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Abstract
Large language models (LLMs) have presented
significant opportunities to enhance various ma-
chine learning applications, including graph
neural networks (GNNs). By leveraging the
vast open-world knowledge within LLMs, we
can more effectively interpret and utilize tex-
tual data to better characterize heterophilic
graphs, where neighboring nodes often have
different labels. However, existing approaches
for heterophilic graphs overlook the rich tex-
tual data associated with nodes, which could
unlock deeper insights into their heterophilic
contexts. In this work, we explore the potential
of LLMs for modeling heterophilic graphs and
propose a novel two-stage framework: LLM-
enhanced edge discriminator and LLM-guided
edge reweighting. In the first stage, we fine-
tune the LLM to better identify homophilic and
heterophilic edges based on the textual content
of their nodes. In the second stage, we adap-
tively manage message propagation in GNNs
for different edge types based on node features,
structures, and heterophilic or homophilic char-
acteristics. To cope with the computational
demands when deploying LLMs in practical
scenarios, we further explore model distilla-
tion techniques to fine-tune smaller, more ef-
ficient models that maintain competitive per-
formance. Extensive experiments validate the
effectiveness of our framework, demonstrating
the feasibility of using LLMs to enhance node
classification on heterophilic graphs.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities across a wide range of
applications, from natural language processing
(Brown et al., 2020) to computer vision (Wang
et al., 2024b), leveraging the extensive open-world
knowledge LLMs encode. Inspired by these suc-
cesses, recent efforts have extended the applica-
tion of LLMs to the graph domain, particularly
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in text-attributed graphs where node attributes are
composed of textual information (Li et al., 2023b;
Zhang et al., 2024). In the context of heterophilic
graphs, where connected nodes often exhibit con-
trasting features or class labels (Bo et al., 2021;
Sun et al., 2022; Liang et al., 2024), LLMs offer a
unique opportunity to enhance the understanding of
complex semantic relationships between these con-
nected nodes, which remains largely unexplored.

Existing approaches to addressing heterophily
in GNNs typically involve extracting shallow em-
beddings from textual information, using them as
initial node features without fully exploiting their
rich semantic content. They can be broadly cate-
gorized into two main strategies: non-local neigh-
bor extension and architectural refinement (Zheng
et al., 2022; Gong et al., 2024). The former extends
the node’s receptive field to include distant, high-
order neighbors (Abu-El-Haija et al., 2019; Song
et al., 2023) or potential connections (Jin et al.,
2021; Wang and Zhang, 2022; Zou et al., 2023),
thereby enhancing node representations through
a broader scope of information integration. The
latter modifies the core functions of GNNs, such as
the message aggregation and updating functions, to
better suit heterophilic contexts (Du et al., 2022).

In summary, current methods for heterophilic
graphs largely overlook the rich textual content as-
sociated with the nodes in real-world graphs, which
can provide deeper insights into heterophilic con-
texts. For instance, textual content on hyperlinked
webpages can enrich the understanding and pre-
diction of heterophilic links. Traditionally, GNNs
employ bag-of-words or shallow embeddings to
incorporate textual attributes, which are inadequate
for capturing complex semantics. While LLMs
(Zhao et al., 2023b) have been used to empower
GNNs for text-attributed graphs (Liu et al., 2023;
Li et al., 2023b; Yu et al., 2024a; Mao et al., 2024),
existing efforts focus on homophilic graphs, leav-
ing heterophilic graphs largely unexplored.



In this work, we delve into the potential of LLMs
for heterophilic graphs. To the best of our knowl-
edge, this is the first investigation into exploiting
LLMs for heterophilic graphs. We aim to bridge the
gap between the general capabilities of LLMs and
the unique characteristics of heterophilic graphs.
Specifically, we aim to address the following re-
search questions.

First, can LLMs be effectively adapted to charac-
terize and identify heterophilic contexts? As LLMs
encompass general open-world knowledge, they
can be utilized for the semantic understanding of
nodes’ textual content. However, it is not suffi-
cient to merely extract features from the textual
content. Unlike homophilic graphs, a key distinc-
tion of heterophilic graphs is that edges frequently
form between dissimilar nodes. Therefore, distin-
guishing heterophilic edges from homophilic ones
is crucial for subsequent aggregation on graphs. To
address this, we leverage LLMs (or any pre-trained
language model in general) to identify heterophilic
edges. Specifically, we propose LLM-enhanced
edge discrimination, where we fine-tune an LLM
using Low-Rank Adaptation (LoRA) (Hu et al.,
2022) to discriminate heterophilic and homophilic
edges based on a limited amount of ground truth
labels. This module focuses on adapting the gen-
eral semantic capabilities of LLMs to the specific
task of predicting heterophily between nodes. The
fine-tuned LLM is subsequently used to infer het-
erophilic edges on the graph to facilitate the inte-
gration of heterophilic contexts in the next stage.

Second, can LLMs effectively guide the fine-
grained integration of heterophilic contexts into
graph models? With respect to a target node, nodes
with a potential heterophilic (or homophilic) edge
provide valuable heterophilic (or homophilic) con-
texts for the target node. Given the diverging char-
acteristics of homophilic and heterophilic contexts,
it is important to differentiate them when integrat-
ing into a GNN. Specifically, heterophilic contexts
of a target node can be identified by our LLM-
enhanced edge discrimination. Building on this, we
further propose LLM-guided edge reweighting
to further aggregate heterophilic and homophilic
contexts through GNNs. In this module, we aim
to learn adaptive weights for both heterophilic and
homophilic edges. These weights are adapted to
each edge based on its features, structure, and
heterophilic or homophilic characteristics, thereby
guiding the fine-grained, edge-sensitive aggrega-
tion in GNNs.

Additionally, LLMs often incur high computa-
tional costs even for inference, limiting their prac-
tical deployment for real-world applications. To
this end, we further explore model distillation tech-
niques (Xu et al., 2024) to condense the knowledge
from fine-tuned LLMs into small language mod-
els (SLMs) (Schick and Schütze, 2021; Li et al.,
2023a; Gu et al., 2024; Pan et al., 2024) to speed
up the inference stage required for edge discrim-
ination and reweighting. Specifically, we utilize
the LLM well-tuned for edge discrimination to gen-
erate high-quality pseudo-labels for heterophilic
and homophilic edges. These pseudo-labels supple-
ment the limited ground truth labels, forming an ex-
panded label set that further enables the fine-tuning
of SLMs. The fine-tuned SLM then replaces the
LLM for conducting inference for the edge discrim-
ination and reweighting, maintaining effectiveness
while significantly reducing inference time.

To summarize, we propose a two-stage frame-
work that leverages LLMs for Heterophilic Graph
modeling (LLM4HeG). Our main contributions are
as follows. (1) To the best of our knowledge, this
is the first study to explore LLMs specifically for
modeling heterophilic graphs. This exploration not
only opens new research avenues but also provides
valuable insights into the capabilities of LLMs in
addressing unique graph characteristics such as het-
erophily. (2) We introduce LLM4HeG, a novel
two-stage framework that fine-tunes LLMs to en-
hance GNNs for heterophilic graphs. The two
stages, LLM-enhanced edge discrimination and
LLM-guided edge reweighting, accurately iden-
tify heterophilic edges and adaptively integrate het-
erophilic contexts into GNNs, respectively. (3)
We further investigate the distillation of LLMs
fine-tuned for heterophilic edge discrimination into
SLMs, achieving faster inference time with min-
imal performance degradation. (4) Finally, we
conduct extensive experiments on five real-world
datasets and demonstrate the effectiveness and effi-
ciency of our work.

2 Related Work

We review the literature on LLM-based and het-
erophilic graph learning and highlight the key dis-
tinctions of our work from existing studies.

Existing research on LLMs for graph learning in-
cludes LLM-based methods that adopt LLM as the
backbone and GNN+LLM-based methods that inte-
grate the advantages of both GNNs and LLMs (Liu



(b) Stage 1: LLM-enhanced Edge Discriminator 

(c) Stage 2: LLM-guided Edge Reweighting

Template example:
Background: I have a dataset containing web page information collected from computer science department
websites of various universities. These web pages have been manually categorized into five categories,
including student, staff, faculty, course, and project.
Task: I will provide you with the content of two web pages, and I want you to determine if they belong to
the same category among student, staff, course, faculty, and project.
Input: The first web page: <text> The second web page: <text>
Answer template: Yes or No
Please think step by step.
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Figure 1: Overall framework of the proposed method LLM4HeG.

et al., 2023; Chen et al., 2024). The former works
focus on aligning graph data with natural language
via graph-to-token and graph-to-text approaches
(Liu et al., 2023). The graph-to-token approach
involves tokenizing graph data to align it with nat-
ural language, enabling joint understanding with
data from other modalities (Zhao et al., 2023a; Ye
et al., 2024). Graph-to-text focuses on describing
graph information using natural language (Liu and
Wu, 2023; Wang et al., 2024a; Guo et al., 2023).
The latter harnesses the strengths of both language
understanding from LLMs and structural analysis
from GNNs by using GNN-centric methods utiliz-
ing LLMs to extract node features from raw data
and make predictions using GNNs (He et al., 2024;
Xie et al., 2023) or LLM-centric methods utilizing
GNNs to enhance the performance of LLM (Tang
et al., 2024; Zhang et al., 2024).

Existing heterophilic graph learning approaches
generally fall into two main strategies: non-local
neighbor extension and architectural refinement
(Zheng et al., 2022; Gong et al., 2024). Non-local
neighbor extension approaches aim to extend the
neighbors to include non-local nodes in the graph
that may share similar labels or features. These
methods often involve high-order neighbor mix-
ing (Abu-El-Haija et al., 2019; Song et al., 2023;
Yu et al., 2024b) or discovering potential neigh-
bors based on various distance measurements, such
as feature-based distance (Jin et al., 2021; Bodnar
et al., 2022), structure-based distance (Pei et al.,

2020), or hybrid approaches (Wang and Zhang,
2022; Wang et al., 2022; Li et al., 2022; Zou et al.,
2023; Bi et al., 2024). Architectural refinement ap-
proaches enhance the GNN architecture by employ-
ing identifiable message aggregation to discrimi-
nate and amplify messages from similar neighbors
while minimizing the influence of dissimilar ones
(Bo et al., 2021; Zhu et al., 2021; Du et al., 2022;
Liang et al., 2024), or by leveraging inter-layer
combinations to capture information from different
neighbor ranges (Xu et al., 2018; Chien et al., 2021;
Zhu et al., 2020), thereby improving the model’s
representation power in heterophilic graphs.

The key distinctions of our method lie in two
aspects. First, we explore LLMs to enhance text-
attributed heterophilic graphs’ modeling specifi-
cally. While prior works leverage LLMs for text-
attributed graphs, including edge reweighting (Sun
et al., 2023; Ling et al., 2024), they do not explic-
itly target heterophilic graphs. Additionally, exist-
ing heterophilic graph methods often overlook rich
textual node attributes, which provide essential se-
mantic contexts. Second, our two-stage framework
employs an LLM-enhanced edge discriminator to
predict edge types, followed by adaptive message
propagation in GNNs using a comprehensive suite
of information, including node semantics, struc-
tural contexts, and LLM-inferred edge characteris-
tics. While GBK-GNN (Du et al., 2022) follows
a similar two-stage approach, it does not leverage
the power of LLMs.



3 Proposed Model: LLM4HeG

In this section, we first introduce some preliminar-
ies on the problem formulation and classic GNNs.
Then we introduce the overview of the proposed
model followed by details of different components.

3.1 Preliminaries

Problem formulation. Let G = (V,E,X,C) de-
notes a text-attributed graph with a set of nodes V
and a set of edges E, where each node v ∈ V is as-
sociated with a text document xv ∈ X . C is the set
of node classes. In this paper, we address the task
of semi-supervised transductive node classification
for heterophilic graphs. Specifically, a subset of
the nodes is designated as the training/validation
nodes with known class labels, while the goal is to
predict the unknown labels of the remaining nodes
in the graph.
Classic GNNs. GNNs typically employ a
multi-layer approach to neighborhood aggregation,
wherein each node incrementally gathers and ag-
gregates contexts from its neighboring nodes. At
the lth layer, the representation hl

v ∈ Rdl of a node
v is derived as follows:

h(l)
v = AGGR(h(l−1)

v , {h(l−1)
u : u ∈ N (v)}), (1)

where dl is the dimension of the node representa-
tions at the lth layer. The function AGGR(·) de-
notes an aggregation mechanism combining the
feature vectors of the neighboring nodes, where
N (v) denotes the set of neighboring nodes of v.

3.2 Overall Framework
Fig. 1 illustrates the overall framework of our ap-
proach LLM4HeG, with a two-stage framework
leveraging LLMs for heterophilic graph modeling.
As shown in Fig. 1(b), Stage 1 involves our LLM-
enhanced edge discriminator, where we fine-tune
an LLM to distinguish between homophilic and
heterophilic edges, utilizing the rich textual data
associated with nodes and a limited amount of
ground truth label. Following this, in Fig. 1(c),
Stage 2 involves LLM-guided edge reweighting
to learn adaptive weights for both homophilic and
heterophilic edges. These weights are adapted to in-
dividual edges by integrating node features, graph
structures, and edge types, enabling fine-grained
aggregation within GNNs.

Additionally, to cope with the computational de-
mands of deploying LLMs, we explore a distilla-
tion method that condenses the heterophily-specific

knowledge of a fine-tuned LLM into a more com-
pact SLM. As shown in Fig. 1(d), we leverage the
LLM as a teacher model to generate pseudo la-
bels for additional examples, which can be used to
fine-tune an SLM that can perform inference more
efficiently without compromising performance.

3.3 LLM-enhanced Edge Discriminator
In heterophilic graphs, accurately discriminating
heterophilic edges from homophilic ones is pivotal
for effectively tailoring context aggregation strate-
gies across neighboring nodes. We propose an
LLM-enhanced edge discriminator, tapping on the
semantic capabilities and open-world knowledge of
LLMs beyond conventional shallow feature-based
approaches. We first construct the ground truth
labels from the training set and then prepare a lan-
guage template that describes the edge discrimina-
tion task for fine-tuning a given LLM. We elaborate
on these steps below.

First, to adapt the LLM into an edge discrimi-
nator model for heterophilic graphs, we construct
ground truth labels to indicate whether a poten-
tial edge between two nodes is homophilic or het-
erophilic. Specifically, if the two nodes have differ-
ent attributes or categories, their potential relation-
ship is considered heterophilic (Yan et al., 2022).
Hence, we select node pairs from the training set
and label them as homophilic or heterophilic by
comparing their known class labels. The selection
of node pairs depends on the size of the graph. For
small graphs, we choose all node pairs; for larger
graphs, we choose node pairs within one or two-
hop neighborhoods of each other. We will elaborate
on the details of node pair selection in Appendix
B. Note that we use “heterophilic/homophilic edge”
to describe a potential relationship between two
nodes, even if no explicit edge exists between them.

Next, given such a node pair with a ground-truth
label on their homophilic or heterophilic nature, we
design a language template to describe the task of
heterophilic edge discrimination. We utilize tex-
tual information of the node pairs to construct the
template as the input text to the LLM, including
the background, task, input and answer template
(Fig. 1(b)). Notably, the background also includes
a set of node category names specific to the het-
erophilic graph, which can be regarded as semantic
anchors to enhance the LLM’s ability to understand
the contexts of the given heterophilic graph.
Fine-tuning. The template, together with the
ground-truth labels, enables the fine-tuning of



LLMs. For efficiency, we adopt a parameter-
efficient fine-tuning technique called LoRA, which
strategically updates only a small fraction of the
LLM’s parameters (Hu et al., 2022). For fine-
tuning, we use a typical cross-entropy loss to align
the model output with the ground-truth responses:

Lfine-tune = − 1
N

∑N
i=1 logPθ(xi|x<i), (2)

where N is the number of tokens in the sentences,
xi is the i-th token to be predicted, and x<i in-
dicates previously generated tokens. Pθ(xi|x<i)
represents the probability of the token xi given the
previous tokens generated by the model.
Inference. After fine-tuning the LLM for edge
discrimination, we can employ it to infer the re-
lationship between any two nodes on the graph,
determining whether they have a potentially het-
erophilic or homophilic edge. During inference,
we use the same template to generate input text for
each node pair, which is then fed into the fine-tuned
LLM to produce a “Yes” or “No” answer regarding
the edge type.

3.4 LLM-guided Edge Reweighting
Building on the edge types identified by Stage 1,
we proceed to LLM-guided edge reweighting to
integrate heterophilic contexts into GNNs. This
process leverages the semantic insights acquired
from the LLM-enhanced edge discriminator, allow-
ing us to adjust the weight of every individual edge,
taking into account various edge-specific factors,
including node features and structures, as well as
its homophilic or heterophilic nature.

Specifically, for a node v ∈ V , we first extract
the representation from the LLM based on the as-
sociated textual information:

h(0)
v = σ(LLM(xv)We), (3)

where xv denotes the raw text of node v, LLM is
an LLM encoder, We is a learnable weight matrix
and σ is the activation function.

For a node u ∈ Ni(v), the i-hop neighborhood
of v (Zhu et al., 2020), we infer the edge type of
(u, v) using the predictions from Stage 1. Based on
the LLM prediction, we formulate an initial weight
for (u, v), denoted by wuv, as follows.

wLLM
uv =

{
tanh(wHo) if OLLM(u, v) = Yes,
tanh(wHe) if OLLM(u, v) = No,

(4)

where OLLM(·) represents the output from the
LLM-enhanced edge discriminator. The output

“Yes” implies a homophilic edge, whereas “No” in-
dicates a heterophilic edge. This initial LLM-based
weight wLLM

uv is defined based on two learnable pa-
rameters: wHo for homophilic edges and wHe for
heterophilic edges. The two parameters are cru-
cial for modulating the strength and influence of
each edge type within the graph. For homophilic
edges, where stronger connectivity is often benefi-
cial, the learned parameter may increase the weight,
thus amplifying the coherence and communication
within similar node clusters. Conversely, for het-
erophilic edges, which often bridge diverse node
groups, the parameter might be adjusted to achieve
a balance between reducing noises and maintaining
critical cross-group information.

On the other hand, graph-based information, in-
cluding node features and structures, also provides
crucial insights on determining the edge weight.
While our framework LLM4HeG is designed to be
flexible, allowing for the adoption of various GNN
backbones, we showcase FAGCN (Bo et al., 2021)
as an example of how our framework can be effec-
tively applied. This method learns the edge-specific
aggregation weight via a self-gating mechanism:

wG
uv = tanh

(
g⊤ [hu ∥ hv]

)
, (5)

where ∥ denotes the concatenation operation, and
g is a linear layer to map the concatenated feature
into a scalar value, which can be seen as a shared
convolutional kernel (Veličković et al., 2018).

Finally, we integrate the LLM-based weight
wLLM
uv with the graph-based weight wG

uv. While
there are many ways to achieve this, we use a sim-
ple yet effective method that takes the average of
the two weights as the final weight, denoted by
wuv, as follows.

wuv = 1
2

(
wLLM
uv + wG

uv

)
. (6)

The edge-specific weights further enable fine-
grained context aggregation, as detailed below.

h(l)
v = ϵh

(0)
v +

∑
u∈Ni(v)

wuv√
dudv

h
(l−1)
u , (7)

hout = Woh
(L)
v , (8)

where ϵ is a scaling hyper-parameter, dv = |Ni(v)|,
Wo is a weight matrix, and L is the total number
of GNN layers.
Training. We adopt a typical cross-entropy (CE)
loss to train node classification. Additionally, to



ensure the learned weights wHo and wHe show suf-
ficient separation, we introduce a margin-based
regularization term into the CE loss.

L = CE(ŷ, y) + λmax(0, wHe − wHo + α), (9)

where CE(ŷ, y) represents the cross-entropy loss
between the predicted node label ŷ and the ground-
truth label y, λ controls the influence of the regu-
larization term and α represents the margin that en-
forces a minimum difference between the weights
wHo and wHe. During training, we freeze the pa-
rameters of the LLM and only update the weights
of the GNN model.
Inference. During the inference phase of Stage
2, we apply the LLM-enhanced edge discrimina-
tor fine-tuned in Stage 1 to generate the edge type
for each node pair involved in the test set. Subse-
quently, we can calculate the output representations
for the test nodes based on the reweighted edges
for node classification.

3.5 LLMs-to-SLMs Distillation

In real-world applications, deploying LLMs as
edge discriminators introduces substantial compu-
tational challenges, even when only the inference
phase is required for predicting the edge types on
test graphs. To mitigate the computational bur-
den of the inference phase, we explore knowledge
distillation techniques to transfer the heterophily-
specific capabilities of the fine-tuned LLM into
more lightweight SLMs (Xu et al., 2024).

As shown in Fig. 1(d), after fine-tuning the LLM
in Stage 1, we use it as a teacher model to generate
the pseudo-labels for additional node pairs sampled
from the entire graph. The labeling process follows
the inference phase introduced in Stage 1, asking
the LLM whether a given node pair is homophilic
or heterophilic based on the input template. These
pseudo-labels are combined with the ground-truth
labels, forming an expanded label set which is sub-
sequently used to fine-tune the SLMs. The fine-
tuning of the SLMs follows the same approach as
fine-tuning the LLM in Stage 1, using the same
template and the LoRA technique. Finally, we re-
place the fine-tuned LLM with the fine-tuned SLM
during inference, which predicts the homophilic
or heterophilic relationship between any two given
nodes to guide edge reweighting in Stage 2.
Learning objectives. We outline the objectives of
knowledge distillation in the two stages. In Stage 1,
the fine-tuning of SLMs follows the same approach

Dataset Classes Nodes Edges H(G)
Cornell 5 195 304 0.13
Texas 5 187 328 0.12
Wisconsin 5 265 530 0.20
Actor 5 4,416 12,172 0.56
Amazon 5 24,492 93,050 0.38

Table 1: Dataset statistics.

as fine-tuning the LLM shown in Eq. (2). In Stage
2, we train the edge reweighting using the same
cross-entropy objective shown in Eq. (9).

4 Experiment

In this section, we present an empirical study to
demonstrate the feasibility of leveraging LLMs for
node classification on heterophilic graphs.

4.1 Experimental Setup

Datasets. Given that the datasets commonly em-
ployed in heterophily graph tasks lack original tex-
tual information, we collect publicly available raw
text directly from the original data providers and
preprocess these datasets. Consequently, our ex-
periments only include datasets that contain raw
text. Specifically, we have prepared five datasets:
Cornell, Texas, and Wisconsin (Pei et al., 2020),
Actor (Tang et al., 2009) and Amazon (Platonov
et al., 2023). The Cornell, Texas, and Wiscon-
sin datasets (Pei et al., 2020) are derived from
computer science department websites where web-
pages serve as nodes and hyperlinks as edges. The
Actor dataset (Tang et al., 2009) is an actor co-
occurrence network with nodes representing ac-
tors and edges denoting their collaborations. The
Amazon dataset (Platonov et al., 2023) is a prod-
uct co-purchasing network, where nodes represent
products and edges link products frequently bought
together. The statistical details of the datasets are
presented in Table 1 with more details provided
in Appendix A. Additionally, we include the edge
homophily score H(G) (Yan et al., 2022) for each
dataset, which quantifies the level of homophily (1
means perfectly homophily while 0 stands for total
heterophily).
Baselines. We compare our method against a set of
baseline models that fall into two main categories:
classic GNN models and heterophily-specific mod-
els. The classic GNN models include GCN (Kipf
and Welling, 2016), GraphSAGE (Hamilton et al.,
2017) and GAT (Veličković et al., 2018). The
heterophily-specific models include H2GCN (Zhu
et al., 2020), FAGCN (Bo et al., 2021), JacobiConv
(Wang and Zhang, 2022), GBK-GNN (Du et al.,



Methods Cornell Texas Wisconsin Actor Amazon
Classic GNNs

GCN 52.86±1.8 43.64±3.3 41.40±1.8 66.70±1.3 39.33±1.0

GraphSAGE 75.71±1.8 81.82±2.5 80.35±1.3 70.37±0.1 46.63±0.1

GAT 54.28±5.1 51.36±2.3 50.53±1.7 63.74±6.7 35.12±6.4

Heterophily-specific GNNs
H2GCN 69.76±3.0 79.09±3.5 80.18±1.9 70.73±0.9 47.09±0.3

FAGCN 76.43±3.1 84.55±4.8 83.16±1.4 75.58±0.5 49.83±0.6

JacobiConv 73.57±4.3 81.80±4.1 76.31±11.3 73.81±0.3 49.43±0.5

GBK-GNN 66.19±2.8 80.00±3.0 72.98±3.3 72.49±1.0 44.90±0.3

OGNN 71.91±1.8 85.00±2.3 79.30±2.1 72.08±2.4 47.79±1.6

SEGSL 66.67±4.1 85.00±2.0 79.30±1.8 72.73±0.8 47.38±0.2

DisamGCL 50.48±2.0 65.00±1.2 57.89±0.0 67.78±0.3 43.90±0.4

LLM4HeG (fine-tuned LLM/SLMs and distilled SLMs )
Vicuna 7B 77.62±2.9 89.09±3.3 86.14±2.1 76.82±0.5 51.53±0.4

Bloom 560M 75.48±2.1 80.00±4.0 86.49±1.9 76.16±0.6 51.52±0.5

Bloom 1B 75.71±1.4 83.86±2.8 83.86±1.7 74.99±0.5 52.33±0.6

7B-to-560M 75.00±4.0 88.18±2.2 87.19±2.5 75.78±0.2 51.51±0.4

7B-to-1B 77.38±2.7 88.18±4.0 86.14±1.5 75.37±0.9 51.58±0.4

Table 2: Accuracy for node classification of different
methods. (Best results bolded; runners-up underlined.)

2022), OGNN (Song et al., 2023), SEGSL (Zou
et al., 2023), DisamGCL (Zhao et al., 2024) with
more details provided in Appendix D.
Implementation Details. We adopt Vicuna-v1.5-
7B (Zheng et al., 2024) as the LLM model and the
Bloom model (Le Scao et al., 2023) with 560M
and 1B parameters as SLMs. Consistent with most
existing works (Zhu et al., 2020), we randomly
split the nodes into train, validation and test sets
with a proportion of 48%/32%/20% for Cornell,
Texas, Wisconsin and Actor datasets. We set the
proportion of Amazon dataset as 50%/25%/25%
following Platonov et al. (2023). In our main ex-
periments, we use FAGCN (Bo et al., 2021) as the
GNN backbone, adhering to the parameter settings
outlined in FAGCN. We only fine-tune the other hy-
perparameters based on the performance observed
on the validation sets. All experiments are repeated
10 times, and we report the averaged results with
standard deviation. To ensure a fair comparison,
we use the initial node features derived from the
Vicuna 7B model for all methods. More implemen-
tation details and hyper-parameters are introduced
in Appendix B and C.

4.2 Performance Comparison

Table 2 shows the average accuracy and the stan-
dard deviation of the baselines and LLM4HeG
with fine-tuned LLM/SLMs and distilled SLMs.
For LLM4HeG, we choose the Vicuna 7B as the
LLM and the Bloom models with 560M and 1B
as SLMs. We conduct experiments with various
strategies for the LLM and SLMs to explore their

performance. (1) “Vicuna 7B”: We fine-tune the
LLM via LoRA technique for edge discrimination.
(2) “Bloom 560M” and “Bloom 1B”: We directly
fine-tune SLMs via LoRA in the same way as “Vi-
cuna 7B”. (3) “7B-to-560M” and “7B-to-1B”: We
distill the Vicuna 7B model to Bloom 560M and
1B models, respectively, as introduced in Sect. 3.5.

Among the baselines, heterophily-specific
GNNs generally outperform classic GNNs, while
our methods consistently achieve the best perfor-
mance. These results indicate that LLM4HeG ef-
fectively captures the complex relationships among
different nodes in heterophilic graphs.

For different strategies of LLM4HeG, directly
fine-tuning the SLMs often leads to notable perfor-
mance decline compared to fine-tuning the LLM.
However, the distilled SLMs attain performance
comparable to that of the fine-tuned LLM, demon-
strating the effectiveness of the distillation process
in retaining heterophily-specific knowledge. The
only exception is the performance on the Ama-
zon dataset, where the directly fine-tuned SLMs
achieve similar performance as the LLM and the
distilled ones. This may be due to the semi-
structured patterns within the textual descriptions
in the Amazon dataset such as product specifica-
tions, which are relatively easy to capture by both
LLMs and SLMs. We also present experiments
that directly utilize LLMs for node classification in
Appendix E.

4.3 Model Analysis
Ablation Study. To evaluate the effectiveness of
the learnable weight for adaptive message passing
and deep node features from LLM, we conducted
experiments using different variants of our model:
(1) w/o reweight: This variant only uses the graph-
based weight wG

uv (2) w/o learnable weights: This
variant uses fixed weights instead of learnable ones.
Specifically, we manually set the weights for ho-
mophilic and heterophilic pairs to 1 and -1, respec-
tively, as these values were found to perform well
across most datasets.

As shown in Fig. 2, the performance drops af-
ter removing the reweighting mechanism. When
reweighting is applied, the w/o learnable weight
variant outperforms the backbone model and the
learnable weight of LLM4HeG shows the best per-
formance. These results indicate the significance
of learnable adaptive reweighting guided by LLM
for message aggregation in GNNs.
Analysis of edge discrimination by LLM/SLMs.
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Figure 2: The effectiveness of learnable weight.

Model Cornell Texas Wisconsin Actor Amazon Average
Vicuna 7B 65.71 64.00 92.66 81.50 44.68 69.71

Bloom 560M 47.62 26.51 71.62 79.02 56.26 56.21
Bloom 1B 40.86 23.91 79.76 79.52 59.89 56.78

7B-to-560M 50.85 64.86 80.75 81.03 50.77 65.65
7B-to-1B 51.72 80.00 75.95 80.47 51.48 67.92

Table 3: F1 scores for edge discrimination of fine-tuned
LLM/SLMs and distilled SLMs.

As the edge reweighting in Stage 2 depends on the
effectiveness of edge discrimination in Stage 1, we
further evaluate the edge classification performance
(F1 score) of different models on the node pairs
used for Stage 2. As shown in Table 3, compared
with the fine-tuned LLM, directly fine-tuning the
SLMs generally gives worse edge discrimination
performance, which is reasonable considering the
model capacity. However, the distilled SLM man-
ages to maintain a comparable performance with
only a marginal drop. This indicates the effective-
ness of the distillation process, which allows the
distilled SLM to retain heterophily-specific knowl-
edge of the fine-tuned LLM. The results are con-
sistent with the node classification performance
reported in Table 2.
Performance on inductive setting. Our method
is inherently adaptable to inductive node classifica-
tion, where test nodes remain entirely unseen dur-
ing training. We conduct additional experiments
on inductive test sets, requiring the model to clas-
sify them based on their raw textual attributes and
structural connections. As shown in Fig. 3, our
approach consistently outperforms baseline meth-
ods in this setting. These results indicate that our
method can effectively benefit from the semantic
understanding of LLMs in both transductive and
inductive settings.
Efficiency study. Fig. 4 illustrates the efficiency
of our framework using an LLM or distilled SLMs
in terms of training and inference times, measured
in minutes. For the LLM approach, the training
time denotes the fine-tuning time in Stage 1 on
the selected node pairs (see Section 3.3). For the
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Figure 3: The accuracy of inductive node classification.

Cornell Texas Wisconsin Actor Amazon
GCN 52.86±1.8 43.64±3.3 41.40±1.8 66.70±1.3 39.33±1.0

+LLM4HeG 66.19±1.0 68.18±2.0 76.84±2.6 71.68±1.0 40.98±0.7

GAT 54.28±5.1 51.36±2.3 50.53±1.7 63.74±6.7 35.12±6.4

+LLM4HeG 58.57±4.9 58.18±2.3 57.54±6.1 70.78±0.7 36.01±5.8

H2GCN 69.76±3.0 79.09±3.5 80.18±1.9 70.73±0.9 47.09±0.3

+LLM4HeG 76.43±3.6 84.77±1.0 86.49±1.1 74.51±0.6 52.14±0.4

FAGCN 76.43±3.1 84.55±4.8 83.16±1.4 75.58±0.5 49.83±0.6

+LLM4HeG 77.62±2.9 89.09±3.3 86.14±2.1 76.82±0.5 51.53±0.4

GBK-GNN 66.19±2.8 80.00±3.0 72.98±3.3 72.49±1.0 44.90±0.3

+LLM4HeG 68.57±2.6 81.82±2.0 76.14±1.4 73.39±0.6 48.25±0.3

Table 4: The accuracy for node classification of
LLM4HeG with different backbones.

distilled SLMs, as discussed in Section 3.5, we em-
ploy the fine-tuned LLM to generate pseudo-labels
for further fine-tuning the SLM. Thus, its training
time includes fine-tuning the LLM, generating the
pseudo-labels, and fine-tuning the SLM. Thus, the
total training time for model distillation is slightly
higher than the LLM. On the other hand, inference
time includes predicting edge types using either
the LLM or distilled SLM, as required by the edge
reweighting module in Stage 2. It is worth noting
that the inference times of SLMs are significantly
lower than LLMs, especially for larger datasets
such as Amazon. Hence, the distilled SLMs can be
more easily deployed given their smaller size and
faster inference time, while maintaining competi-
tive performance as shown in Table 2.

4.3.1 Plug-and-play with various backbones
Our method is designed to be highly flexible, al-
lowing it to be integrated with various GNN back-
bones. To demonstrate the flexibility, we tested our
approach with several well-known GNN architec-
tures, including GCN, GAT, H2GCN, FAGCN and
GBK-GNN. We provide the implementation details
of the integration process in Appendix B. Table 4
indicates that our method consistently enhances the
performance of these backbones. This capability
highlights the versatility of our approach, making it
valuable for improving multiple backbones without
the need for significant modifications.
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Figure 5: Effect of the edge weight margin α.

4.3.2 Hyper-parameter study.
Finally, we analyze the impact of a key hyper-
parameter in our work, namely the weight margin
α in Eq. (9), the training loss of Stage 2. We vary
it over {0, 0.1, 0.3, 0.5, 0.7, 0.9}, and report the re-
sults for three datasets in Fig. 5, with the results for
the remaining datasets in Appendix C. Generally
speaking, when α is too low or too high, the perfor-
mance tends to drop, suggesting that a balance is
required to appropriately consider the difference be-
tween the learned weights. In particular, [0.3, 0.5]
appears to be a good range for α on these datasets.

We also conduct experiments on the influence
of the initial values of wHo and wHe in Eq. (4).
The results in Table 5 show that the classification
performance is relatively stable across different
initial values of wHo and wHe, with minor variations
observed for specific datasets. This suggests that
the model is robust to different initializations, and
can generally find the optimal values for wHo and
wHe despite different initializations.

wHo wHe Cornell Texas Wisconsin Actor Amazon

0.5 0.5 78.57±2.6 89.55±2.9 85.44±2.5 76.83±0.6 51.47±0.4

1 0 77.86±2.4 89.55±2.5 85.44±2.1 77.00±0.4 51.42±0.6

1.5 -0.5 77.62±2.9 89.09±3.3 86.14±2.1 76.82±0.5 51.53±0.4

2 -1 78.57±1.8 87.73±3.6 85.44±1.8 76.88±0.5 51.40±0.4

2.5 -1.5 78.57±1.5 87.95±2.3 86.14±1.8 76.99±0.5 51.30±0.3

Table 5: Effect of the initial weights of wHo and wHe.

5 Conclusion

In this study, we explored the potential of LLMs to
enhance the performance of GNNs for node clas-
sification on heterophilic graphs. We introduced a
novel two-stage framework LLM4HeG, integrating

LLMs into the GNN learning process through an
LLM-enhanced edge discriminator and an LLM-
guided edge reweighting module. LLM4HeG al-
lows more precise identification of heterophilic
edges and finer-grained context aggregation, lever-
aging the rich semantics in nodes’ textual data. Ad-
ditionally, to address the computational challenges
of deploying LLMs, we implemented model dis-
tillation techniques to create smaller models that
achieve much faster inference while maintaining
competitive performance. Our extensive experi-
ments demonstrate that LLM4HeG significantly
improves node classification on heterophilic graphs,
underscoring the potential of LLMs for advancing
complex graph learning.

Limitations

Despite the promising results obtained by our ap-
proach LLM4HeG, it is important to acknowledge
several limitations. (1) LLM4HeG follows a two-
stage pipeline, which may lead to error accumu-
lation between stages, as compared to end-to-end
approaches that jointly optimize the entire process.
(2) The effectiveness of LLM4HeG depends on
the availability and quality of textual data associ-
ated with nodes, particularly the alignment between
the semantics of textual attributes and the class la-
bels. The model may struggle to deliver optimal
results when textual data is sparse or irrelevant.
(3) LLM4HeG operates in a supervised learning
paradigm, requiring labeled data for training, which
can limit its scalability and applicability in domains
where labeled data is scarce or costly to obtain.
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Appendices

A More Details for Datasets

• Cornell, Texas, and Wisconsin (Pei et al., 2020)
are collected from computer science departments
at various universities. In these datasets, each
node corresponds to a web page, while edges
represent hyperlinks connecting these pages. In
our experiments, we use the original webpage
data as the textual information for each node.

• Actor (Pei et al., 2020; Tang et al., 2009) is an
actor-only induced subgraph of the film-director-
actor-writer network. In this graph, nodes repre-
sent actors, and an edge between two nodes indi-
cates their co-occurrence on the same Wikipedia
page. The task involves categorizing actors into
five distinct classes based on their roles. We
selected the actors based on category informa-
tion provided in the metadata, focusing on those
with high occurrence frequencies. The category
keywords of the selected actors include “Ameri-
can film actors", “American film and television
actors", “American stage and television actors",
“English" and “Canadian". Afterward, we con-
struct the graph based on the edges and remove
the isolated nodes from the graph.

• Amazon (Platonov et al., 2023) is constructed
from the Amazon product co-purchasing network
metadata. In this dataset, nodes represent prod-
ucts such as books, music CDs, DVDs, and VHS
video tapes. Edges link products that are fre-
quently bought together. The goal is to predict
the average rating a product receives from review-
ers, with ratings grouped into five classes. To
manage the graph’s complexity, only the largest
connected component of the 5-core of the graph
is considered.

B More Implementation Details

Node Pairs. In Stage 1, we train the edge dis-
criminator by sampling node pairs from the graph,



Dataset Cornell Texas Wisconsin Actor Amazon
Training 4,186 3,741 7,626 36,248 23,210
Distillation⋆ 916 991 1,299 1,781 11,422
⋆: the number of additional samples for distillation.

Table 6: The number of node pairs in Stage 1 and the
distillation process.

with the selection process tailored to the character-
istics of each dataset. For small graphs like Cor-
nell, Texas, and Wisconsin, we select all node pairs
within the training set, including those without di-
rect edges. For the Actor dataset, node pairs are
selected based on the 1-hop and 2-hop neighbor re-
lationship, while for the Amazon dataset, we focus
on node pairs with a 1-hop neighbor relationship,
taking into account the graph’s size.

In the distillation process, we use node pairs
from the validation and testing data as additional
samples, allowing the fine-tuned LLM to generate
pseudo-labels. For small graphs like Cornell, Texas,
and Wisconsin, we select node pairs with 1-hop and
2-hop neighbor relationships, while for the Actor
and Amazon datasets, we choose node pairs with
1-hop neighbor relationships. The number of node
pairs used for training in Stage 1 and distillation is
shown in Table 6.
Backbones. We provide the implementation de-
tails for integrating the LLM4HeG with other back-
bones. As discussed in Sec. 3.4, the edge reweight-
ing in Stage 2 combines the LLM-based weight
with graph-based information. For the backbones
that don’t contain an additional edge weight learn-
ing module (e.g., GCN (Kipf and Welling, 2016)
and H2GCN (Zhu et al., 2020)), we only use the
edge weight obtained from LLM. For the back-
bones with specific designs of the edge weight (e.g.,
GAT (Veličković et al., 2018), FAGCN (Bo et al.,
2021) and GBK-GNN (Du et al., 2022)), we follow
the Eq. (6) to combine the LLM-based weight and
graph-based weight to perform fine-grained context
aggregation of GNN.

C Hyper-parameters

We run all the experiments on an NVIDIA A800
GPU. For LLM4HeG, the edge weight margin
α = 0.3 and the regularization coefficient λ = 0.1.
For the baselines, we use the hyper-parameters as
listed in previous literature. For the number of
hops in the i-hop neighborhood of each node, we
use a 1-hop and 2-hop neighborhood for H2GCN
(Zhu et al., 2020) and a 1-hop neighborhood for
the other backbones. The hidden unit for GCN and
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Figure 6: Effect of the edge weight margin α.

GAT is 16. The number of heads in GAT is 3 for
Amazon and 8 for other datasets. For H2GCN, we
adopt the H2GCN-1 variant using one embedding
round (K = 1). The parameter setting of FAGCN
is: the hidden unit = 32, layers = 2, ϵ = 0.4.
For JacobiConv, the parameter setting is γ = 2
for Polynomial Coefficient Decomposition (PCD),
a = 0.5 and b = 0.25 for Jacobi Basis. For OGNN,
the number of MLP layers is 1 for Cornell, Texas
and Wisconsin and 2 for the Actor and Amazon
dataset. For SEGSL, the height of the encoding tree
K = 2. The subtree sampling parameter θ is 2 for
the Amazon dataset and 3 for other datasets. The
GNN encoder model for the reconstructed graph
is GraphSAGE. For DisamGCL, the weight of his-
torical memory µ = 0.6, the controlling variables
for the node similarity ϵ1 = 0.74 and ϵ2 = 0.4, the
threshold of the node similarity T = 0.8, the num-
ber of augment instances K = 8, the weight of
contrastive loss λ = 1.

The effect of edge weight margin α of
LLM4HeG for other datasets is shown in Fig. 6.
Generally speaking, the results in Fig. 5 and Fig. 6
show that [0.3, 0.5] appears to be a good range for
α on all datasets.

D More Details for Baselines

• H2GCN (Zhu et al., 2020) considers higher-order
neighbors, ego-neighbor embedding separation
and intermediate layer representations for het-
erophilic graph.

• FAGCN (Bo et al., 2021) employs a self-gating
mechanism to adaptively integrate low- and high-
frequency signals during message passing.

• JacobiConv (Wang and Zhang, 2022) deserts non-
linearity and approximates filter functions with
Jacobi polynomial bases.

• GBK-GNN (Du et al., 2022) introduces a learn-
able kernel selection gate to discriminate node



Cornell Texas Wisconsin Actor Amazon
LLM-nofinetune 26.16 25.00 26.32 24.75 35.44
LLM-finetune 61.90 40.91 71.93 59.96 36.52
LLM4HeG 75.95 87.50 84.91 76.54 51.53

Table 7: Performance comparison with LLMs.

pairs and apply two different kernels for ho-
mophily and heterophily node pairs.

• OGNN (Song et al., 2023) introduces an ordered
gating mechanism for message passing, effec-
tively handling heterophily and mitigating the
over-smoothing problem.

• SEGSL (Zou et al., 2023) is a graph structure
learning framework leveraging structural entropy
and the encoding tree to improve both the effec-
tiveness and robustness.

• DisamGCL (Zhao et al., 2024) automatically
identifies ambiguous nodes and dynamically aug-
ments the learning objective through a contrastive
learning framework.

E Comparison to Direct LLM Predictions

Given the rich textual data associated with the
nodes, it is possible to directly feed this informa-
tion into the LLM for classification, bypassing the
use of a GNN. We conduct experiments using the
original and fine-tuned LLMs.

(1) “LLM-nofinetune” employs the original
Vicuna 7B model to make the prediction, with the
following prompt template for the Cornell, Texas,
and Wisconsin datasets. A similar prompt template

with different background and task descriptions is
used for the Actor and Amazon datasets.

Background: I have a dataset containing web page
information collected from computer science department
websites of various universities. These web pages have been
manually categorized into five categories, including student,
staff, faculty, course, and project.

Task: I will provide you with the text information of a
web page, and I would like you to classify it into one of
the following categories: student, staff, course, faculty, or
project.

The web page content: <text>

You may only output the category name, and do not discuss
anything else!

(2) “LLM-finetune” employs the fine-tuned Vi-
cuna 7B model using the edge discriminator in
Stage 1 to make the prediction, using the same
prompt template as above.

As shown in Table 7, the performance of the
original LLM without fine-tuning performs poorly
when directly provided with textual information.
This is likely because while LLMs are powerful
for natural language processing tasks, they strug-
gle to infer node categories without adaptation to
the specific task. After fine-tuning with the LLM-
enhanced edge discriminator in Stage 1, the per-
formance improves significantly, but is still worse
than LLM4HeG. This highlights the importance of
combining node semantic features, structural con-
texts, and LLM-inferred edge characteristics for
effective node classification.
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