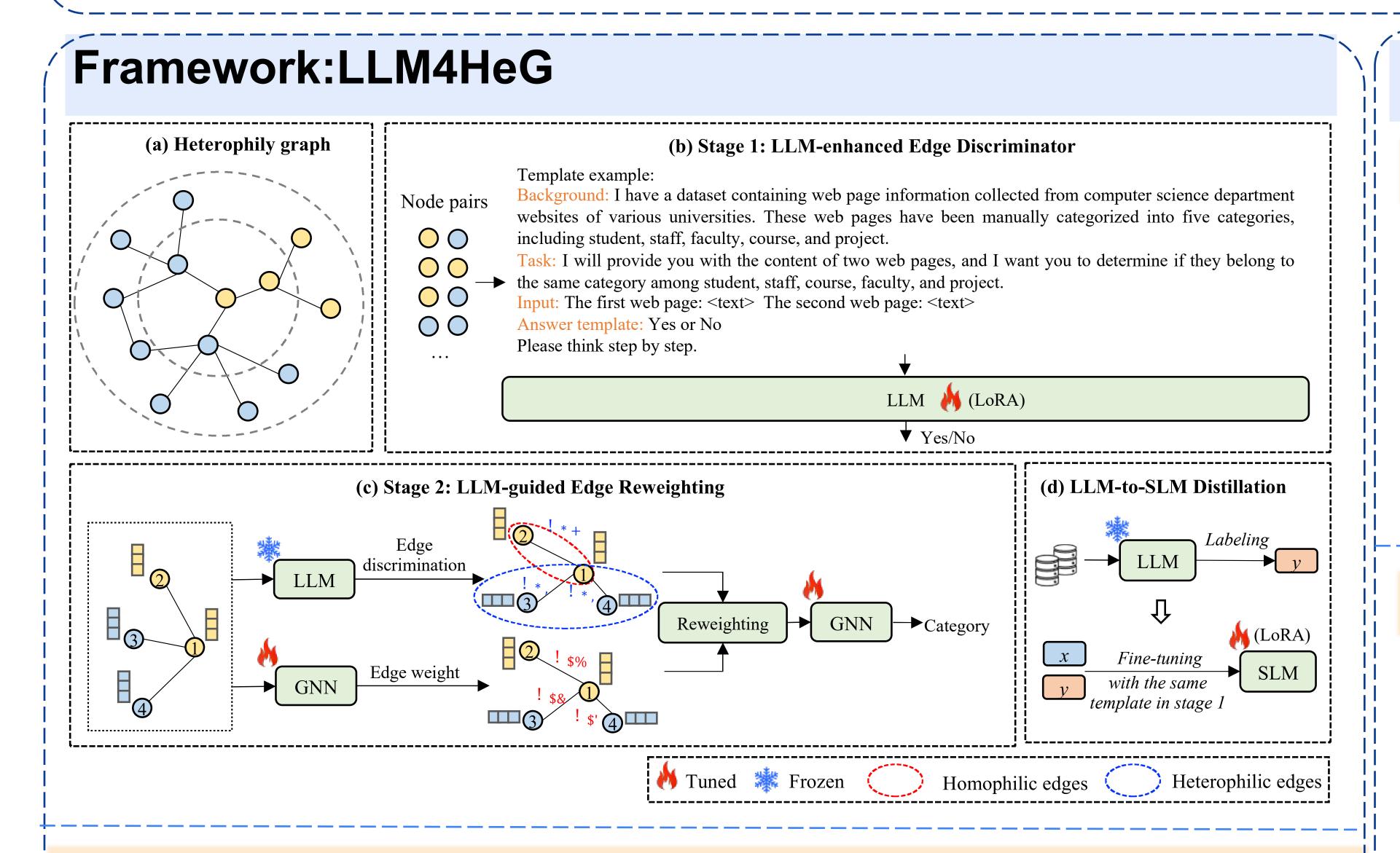
□ LLM achieve success on graph learning tasks. However, LLM for heterophilic graphs is largely unexplored.



☐ Heterophily-specific GNNs overlook the rich textual content associate with the nodes (bag-of-words, shallow embedding)

#### Contribution:

- \* We are the first exploration of the LLMs for heterophilic graphs
- \* We propose a two-stage framework including an LLM-enhanced edge discriminator and an LLM-guided edge reweighting.
- \* We applied model distillation to create smaller models with faster inference and competitive performance



#### Stage 1: LLM-enhanced Edge Discriminator

- Construct the ground truth labels from the training set.
- Design a language template to describe the task of edge discrimination.
- Parameter-efficient fine-tuning LLM: LoRA

## Stage 2: LLM-guided Edge Reweighting

☐ Edge weight from LLM:

$$w_{uv}^{\mathrm{LLM}} = egin{cases} anh(w_{\mathrm{Ho}}) & ext{if } O_{\mathrm{LLM}}(u,v) = \mathit{Yes}, \ anh(w_{\mathrm{He}}) & ext{if } O_{\mathrm{LLM}}(u,v) = \mathit{No}, \end{cases}$$

☐ Reweighting:

$$w_{uv} = \frac{1}{2} \left( w_{uv}^{\rm LLM} + w_{uv}^{\rm G} \right).$$
 Various GNN models for heterophilic graph

Learnable parameters for different edge types

FAGCN:  $w_{uv}^{\mathrm{G}} = \tanh\left(\mathbf{g}^{\top} \left[\mathbf{h}_{u} \parallel \mathbf{h}_{v}\right]\right),$ 

☐ GNN prediction:

Initial features from LLM 
$$\mathbf{h}_v^{(l)} = \epsilon \mathbf{h}_v^{(0)} + \sum_{u \in \mathcal{N}_i(v)} \frac{w_{uv}}{\sqrt{d_u d_v}} \mathbf{h}_u^{(l-1)},$$
 
$$\mathbf{h}_v^{(0)} = \sigma(\text{LLM}(x_v) \mathbf{W}_e), \quad \mathbf{h}_{\text{out}} = \mathbf{W}_o \mathbf{h}_v^{(L)},$$

### **LLM-to-SLM Distillation**

- Teacher model: fine-tuned LLM in Stage 1
- Expand label set: Pseudo-labels for additional node pairs + training set
- Fine-tune small language model (SLM) and inference

# **Experiment**

## **Datasets**

| Dataset   | Classes | Nodes  | Edges                      | $\mathcal{H}(G)$     |
|-----------|---------|--------|----------------------------|----------------------|
| Cornell   | 5       | 195    | $\frac{\text{Bages}}{304}$ | $\frac{70(3)}{0.13}$ |
| Texas     | 5       | 187    | 328                        | 0.13                 |
| Wisconsin | 5       | 265    | 530                        | 0.20                 |
| Actor     | 5       | 4,416  | 12,172                     | 0.56                 |
| Amazon    | 5       | 24,492 | 93,050                     | 0.38                 |

Table 1: Dataset statistics.

#### Results

| Methods                                          | Cornell           | Texas             | Wisconsin       | Actor             | Amazon          |  |  |
|--------------------------------------------------|-------------------|-------------------|-----------------|-------------------|-----------------|--|--|
| Classic GNNs                                     |                   |                   |                 |                   |                 |  |  |
| GCN                                              | 52.86±1.8         | 43.64±3.3         | 41.40±1.8       | 66.70±1.3         | 39.33±1.0       |  |  |
| GraphSAGE                                        | 75.71±1.8         | 81.82±2.5         | $80.35 \pm 1.3$ | $70.37 \pm 0.1$   | 46.63±0.1       |  |  |
| GAT                                              | 54.28±5.1         | 51.36±2.3         | $50.53 \pm 1.7$ | 63.74±6.7         | 35.12±6.4       |  |  |
| Heterophily-specific GNNs                        |                   |                   |                 |                   |                 |  |  |
| H2GCN                                            | 69.76±3.0         | 79.09±3.5         | 80.18±1.9       | 70.73±0.9         | 47.09±0.3       |  |  |
| FAGCN                                            | $76.43 \pm 3.1$   | 84.55±4.8         | 83.16±1.4       | $75.58 \pm 0.5$   | $49.83 \pm 0.6$ |  |  |
| JacobiConv                                       | $73.57 \pm 4.3$   | 81.80±4.1         | 76.31±11.3      | 73.81±0.3         | 49.43±0.5       |  |  |
| <b>GBK-GNN</b>                                   | 66.19±2.8         | 80.00±3.0         | $72.98 \pm 3.3$ | $72.49 \pm 1.0$   | 44.90±0.3       |  |  |
| OGNN                                             | 71.91±1.8         | 85.00±2.3         | $79.30 \pm 2.1$ | 72.08±2.4         | 47.79±1.6       |  |  |
| SEGSL                                            | 66.67±4.1         | 85.00±2.0         | 79.30±1.8       | $72.73 \pm 0.8$   | $47.38 \pm 0.2$ |  |  |
| DisamGCL                                         | $50.48 \pm 2.0$   | 65.00±1.2         | $57.89 \pm 0.0$ | 67.78±0.3         | 43.90±0.4       |  |  |
| LLM4HeG (fine-tuned LLM/SLMs and distilled SLMs) |                   |                   |                 |                   |                 |  |  |
| Vicuna 7B                                        | <b>77.62</b> ±2.9 | <b>89.09</b> ±3.3 | 86.14±2.1       | <b>76.82</b> ±0.5 | 51.53±0.4       |  |  |
| Bloom 560M                                       | 75.48±2.1         | 80.00±4.0         | $86.49 \pm 1.9$ | $76.16 \pm 0.6$   | 51.52±0.5       |  |  |

 $75.71\pm1.4$   $83.86\pm2.8$   $83.86\pm1.7$   $74.99\pm0.5$  **52.33**±0.6 Bloom 1B 75.00±4.0 88.18±2.2 **87.19**±2.5 75.78±0.2 51.51±0.4 7B-to-1B  $77.38\pm2.7$   $88.18\pm4.0$   $86.14\pm1.5$   $75.37\pm0.9$   $\underline{51.58}\pm0.4$ 

Table 2: Accuracy for node classification of different methods. (Best results bolded; runners-up underlined.)

We use the initial node features derived from the Vicuna 7B model for all methods.

- Heterophily-specific GNNs generally outperform classic GNNs
- Our methods consistently achieve the best. Fine-tuned LLM > Fine-tuned SLMs
- Fine-tuned LLM ~= Distilled SLMs