
Disease Gene Classification
with Metagraph Representations

Abstract

Protein-protein interaction (PPI) networks play an important role in studying the
functional roles of proteins, including their association with diseases. However,
protein interaction networks are not sufficient without the support of additional
biological knowledge for proteins such as their molecular functions and biolog-
ical processes. To complement and enrich PPI networks, we propose to exploit
biological properties of individual proteins. More specifically, we integrate key-
words describing protein properties into the PPI network, and construct a novel
PPI-Keywords (PPIK) network consisting of both proteins and keywords as two
different types of nodes. As disease proteins tend to have a similar topologi-
cal characteristics on the PPIK network, we further propose to represent pro-
teins with metagraphs. Different from a traditional network motif or subgraph,
a metagraph can capture a particular topological arrangement involving the in-
teractions/associations between both proteins and keywords. Based on the novel
metagraph representations for proteins, we further build classifiers for disease pro-
tein classification through supervised learning. Our experiments on three different
PPI databases demonstrate that the proposed method consistently improves dis-
ease protein prediction across various classifiers, by 15.3% in AUC on average.
It outperforms the baselines including the diffusion-based methods (e.g., RWR)
and the module-based methods by 13.8–32.9% for overall disease protein predic-
tion. For predicting breast cancer genes, it outperforms RWR, PRINCE and the
module-based baselines by 6.6–14.2%. Finally, our predictions also turn out to
have better correlations with literature findings from PubMed.
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1. Introduction

Studying disease-causing genes and their protein products is critical to the
diagnosis and treatment of serious diseases such as cancer and diabetes. Despite
recent advances in identifying the functions of genes and proteins [1, 2, 3, 4, 5, 6],
it still remains a challenging research issue to understand their interactions and
pathways in the context of many diseases.

In order to decipher how proteins work together, protein-protein interaction
(PPI) networks [7, 8, 9] have been widely exploited. Several studies [10, 11] have
demonstrated that the locality of a protein in a PPI network is not random. Rather,
proteins with the same phenotype or function tend to exhibit common topological
characteristics in a PPI network, including the degree, coreness, and closeness.
Given such characteristics, PPI networks could be instrumental towards predicting
the associations between proteins and diseases [12].

In this paper, we study the problem of disease protein prediction1 exploiting
network-based representations. Network-based approaches in this area generally
fall into one of the three categories: linkage, module and diffusion-based methods
[13]. Linkage methods are based on the assumption that the direct neighbors of
a disease protein in a PPI network tend to be associated with the same disease.
In particular, they focus on genomic linkage intervals [14, 15, 16]. If the protein
products of the genes in a disease linkage interval interact with a known disease
protein, then they become disease candidates. Module-based methods hypothe-
size that proteins within the same topological or functional module on a network
are more likely to associate with the same disease [17, 10, 18]. In particular,
there exist various approaches based on network clustering [19, 20], k-cores [21],
graphlets [22], network motifs [23, 24] and frequent subgraph mining [25]. Fi-
nally, diffusion-based methods anchor on known disease proteins as seeds, which
diffuse along PPI network through random walks [26, 27, 28, 29, 30].

However, PPI networks are often noisy and incomplete [31, 32]. Apart from
capitalizing on these networks, most of the above methods do not consider the
properties of proteins themselves, such as their Gene Ontology (GO) annotations
like biological processes, molecular functions, cellular components, etc. For ex-
ample, it is known that only the proteins which are localized at the same sub-
cellular compartments can interact with each other [33, 34]. Thus, we propose
to use keywords from the Universal Protein Resource (UniProt) database [35] to

1In this paper, we focus on disease gene prediction using the protein-protein interaction net-
works and thus disease genes and disease proteins are used interchangeably.
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Table 1: A summary of keywords from the UniProt database.

Keyword Category Examples
Biological Process Apoptosis, Cell cycle, cAMP biosynthesis
Cellular component Golgi apparatus, Vacuole, Cytoplasm
Coding sequence diversity Polymorphisms, RNA-editing, alternative splicing
Domain SH2 domain, Kelch repeat, Transmembrane
Ligand cAMP, S-adenosyl-L-methionine, cGMP
Molecular function RNA-binding, Protein kinase inhibitor, Chromatin regulator
Post-translational modification Phosphorylation, Ubiquitination, Acetylation
Technical term Allosteric enzyme, Transposable element

enrich the PPI network. The keywords cover various biological aspects of the
proteins, as summarized in Table 1. A previous study [36] reveals the relationship
between these keywords and intrinsic disorders: some keywords for cellular com-
ponents, domains, technical terms, developmental processes, and coding sequence
diversities indicate strong positive or negative correlations with long intrinsically
disordered regions. Furthermore, it is known that intrinsically disordered pro-
teins are associated with many diseases [37]. Additionally, several investigations
[38, 39, 40] consider the role of post-translational modifications (PTM) in disease
and functional complexes. Based on these findings, we integrate the keywords of
Uniprot database directly into the PPI networks. With this integration we are able
to capture the network characteristics between proteins and keywords as well.
The concept of integrating additional biological knowledge into a PPI network
has been studied in recent years [41, 42, 43, 44, 45, 46]. In particular, towards
identifying disease-causing genes, Lage et al. have studied the computational in-
tegration of phenotype similarities to a PPI network in a pioneering work [47].
Another study [48] has generated a human disease network and disease gene net-
work based on disease phoneme and genome associations. Moreover, Lee et al.
[49] have improved the performance of genome-wide association studies in pri-
oritizing candidate disease genes, through constructing a functional network for
human genes based on various biological aspects such as mRNA coexpression,
protein-protein interactions, and protein complex. Furthermore, a three-level net-
work based on phenotype, protein complex and PPI network [50], as well as a het-
erogeneous network consisting of both interaction and ontology data, have been
studied [51].

To the best of our knowledge, our work is the first attempt to integrate the PPI
network with the keywords in Uniprot database and form a heterogeneous network
for disease protein prediction. We call our heterogeneous network a PPI-Keyword
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(PPIK) network, which contains network structures accounts for not only protein
interactions with one another but also their functional and structural similarities.
Based on the PPIK network, we propose to address the problem of disease protein
classification, hinging on the notion of metagraphs [52]. Different from a tradi-
tional network motif or subgraph, a metagraph is a graph structure capturing a
particular topology of both proteins and keywords on the PPIK network. In other
words, each metagraph describes a particular heteronomous biological arrange-
ment between one or more proteins and keywords. Each protein can be subse-
quently represented as a series of metagraphs that describe its interactions with
other proteins and associations with keywords. The key intuition is that proteins
with similar functional roles, such as their disease-causing property, tend to have
similar metagraph representations, i.e., they tend to interact with other proteins
and associate with certain keywords in a similar arrangement on the PPIK net-
work. Thus, we further build a classifier for disease proteins based on their meta-
graph representations. Finally, we conduct comprehensive experiments on three
PPI databases, namely IntAct [53], STRING [54] and NCBI [55], and demon-
strate the superior predictive power of our proposed metagraph-based prediction
model.

2. Materials and Methods

In this section, we describe the proposed method. We start with some prelim-
inaries in Section 2.1, including the problem statement as well as the motivations
of our approach. Next, we introduce the proposed PPIK network and metagraph
representations, the basis of our method in Section 2.2 and Section 2.3, respec-
tively. Lastly, we present a general framework of our method in Section 2.4.

2.1. Preliminaries
Problem Statement. The problem of disease protein classification aims to iden-
tify human disease proteins in a given protein database. Let P be the protein
space, and C = {disease, non-disease} be the set of classes. Assume we have a
training set Ptrain and test set Ptest such that P = Ptrain ∪ Ptest and Ptrain ∩ Ptest = ∅.
The goal is to learn a classifier β : P → C based on Ptrain. Ultimately, for any
protein in the test set p ∈ Ptest, we can predict its class to be β(p) with minimal
prediction errors.

There have been numerous efforts in designing and learning different clas-
sifiers, with considerable success. All these classifiers generally assume a vec-
tor representation φ(p) for each protein p ∈ P . In this work, the main focus is
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proposing a novel representation φ(·) for proteins to consistently improve classi-
fiers across the spectrum of classifiers, rather than developing a new classification
model.

Motivations. First, while protein-protein interaction (PPI) networks have offered
some insight into how proteins work with one another, most existing PPI net-
works are noisy and incomplete [31, 32]. Interestingly, an individual protein also
exhibits a number of biological properties that may reveal how it works, ranging
from molecular function and biological process to cellular component and protein
domain. Previous work shows that disease proteins are likely to share common
properties in Gene Ontology annotations [41, 56]. Furthermore, proteins with the
same protein domain as a disease protein could be associated with the disease as
well [57, 56]. Therefore, these properties can also be associated with different
proteins together, to complement and enhance the existing PPI networks which
only encode protein-protein interactions.

Second, disease proteins tend to have similar topological arrangements in a
PPI network. This hypothesis has been validated to some extent by previous
module-based methods such as clustering [19, 20], k-cores [21], graphlets [22],
network motifs [23, 24] and frequent subgraph mining [25]. However, the chal-
lenge here is how we can leverage the topological arrangements of proteins in the
context of not only the interactions between proteins but also their relevance based
on other biological properties.

The two motivations inspire the proposed PPI-Keyword network in Section
2.2 and metagraph representation in Section 2.3, respectively.

2.2. PPI-Keyword network
To exploit the biological properties of individual proteins, we leverage the key-

words associated with each protein from the Universal Protein Resource (UniProt)
database [35]. These keywords describe the various biological mechanisms of the
proteins, as summarized in Table 1. We enrich the PPI network with such bi-
ological keywords, to construct a PPI-Keyword (PPIK) network. Note that we
only use the exact keywords, without considering the semantic similarity or over-
lap between keywords, since we find out that only 0.1% of the keyword pairs are
similar.

Formally, a PPIK network is modeled by an undirected graph G = (V,E, `),
such that V is the set of nodes, E is the set of edges, and ` is the label function
on V . In particular, each node can be either a protein or a keyword. They can be
differentiated by the label function ` : V → {protein, keyword}. Furthermore,
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Figure 1: Part of the PPIK network based on UniProt and IntAct databases.

an edge can connect either two proteins, or a protein and a keyword. The former
represents the mapped interactions between the two proteins, whereas the latter
represents the association between the protein and keyword. Figure 1 shows a part
of the constructed PPIK network based on the UniProt and IntAct [53] databases.
Note that the color scheme of the nodes essentially serves as the label function.

The PPIK network integrates keywords that describe biological mechanisms
of proteins into the traditional PPI network. This integration complements the
original noisy and incomplete network. On the one hand, protein-keyword asso-
ciations could reinforce useful protein-protein interactions. On the other hand,
proteins with no direct interactions can now become related through keywords.

2.3. Metagraph representations
On the PPIK network, proteins with similar roles (e.g., their disease-causing

functions) tend to have similar topological characteristics. To model topological
similarities, previous module-based methods resort to structures such as network
motifs [23, 24] and k-cores [21]. However, on a PPIK network, both proteins and
keywords exist, and traditional structures do not differentiate between different
labels of nodes. Fortunately, the recent emergence of metagraphs [52] has enabled
the representation of common structures on a heterogeneous graph, where nodes
with different labels connect with each other.

In the PPIK network as shown in Figure 1, we observe multiple subgraphs
with a common structure, which are illustrated in Figure 2. More specifically,
Figure 2(a) showcases two 3-node subgraphs of the PPIK network, both with a
common structure “protein–keyword–protein”. Likewise, Figure 2(b) illustrates
two 4-node subgraphs with a common structure consisting of a triangle of three
proteins and one keyword. We call such common structures metagraphs, and the
corresponding subgraphs are their instances, i.e, metagraph instances.

Formally, a graph S = (VS, ES, `) is a subgraph of graph G = (V,E, `) iff
VS ⊆ V and ES ⊆ E. A graphM = (VM , EM , `M) is a metagraph for some label
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Figure 2: Example metagraphs: common structures of subgraphs on the PPIK network.

function `M , where each node is defined by its label and its value is immaterial.
We say that S is an instance of M iff there exists a bijection ω between the nodes
of S and M such that

• ∀v ∈ Vs, `(v) = `M(ω(v)), and

• ∀v, u ∈ Vs, (v, u) ∈ ES holds iff (ω(v), ω(u)) ∈ EM holds.

As a metagraph defines a specific topological arrangement of proteins and
keywords, two proteins associated with the same metagraph tend to have similar
functional roles. Therefore, we can use metagraphs to construct the vector rep-
resentation of proteins. Let M , {M1,M2, . . . ,M|M|} denote the set of meta-
graphs on the PPIK network. Let I(Mi) be the set of instances of Mi ∈ M. A
protein p can be represented by a vector mp of length |M|, where the i-th element
is the number of instances of Mi containing the protein p. That is,

mp[i] , |{S ∈ I(Mi) : p ∈ VS}|. (1)

Furthermore, the same metagraph can have multiple subgraph instances of
different “utilities”. That is, a protein appearing in a subgraph together with a
disease protein is more likely to be a disease protein, which implies that such
subgraphs have a higher utility towards identifying disease proteins. As shown
in Figure 3, some subgraphs contain disease proteins and some do not, based on
biological knowledge from a disease database. To quantify such utilities, for each
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Figure 3: Example subgraph instances of a metagraph, where some contain disease proteins and
some do not (Q9BRI3 is a known disease protein).

metagraph we compute the fraction of its subgraph instances containing any of
the known disease proteins. The label function ϕ : P → {disease, non-disease}
differentiates known disease proteins from other proteins. Formally, let dp be a
vector of length |M|, where the i-th element is defined as follows:

dp[i] ,
|{S ∈ I(Mi) : p ∈ VS ∧ (∃v ∈ Vs : v 6= p ∧ ϕ(v) = disease)}|

mp[i]
. (2)

mp and dp are |M|-dimensional representations of protein p based on meta-
graphs. In addition, keywords describing each protein naturally become part of its
vector representation. Given a set of keywords K, let kp be a vector of length |K|,
where the i-th element is 1 iff the i-th keyword is associated with protein p. Thus,
φ(p), the overall vector representation of protein p is a vector with (2|M| + K)
dimensions, which is the concatenation of the above representations as shown in
Equation (3).

φ(p) , [mp,dp,kp]. (3)

2.4. General framework
Based on the proposed PPIK network and metagraph representations, we de-

scribe an overall framework to learn a classifier for disease protein prediction. In
particular, the framework consists of three main steps, as summarized in Figure 4.

First, from the PPIK network, we mine the collection of metagraphsM. This
is an active research area and many off-the-shelf solutions exist. Therefore, we
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Figure 4: General framework of the proposed method.

apply an existing state-of-the-art approach GRAMI [58] for this step. In particular,
we only consider metagraphs up to 5 nodes, which is a good balance between
efficiency and accuracy.

Second, we derive the metagraph representations for proteins based on the
mined metagraphsM. We employ the SymISO algorithm [52] to compute the set
of instances I(Mi) for each metagraphMi ∈M and then construct the metagraph
representations mp and dp as defined in Eq. 1–2.

Third, based on the protein representations φ(·) and training data Ptrain, we
build a classifier β through supervised learning. Note that the main focus of this
work is to propose the metagraph representations based on the PPIK network,
which aims to improve disease prediction across various supervised learning tech-
niques including random forest, SVM and Generalized Linear Models, as we will
demonstrate in the experiments.

3. Results and Discussion

In this section, we empirically evaluate the effect of metagraph representa-
tions in the context of disease protein prediction. Results show that the proposed
representations can significantly improve prediction across various classifiers and
substantially outperforms random walk baselines RWR [29] and PRINCE [59].
The reason of choosing these diffusion/propagation based methods is their domi-
nant power over the clustering and neighborhood methods [60, 61, 62].
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3.1. Data and setup
In this paper, to demonstrate the effects of our proposed novel protein repre-

sentation, we work on three different human PPI databases, namely IntAct [53],
NCBI [55] and STRING [54]. We also exploit protein keywords from the UniProt
database [35] as illustrated in Table 1, to construct a PPIK network for each PPI
database. Disease labels for proteins are obtained from the UniProt and OMIM
databases [63]. In particular, we first obtain disease genes from OMIM, and fur-
ther map these genes to their product proteins based on UniProt. We conduct
disease protein prediction under two different scenarios as follows. First, whether
a protein is associated with all disease, i.e, all phenotypes in OMIM; second,
whether a protein is specifically associated with breast cancer, i.e, phenotype
breast cancer. Table 2 summarizes the three PPIK networks. As we can see from
Table 2, the three PPIK networks are very different in terms of number of proteins,
number of PPI edges, as well as number of PPIK edges.

Table 2: Summary of the three PPIK networks.

Proteins Disease proteins Keywords PPI edges PPIK edgesAll Breast cancer
IntAct 13 063 2 947 29 554 97 652 246 092
NCBI 15 951 3 476 31 567 227 004 405 632

STRING 17 668 3 539 29 567 3 912 853 4 107 335

We split each dataset into training and testing sets, containing 80% and 20%
proteins respectively. The split is repeated 5 different times. All results reported
are averaged over the 5 splits.

To evaluate the effectiveness of the proposed method, we employ the standard
metric of Area Under the ROC Curve (AUC), which is a robust measure of the
classifiers’ predictive power even with unbalanced classes (e.g., breast cancer).

3.2. Benefits of metagraph-based representations
As discussed in Section 2, given a protein representation φ(·), different su-

pervised learning models can be applied to derive a disease protein classifier. In
particular, we consider three progressively richer representations as follows.

• Keyword. We only consider protein keywords from UniProt database (see
Table 1), i.e., φ(p) = kp. These keywords describe various biological prop-
erties of proteins, and thus encompass reasonable predictive power for dis-
ease proteins.
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Figure 5: Performance of Metagraph and Metagraph+ compared to Keywords for all disease.

• Metagraph. We enhance the keyword-based representation with metagraph
statistics (see Eq. 1), i.e., φ(p) = [kp,mp]. The vector mp captures the
topological arrangement on the PPIK network for interactions between both
proteins and keywords.

• Metagraph+. We further incorporate metagraph representations based on
the utilities of their subgraph instances (see Eq. 2), i.e., φ(p) = [kp,mp,dp].
In particular, dp differentiates metagraphs based on the disease class of the
proteins in their subgraph instances.

The above representations are meant to work across different models of super-
vised learning. In our experiments, we adopted 3 well-known classification mod-
els, namely, Random Forest (RF), Support Vector Machine (SVM) and General-
ized Linear Model (GLM). For RF, we used randomforest package in R and
tuned the mtry parameter between 1 and the cardinality of protein representation
with tuneRF function based on OOB error. For SVM, we used e1071 package
in R, and tuned the gamma parameter over {10−5, 10−4, 0.001, 0.01, 0.1} and the
cost parameter over {0.1, 1, 10} with grid-based tune.svm function (based on
classification error). For GLM, we used stats package in R and adopted default
Gaussian distribution. Furthermore, in the case of breast cancer, the classes are
highly unbalanced. Therefore, we used the ROSE package in R to oversample the
breast cancer class with probability 0.2.

Figure 5 shows the AUC performance of the three representations in each of
the classification method, on each of the three datasets, for all diseases. Two
main observations can be made from the results. First, the metagraph representa-
tion (Metagraph) can significantly and consistently outperform the keyword-only
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Figure 6: Performance of Metagraph and Metagraph+ compared to Keywords for breast cancer.

representation (Keyword) across all circumstances. Averaging over all classifiers
and datasets, Metagraph improves AUC over Keyword by 12.6%. The results
imply that interactions/associations on the PPIK network are powerful towards
disease prediction; in particular, proteins with similar functional roles tend to ap-
pear in similar topological arrangements. On the contrary, it is inadequate to only
consider keywords for individual proteins. Second, the utility-based metagraph
representation Metagraph+ can further enhance the performance. Overall, Meta-
graph+ can achieve an average AUC of 90.9, as compared to 88.2 for Metagraph
and 75.6 for Keyword. Thus, metagraphs can effectively incorporate different
utilities based on disease proteins in the subgraph instances.

Next, we zoom into the results for breast cancer only, as shown in Figure 6.
The performance differences of Keyword, Metagraph and Metagraph+ are sim-
ilar to those for all diseases. Averaging across all classifiers and datasets, Meta-
graph+ attains an AUC of 75.8, beating Metagraph and Keyword by 2.3% and
14.4%, respectively. The results reaffirm that disease proteins tend to appear in
the same neighborhood of the PPIK network, and our metagraph representations
carry strong predictive power.

3.3. Comparison to baselines
Having demonstrated the benefits of metagraph representations, we now com-

pare our proposed work to other baselines for protein disease prediction, as fol-
lows.

• RWR or Random walk with Restart [29]. On the PPI network, consider a
particle initially at one of the known disease proteins, i.e., the initial posi-
tion of the particle has a uniform distribution over the disease proteins in the
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training data. Next, in each step, the particle makes a move on the network:
either moving to a randomly selected neighbor with 1 − α probability, or
jumping to one of the disease proteins in the training data with α proba-
bility. Note that the “jumping” effectively returns the particle to the initial
condition, and thus “restarts” the random walk. The process is repeated un-
til it converges to a stationary distribution over all the proteins. In the end,
candidate proteins in the test data are ranked according to the stationary
distribution. We chose RANKS package in R as the implementation. The α
parameter is tuned over {0.1, 0.2, . . . , 0.9} based on AUC performances.

• RWRK. The same method as RWR, except that the random walk with
restart is performed on the PPIK network.

• PRINCE [59]. In our case, i.e, on an unweighted PPI network, this method
basically performs random walk with restart with one major difference than
RWR that is prior probabilities. In RWR the initial probability vector con-
sist of equal probabilities apportioned between known disease associated
proteins. On the other hand, in PRINCE prior probabilities are assigned
to each disease associated protein based on a logistic function: L(x) =

1

1 + e(cx+d)
and x = S(q, p) where S(q, p) is the similarity score between

query disease q and the associated disease p with the protein. If the protein
is associated with more than one disease then, p is chosen to be the most
similar one to q. We use the recommended values as in paper [59] and set
c to −15 and d to log(9999). The similarity scores between phenotypes are
derived from the study [64]. The α restart probability parameter is tuned
over {0.1, 0.2, . . . , 0.9} based on AUC performances as in RWR.

• PRINCEK. The same method as PRINCE, except that the algorithm is per-
formed on the PPIK network.

• Subgraph+. We also compare proposed work to subgraph-based approaches.
Unlike metagraphs, traditional subgraphs or network motifs do not differen-
tiate heterogeneous types of nodes. In this baseline, we consider subgraphs
with only protein nodes, and their statistics and utilities are formulated as
protein representations similar to the case of metagraphs (see Eq. 1–2),
which are then concatenated with keyword representations for individual
proteins. We call this method Subgraph+, analogous to Metagraph+. We
leveraged Subgraph+ by different classifiers with the same tunning routine
as Metagraph and Metagraph+.
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Table 3: Performance of Metagraph+ compared to random walk and subgraph baselines.

All Disease Breast Cancer
IntAct NCBI STRING IntAct NCBI STRING

RWR 0.551 0.567 0.622 0.578 0.665 0.605
RWRK 0.590 0.587 0.629 0.587 0.664 0.612
PRINCE - - - 0.506 0.716 0.632
PRINCEK - - - 0.634 0.717 0.596

Classifier: RF
Subgraph+ 0.745 0.756 0.826 0.611 0.696 0.713
Metagraph+ 0.886 0.862 0.916 0.820 0.748 0.796

Classifier: SVM
Subgraph+ 0.739 0.741 0.808 0.687 0.682 0.597
Metagraph+ 0.913 0.902 0.930 0.698 0.715 0.743

Classifier: GLM
Subgraph+ 0.751 0.758 0.818 0.733 0.715 0.796
Metagraph+ 0.918 0.921 0.937 0.748 0.734 0.819

Table 3 compares the AUC of the baseline methods with Metagraph+, for
all diseases and breast cancer. The foremost observation is that with classifiers
GLM and RF, Metagraph+ is significantly better than all baselines. On average
considering all the classifiers, for all diseases, it outperforms RWR, RWRK, and
Subgraph+ by 32.9%, 30.7% and 13.8% respectively; for breast cancer it outper-
forms RWR, RWRK, PRINCE, PRINCEK and Subgraph+ by 14.2%, 13.7%,
14%, 11% and 6.6% respectively. We attribute the better performance to the more
predictive representations enabled by metagraphs. Second, the results also show
that PPIK network is more effective than PPI network, as evident from the com-
parison between RWR and RWRK methods. More specifically, random walks on
the PPIK network (RWRK) produce more accurate predictions than those on the
PPI network (RWR) under most circumstances. In other words, protein keywords
can indeed complement and enrich the PPI network.

Table 4 further examines the running times of the baselines RWR, RWRK,
PRINCE, PRINCEK, Subgraph+ and the proposed approach(es). It can be con-
cluded that for RWR and PRINCE, keywords integrated into the PPI network
induced an increase in the running times. Moreover, for Metagraph+ we observe
unfavorable effect of additional vector dp of length |M| (metagraph set size) com-
pare to Metagraph.
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Table 4: Running time (train and test in minutes) comparisons. For Subgraph+, Metagraph, and
Metagraph+ the classifier with the best AUC performance, GLM, is chosen.

All Disease Breast Cancer
IntAct NCBI STRING IntAct NCBI STRING

RWR 1.0 1.3 2.0 1.4 1.5 1.0
RWRK 1.4 2.3 3.9 1.4 2.2 2.9
PRINCE - - - 0.7 1.0 1.1
PRINCEK - - - 0.9 1.4 1.6
Subgraph+ 0.4 1.0 0.8 0.6 0.6 0.8
Metagraph 0.2 0.2 0.2 0.4 0.4 0.2
Metagraph+ 0.8 1.0 1.6 1.4 2.0 2.6

3.4. Further analysis of the predicted disease proteins
We further study the disease proteins predicted by our proposed methods.

Since GLM generally has the best performance among the three classifiers, we
only focus on the results from this classifier. A protein is classified as a disease
protein if its prediction score is higher than 0.5. Moreover, for each proposed
method, we ran disease classification on all three datasets (IntAct, NCBI and
STRING). Then, we combine the predictions for all three datasets to obtain a
predicted disease gene set for each method.

To enable the analysis, DisGeNET database [65] is used to search the PubMed
Ids of the up-to-date publications2 reporting the gene-disease associations. In
particular, we transform our predicted disease proteins to their producer gene Id’s
based on UniProt. Figure 7 illustrates the average number of publications per
prediction that support the disease gene predictions of our proposed methods. The
results are consistent with the AUC performance reported earlier, where methods
with higher average publications attain higher AUC scores. Table 5 further lists
the 10 genes with the most number of PubMed publications for our best proposed
method, Metagraph+. Table 6 zooms into each of the 10 genes, and illustrates
the top diseases associated with each gene based on DisGeNET scoring (which
combines both curated content and literature).

We also evaluate novel proteins predicted by Metagraph+, based on recent
publications from years 2014–2016, where each prediction has fewer than 20 pub-
lications. There are 27 such novel genes predicted (mapped from the predicted
proteins), as listed in Table 7. For example, PDE9A (GeneId: 5152) has been

2Up to the year 2016, when we conducted this analysis.
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Figure 7: Average number of PubMed publications per prediction based on DisGeNET.

Table 5: Top 10 genes predicted by Metagraph+ (GLM) with the most number of publications.

GeneId Symbol Full Name
3565 IL4 interleukin 4
3552 IL1A interleukin 1, alpha
4513 COX2 cytochrome c oxidase subunit II
3133 HLA-E major histocompatibility complex, class I, E
6696 SPP1 secreted phosphoprotein 1
2272 FHIT fragile histidine triad
7298 TYMS thymidylate synthetase
1813 DRD2 dopamine receptor D2
2100 ESR2 estrogen receptor 2 (ER beta)
2078 ERG v-ets avian erythroblastosis virus E26 oncogene homolog

reported to be associated with heart failure [66], and ZNF366 (GeneId: 167465)
has been reported to be associated with estrogen metabolism and progression of
breast cancer, and a new candidate for endometriosis as well [67]. Furthermore, a
study [68] presents supportive evident for KCND2 (GeneId: 3751) being a causal
gene for epilepsy, whereas another study [69] proposes KCND2 as a novel cause
of J-wave syndrome associated with sudden cardiac arrest.

16



Table 6: Top 5 associated diseases reported by DisGeNET for the 10 genes reported in Table 5.

Disease UMLS and Name #PM Disease UMLS and Name #PM

GeneId: 3565 GeneId: 3552

C0004096 Asthma 199 C0018843 Heat Stroke 2

C0011615 Dermatitis, Atopic 65 C0035126 Reperfusion Injury 2

C0034069 Pulmonary Fibrosis 6 C0021368 Inflammation 17

C0035455 Rhinitis 8 C0011633 Dermatomyositis 3

C0993582 Arthritis, Experimental 4 C0037274 Dermatologic disorders 8

GeneId: 4513 GeneId: 3133

C0268237 Cytochrome-c Oxidase Deficiency 5 C0030491 Parapsoriasis 1

C0027819 Neuroblastoma 5 C0151744 Myocardial Ischemia 2

C0013080 Down Syndrome 1 C0011854 Diabetes Mellitus, Insulin-Dependent 107

C0011853 Diabetes Mellitus, Experimental 1 C0004364 Autoimmune Diseases 105

C0151786 Muscle Weakness 1 C0019693 HIV Infections 86

GeneId: 6696 GeneId: 2272

C0022650 Kidney Calculi 9 C0024121 Lung Neoplasms 25

C0017638 Glioma 15 C0038356 Stomach Neoplasms 5

C0006663 Calcinosis 3 C0033578 Prostatic Neoplasms 4

C0027627 Neoplasm Metastasis 147 C0007131 Non-Small Cell Lung Carcinoma 29

C1458155 Mammary Neoplasms 18 C0025500 Mesothelioma 2

GeneId: 7298 GeneId: 1813

C0009404 Colorectal Neoplasms 47 C0036341 Schizophrenia 162

C0038356 Stomach Neoplasms 17 C1834570 Myoclonic dystonia 6

C0009375 Colonic Neoplasms 19 C0030567 Parkinson Disease 22

C1458155 Mammary Neoplasms 10 C0236736 Cocaine-Related Disorders 13

C0034885 Rectal Neoplasms 9 C0001973 Alcoholic Intoxication, Chronic 163

GeneId: 2100 GeneId: 2078

C1458155 Mammary Neoplasms 48 C0033578 Prostatic Neoplasms 37

C0282612 Prostatic Intraepithelial Neoplasias 2 C0023467 Leukemia, Myelocytic, Acute 34

C0024668 Mammary Neoplasms, Experimental 2 C0023418 leukemia 18

C0014175 Endometriosis 23 C0553580 Ewings sarcoma 22

C0033578 Prostatic Neoplasms 18 C0013080 Down Syndrome 10
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Table 7: Novel disease genes (mapped from predicted proteins) discovered by Metagraph+ based
on recent PubMed publications from years 2014–2016.

GeneId Symbol PubMedId Diseases

319 APOF 25726912 Liver neoplasms; Liver carcinoma

506 ATP5B 25666834 Non-alcoholic Fatty Liver Disease; Acute kidney injury

988 CDC5L 26089329 Ischemic Cerebrovascular Accident; Ischemic stroke

1635 DCTD 25735499 Neutropenia; Leukopenia

2686 GGT7 25884624 Glioblastoma; Glioma; Carcinogenesis

3751 KCND2 24501278 Epilepsy; Autistic Disorder; Seizures

25214526 Cardiac Arrest

25878292 Alzheimer’s Disease

5152 PDE9A 25799991 Heart failure; Heart Diseases; Congestive heart failure

5634 PRPS2 25149475 Lupus Erythematosus, Systemic

26004865 Congenital absence of germinal epithelium of testes

6723 SRM 25889691 Prostate carcinoma; Malignant neoplasm of prostate

6942 TCF20 25228304 Autism Spectrum Disorders; Atrial Septal Defects; Moderate mental retardation

8974 P4HA2 25741866 Severe myopia

26001784 Disorder of skeletal system

9620 CELSR1 25117632 Ischemic stroke

10584 COLEC10 25495265 Chronic Lymphocytic Leukemia

25786252 Chronic Lymphocytic Leukemia

10940 POP1 26275995 Inflammatory disorder

11097 NUPL2 25584925 Chronic Obstructive Airway Disease; Chronic Obstructive Airway Disease

22938 SNW1 26103569 Skin carcinoma

23513 SCRIB 24802235 Neoplasm Metastasis

23710 GABARAPL1 24879149 Malignant neoplasm of breast; Breast Carcinoma

26270 FBXO6 25811541 Stevens-Johnson Syndrome

55576 STAB2 25989359 Ankylosing spondylitis

84870 RSPO3 24430505 Osteoporosis

115426 UHRF2 25664994 Hepatitis B

144568 A2ML1 26121085 Otitis Media

162515 SLC16A11 25839936 Diabetes Mellitus, Non-Insulin-Dependent; Diabetes; Diabetes Mellitus

25973943 Gestational Diabetes; Diabetes Mellitus, Non-Insulin-Dependent

167465 ZNF366 25722978 Breast Carcinoma; Malignant neoplasm of breast; Endometriosis; Endometrioma

285671 RNF180 24833402 Stomach Carcinoma; Malignant neoplasm of stomach

340419 RSPO2 25769727 Pancreatic carcinoma; Malignant neoplasm of pancreas
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4. Conclusion

Disease protein prediction is crucial to the diagnosis and treatment of many
diseases. In this study, we integrated protein-protein interaction and biologi-
cal keywords of proteins, to construct a novel PPIK network. Based on the
PPIK network, we further proposed metagraph representations for proteins. Such
novel representations can improve the classification of disease proteins consis-
tently across different classifiers, outperforming them by 15.3% in AUC on aver-
age. Our method also beats random walk and subgraph baselines by 13.8–32.9%.
Finally, our literature search based on PubMed revealed that the proposed method
can indeed better predict disease proteins that mapped with newly discovered bi-
ological knowledge.
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