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Abstract
Text-attributed graphs (TAGs) have emerged as a powerful repre-
sentation for modeling complex relationships across diverse do-
mains. With the rise of large language models (LLMs), there is
growing interest in leveraging their capabilities for graph learn-
ing. However, current approaches face significant challenges in
embedding structural information into LLM-compatible formats,
requiring either computationally expensive alignment mechanisms
or manual graph verbalization techniques that often lose critical
structural details. Moreover, these methods typically require labeled
data from source domains for effective transfer learning, signifi-
cantly constraining their adaptability. We propose STAG, a novel
self-supervised framework that directly quantizes graph structural
information into discrete tokens using a frozen codebook. Unlike
traditional quantization approaches, our method employs soft as-
signment and KL divergence guided quantization to address the
unique challenges of graph data, which lacks natural tokenization
structures. Our framework enables both LLM-based and traditional
learning approaches, supporting true zero-shot transfer learning
without requiring labeled data even in the source domain. Exten-
sive experiments demonstrate state-of-the-art performance across
multiple node classification benchmarks while maintaining compat-
ibility with different LLM architectures, offering an elegant solution
to bridging graph learning with LLMs.
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1 Introduction
Graphs serve as a cornerstone for modeling and understanding
complex relationships across diverse domains, from social me-
dia [13, 30, 42] and knowledge graphs [3, 54, 60] to recommen-
dation systems [11, 19, 59]. The structural information inherent
in graphs is critical for effective graph learning, driving the devel-
opment of graph neural networks (GNNs) [56]. Meanwhile, many
real-world graphs contain textual descriptions, such as paper ab-
stracts in citation networks [65], and product descriptions in co-
purchase networks [38]. Such graphs are known as text-attributed
graphs (TAGs) [61, 63], in which nodes or edges are associated
with rich textual content. However, conventional GNNs strug-
gle to effectively utilize raw text in TAGs. With the rise of pre-
trained language models (PLMs) [17, 29] and large language models
(LLMs) [1, 4, 14, 22, 53, 64], there is growing interest in combining
LLMs with graph learning, termed as GraphLLM [6]. Among exist-
ing GraphLLM studies, processing TAGs represents an important
direction due to the abundance of both semantic and structural in-
formation in TAGs. Particularly, text attributes can be processed by
LLMs to obtain semantically rich initial features, offering significant
advantages over traditional shallow features.
Limitations of Prior Work. Despite the potential of GraphLLM
in processing TAGs, a fundamental challenge remains: how to effec-
tively unify both semantic and structural information, integrating
them into formats that LLMs can utilize. The challenges arise from
the misalignment between continuous embedding spaces used for
structural encoding and the discrete token spaces native to LLMs.
As a result, current approaches particularly struggle with integrat-
ing neighborhood structures into the textual semantics in LLM-
compatible formats. Graph prompting approaches [35] primarily
use LLMs for semantic feature extraction, then manually construct
prompt nodes or ego-networks to capture neighborhood structures,
which are subsequently encoded using GNNs. However, they fail
to leverage the powerful inference capabilities of LLMs. Hence,
some methods have sought a deeper integration of structure-based
GNN embeddings with LLMs, relying on computationally expensive
and LLM-specific projectors for alignment [50]. Additionally, such
methods often resort to manually designed subgraph verbalization
techniques to describe the neighborhood to LLMs (e.g., “central
node A, linked to B and C”) [66, 70], which not only hinders scal-
ability to large neighborhoods but also introduces inconsistency
and instability across different LLMs [15].

The second challenge lies in cross-dataset transfer learning. To
overcome negative transfer and feature misalignment across differ-
ent datasets [49], additional labeled data in source or target domains
are often used. ZeroG [33] fine-tunes PLMs to align structurally-
aware embeddings with semantic features based on labeled data

https://doi.org/10.1145/3711896.3737096
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3711896.3737096


KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jianyuan Bo, Hao Wu, and Yuan Fang

in the source datasets. Similarly, OFA [35] requires training with
labeled data from various domains to enable effective transfer learn-
ing. The labeling requirement can be costly and significantly con-
strain adaptability across diverse downstream tasks, while super-
vised fine-tuning of PLMs is computationally expensive and offers
limited generalization across domains [33].
Proposed Work. These challenges point to a critical need for a
fundamentally different approach to embedding structural informa-
tion of TAGs in GraphLLMs. Directly mapping graph embeddings
into discrete token spaces would eliminate the need for expensive
alignment mechanisms and manual graph verbalization, enabling
native compatibility across different LLMs while integrating both
structural and semantic information.

Inspired by vector quantization techniques like VQ-VAE [55],
which quantize images into discrete tokens for LLM processing [71],
we address the challenges of GraphLLM through a novel approach
that fundamentally shifts from continuous embeddings to discrete
tokens for TAGs. Our key insight is using quantization techniques
to encode nodes into discrete tokens that seamlessly integrate struc-
tural and semantic information. However, quantizing graph struc-
tural information presents unique opportunities that distinguish
our work from quantization in computer vision. First, unlike in
computer vision, where feature maps provide natural structures
for tokenization [71], graphs lack inherent patterns for encoding
neighborhood information to achieve semantic-structural integra-
tion. Second, naïve quantization approaches risk overfitting to pre-
training datasets, potentially hindering transferability. Overfitting
is less common in computer vision, which benefits from large-scale,
diverse pre-training datasets [8, 34]. In contrast, graph domains
often lack such comprehensive pre-training data, making cross-
dataset transfer challenging without additional labeled data.

To overcome these issues in the quantization of TAGs, we pro-
pose a framework called Soft Tokenization for Text-attributed
Graphs (STAG). During pre-training, a GNN first learns node rep-
resentations that capture structural information. These structure-
based node embeddings are then quantized into discrete tokens
with self-supervised learning objectives: (1) a reconstruction loss for
preserving semantic information, and (2) a contrastive loss for cap-
turing neighborhood structural information. This design ensures
effective preservation of both semantic and structural information
without requiring labeled data. More specifically, we design a soft
assignment strategy to map each node to a distribution of tokens,
compensating for the lack of explicit tokenization structures in
graphs. In contrast, computer vision employs a hard assignment,
where each feature map or patch is naturally mapped to a single to-
ken. The soft assignment also prevents overfitting to specific tokens
and thus improves transferability across domains. Furthermore, we
incorporate a Kullback-Leibler (KL) divergence loss to guide the
quantization process, enhancing the alignment between structural
and semantic representations in the absence of labeled data.

During inference, STAG can flexibly work with LLMs by provid-
ing quantized tokens as prompts in zero- or few-shot settings, or
function independently by using the learned embeddings through
prompt tuning or linear probing in few-shot settings. It also sup-
ports both single- and cross-dataset learning, requiring no source
labels in the latter, unlike previous approaches [35].

Contributions. Our key contributions advance the state of the art
in GraphLLM in three significant ways. (1)We propose a novel quan-
tization approach for TAGs that bridges the gap between continuous
graph embeddings and discrete LLM token spaces. (2) We develop
a unified framework that supports diverse learning paradigms with
or without LLMs in both single- and cross-dataset scenarios. In par-
ticular, in cross-dataset learning, we achieve true zero-shot learning
without requiring any labeled data for the source dataset. (3) We
conduct extensive empirical validation, demonstrating the superior
performance of STAG across multiple graph benchmarks.

2 Related Work
In this section, we briefly review related work on GraphLLM and
vector quantization.
Graph Learning with LLMs. Recent advances in large language
models (LLMs) have inspired several approaches to combine LLMs
with graph learning. GraphGPT [50] converts graph structures
into natural language descriptions for LLM processing, while GIM-
LET [69] proposes a unified graph-text language model for zero-
shot learning, though both either lose structural information or
require extensive architectural modifications. OFA [35] and Pro-
digy [26] construct prompts to leverage PLMs’ semantic representa-
tions, but struggle to fully utilize LLMs’ capabilities. While Graph-
Text [70] attempts to bridge graph-LLM semantic spaces through
learned projections, it requires computationally expensive align-
ment procedures. TAPE [18] takes a different approach by using
LLM-generated explanations as node features for GNNs, achieving
state-of-the-art performance efficiently. Despite these advances,
fundamental challenges persist in preserving both structural and
semantic information while maintaining cross-architecture com-
patibility. Our work addresses these limitations through a novel
quantization-based approach that enables direct processing of graph
data by frozen LLMs without compromising structural integrity.
Graph-to-LLM Representation. The challenge of representing
graphs for LLM processing has led to diverse solutions. Traditional
approaches rely on graph verbalization [66, 70], which faces scalabil-
ity issues with large graphs. More structured representations have
emerged through code-like formats and adjacency tables [12, 15, 58],
though they struggle to balance structural completeness with LLM
compatibility. Recent embedding-fusion methods [20, 52] better pre-
serve structural information by integrating GNN embeddings with
LLM representations, but require expensive alignment mechanisms.
Position-aware approaches offer another perspective, with GIM-
LET [69] using generalized position embeddings and LINKGPT [21]
employing pairwise encoding to capture structural relationships.
However, these methods face challenges in cross-architecture con-
sistency and computational efficiency at scale.
Vector Quantization. Vector quantization has evolved signifi-
cantly since the introduction of VQ-VAE [55], which pioneered
neural discrete representation learning. Subsequent works have
enhanced this framework through hierarchical structures in VQ-
VAE-2 [45], adversarial training in VQ-GAN [10], and residual quan-
tization in RQ-VAE [32]. The technique has found success across
various domains, from audio compression in SoundStream [67] to
vision-language models like DALL-E [44] and Stable Diffusion [47].
Recent works such as V2L Tokenizer [71] and LLM-AR [43] have



Quantizing Text-attributed Graphs for Semantic-Structural Integration KDD ’25, August 3–7, 2025, Toronto, ON, Canada

demonstrated the potential of quantization for enabling LLMs to
process visual and action signals. However, applying these tech-
niques to graphs presents unique challenges due to their irregular
structure, unlike images and actions which have natural tokeniza-
tion patterns through feature maps or temporal sequences.

3 Proposed Approach: STAG
We present Soft Tokenization for TAGs (STAG), beginning with the
overall framework and then detailing its key stages.

3.1 Overall Framework
A text-attributed graph or TAG is defined as G = (V,A,R), where
V is the set of nodes, A ∈ {0, 1} |V |× |V | represents the adjacency
matrix, and R denotes text attributes associated with the nodes.
Operating on TAGs, the workflow of STAG consists of three main
stages: (1) initial feature extraction and codebook construction, (2)
self-supervised pre-training with semantic-structural integration,
and (3) flexible inference with or without LLMs.

As shown in Figure 1(a), we first use a PLM, specifically a sen-
tence transformer [46] to embed raw text attributes into initial
node features and construct a codebook from LLM vocabulary. Dur-
ing pre-training in Figure 1(b), we process local subgraphs [23]
through a GNN encoder, fuse them with semantic features, and
apply soft quantization. The pre-training follows a dual-branch
architecture with reconstruction and contrastive objectives. For in-
ference in Figure 1(c), STAG supports both direct classification and
LLM-based zero- or few-shot learning. Additionally, prompt tun-
ing in Figure 1(d) further enhances few-shot learning capabilities
through a lightweight adaptation mechanism.

3.2 Initial Feature and Codebook Construction
VQ-VAE [55] provides a foundation for encoding continuous data
into discrete representations. Given an input 𝒙 , the encoder 𝜉 (·)
maps it to continuous latent vectors 𝒛𝑒 = 𝜉 (𝒙), which are then quan-
tized by finding their nearest neighbors in a codebook B = {𝒆𝑘 }𝐾𝑘=1
of 𝐾 embedding vectors: 𝒛𝑞 = Quantize(𝒛𝑒 ) = 𝒆𝑘 , where 𝑘 =

argmin𝑗 ∥𝒛𝑒 − 𝒆 𝑗 ∥2. The quantized representations 𝒛𝑞 are then
passed to a decoder 𝜔 (·) to reconstruct the input.

Building upon this framework for TAGs, we first encode raw
text attributes R into initial node features X ∈ R |V |×𝑑𝑥 using a
frozen sentence transformer. For our codebook, we filter LLaMA-2’s
32,000 subword vocabulary [53] by removing non-English and non-
alphabetical entries, and eliminating whitespace-based duplicates.
The refined token set T = {𝑡𝑘 }𝐾𝑘=1, which has a size of 15,062, is
then embedded using the same frozen transformer to create our
codebook E = {𝒆𝑘 }𝐾𝑘=1 where 𝒆𝑘 ∈ R𝑑𝑥 , and let E = [𝒆⊤

𝑘
]𝐾
𝑘=1 ∈

R𝐾×𝑑𝑥 be the matrix formed by stacking these embeddings.
However, our approach differs from VQ-VAE in several key as-

pects. First, unlike VQ-VAE’s learnable codebook, our codebook E
remains frozen throughout pre-training to ensure semantic con-
sistency. Second, instead of hard nearest-neighbor quantization,
we introduce soft assignment to better handle the lack of natural
tokenization structures in graphs. Third, we incorporate semantic-
structural fusion and distribution alignment mechanisms to ef-
fectively preserve both types of information. These innovations,

detailed in the following sections, enable effective graph represen-
tation learning while maintaining LLM compatibility.

3.3 Pre-training with Soft Assignment
To address the challenges of integrating both semantic and struc-
tural information into LLM-compatible formats, we develop a self-
supervised pre-training approach with feature fusion and soft as-
signment strategy, ensuring consistency across different LLMs.

3.3.1 Structural-Semantic Feature Fusion. Following GraphMAE’s
masking strategy [24], we randomly mask nodes Ṽ ⊂ V with a
learnable [M] token while keeping the graph structure intact. Our
framework processes both original and masked graphs through par-
allel branches sharing the same feature learning and quantization
mechanisms, employing a GNN encoder 𝑒 (·) to learn structural rep-
resentations 𝒛𝑒 = 𝑒 (𝒙) ∈ R𝑑ℎ , where 𝒙 is the node feature vector
from X. However, directly quantizing these structural embeddings
risks losing the rich semantic information present in the original
text attributes.

Therefore, to preserve both structural and semantic informa-
tion while maintaining computational efficiency, we introduce a
parameter-efficient feature fusion module. Given the GNN output
𝒛𝑒 , we first project it to dimension 𝑑𝑥 (matching the initial feature
dimension) using a linear projection layer W𝑓 ∈ R𝑑𝑥×𝑑ℎ . Then,
combined with initial node features 𝒙 , we compute:

𝒛 𝑓 = 𝜙 ·
W𝑓 𝒛𝑒

∥W𝑓 𝒛𝑒 ∥2
+𝜓 · 𝒙

∥𝒙 ∥2
, (1)

where 𝜙 and 𝜓 ∈ (0, 1] are learnable parameters. This design is
motivated by two key insights: (1) both features originate from the
same text input, allowing for efficient integration without complex
transformations, and (2) L2 normalization preserves the directional
information of both structural and semantic features.

3.3.2 Soft Assignment with Distribution Alignment. The fused fea-
tures 𝒛 𝑓 ∈ R𝑑𝑥 are then quantized into the discrete token space
through our semantic-preserving quantization process.
Soft Assignment Strategy.We develop a soft assignment strategy
that maps each node to a distribution of tokens, addressing two key
challenges: (1) the absence of explicit tokenization structures in
graphs, and (2) preventing overfitting to specific tokens to improve
transferability across domains. Unlike VQ-VAE, which relies on
L2 distance and hard assignment for codebook lookup, we lever-
age cosine similarity to compute attention weights over the entire
codebook, enabling soft token assignments for each fused node
representation 𝒛 𝑓 :

attn(𝒛 𝑓 ) = softmax
( [
𝜃 (𝒛 𝑓 , 𝒆𝑘 )

]𝐾
𝑘=1 /𝜏𝑠𝑎

)
, (2)

where 𝜃 (𝒛 𝑓 , 𝒆𝑘 ) computes the cosine similarity between 𝒛 𝑓 and
the 𝑘-th codebook embedding, and 𝜏𝑠𝑎 is a temperature parameter
that controls the softness of the assignment. This cosine similarity-
based attention is particularly suitable for our semantic codebook
space, as it focuses on directional similarity rather than absolute
distances. The quantized representation is then computed as the
weighted sum of the codebook embeddings:

𝒛𝑞 = E⊤attn(𝒛 𝑓 ) . (3)
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Figure 1: Overview of STAG framework: (a) Feature extraction and codebook construction, (b) Self-supervised pre-training with
dual-branch architecture, (c) Inference with or without LLM, and (d) Prompt-tuned inference for few-shot learning.

To prevent encoder outputs from diverging too far from the code-
book space during training, we employ a commitment loss:

Lcommit = 𝛽
(
1 − 𝜃 (𝒛 𝑓 , sg[𝒛𝑞])

)
, (4)

where sg[·] denotes the stop-gradient operator and 𝛽 ∈ (0, 2] con-
trols the strength of the commitment. While VQ-VAE uses L2-based
hard assignment for both lookup and commitment loss, we adopt
cosine similarity for semantic space alignment and soft assignments
through weighted codebook combinations. Although the frozen
codebook ensures consistent semantics across LLMs, the soft assign-
ment alone cannot guarantee that the quantized representations
preserve the semantic meaning of the original node text.
Self-supervised Semantic Alignment. To address this challenge,
we incorporate a KL divergence loss that aligns the attention distri-
bution of fused features with that of the original semantic features
to enhance the alignment between structural and semantic repre-
sentations in the absence of labeled data:

LKL = 𝐷KL (attn(𝒙)∥attn(𝒛 𝑓 )), (5)

where attn(𝒙) represents the attention distribution computed from
the original node features 𝒙 over the codebook following Eq. (2).

The KL divergence aligns token assignment distributions be-
tween fused and original features, enabling effective integration
of structural and semantic information by guiding the structure-
semantic fused representations to be quantized to semantically
meaningful tokens. Unlike Gumbel-Softmax [28], which uses KL
divergence to train discrete categorical distributions, our KL loss
guides the soft assignment to maintain semantic consistency with
respect to the frozen codebook without requiring labels.

3.3.3 Dual-Branch Training Objectives. Our pre-training maintains
parallel branches sharing the same quantization mechanism while
serving different learning objectives: reconstruction for node-level
semantics and contrastive learning for neighborhood structures.

Reconstruction Branch. This branch processes the original graph
to preserve node-level semantic information through reconstruc-
tion. Given a shared GNN decoder 𝑑 (·) that maps quantized repre-
sentations back to the initial feature dimension 𝑑𝑥 , we extend the
traditional VQ-VAE reconstruction to graphs using GraphMAE’s
scaled cosine error (SCE) loss:

Lrec =
1
|V|

∑︁
𝑣𝑖 ∈V

(
1 −

𝒙⊤
𝑖
𝒛𝑑𝑖

∥𝒙𝑖 ∥ · ∥𝒛𝑑𝑖 ∥

)𝛾
, (6)

where 𝒛𝑑 = 𝑑 (𝒛𝑞) ∈ R𝑑𝑥 is the decoded feature of the quantized
representation, and𝛾 ≥ 1 is a scaling factor that controls the penalty
for reconstruction errors. Unlike traditional mean squared error
used in VQ-VAE, SCE loss avoids sensitivity and low selectivity
issues in graph representation learning [23], making it particularly
suitable for preserving semantic information during reconstruction.
Contrastive Branch. This branch processes the masked graph
to capture neighborhood structural patterns through a contrastive
learning objective. For each masked node 𝑣𝑖 ∈ Ṽ , we form positive
pairs between its decoded features 𝒛𝑑𝑖 and original features 𝒙𝑖 ,
with other masked nodes’ decoded features serving as negatives.
Following [41], the contrastive loss is defined as:

ℓ
(
𝒛𝑑𝑖 , 𝒙𝑖

)
= log

(
𝑒
𝜃

(
𝒛𝑑𝑖 ,𝒙𝑖

)
/𝜏𝑐 /

(
𝑒
𝜃

(
𝒛𝑑𝑖 ,𝒙𝑖

)
/𝜏𝑐︸          ︷︷          ︸

positive pair

+

|N𝑖 |∑︁
𝑗=1, 𝑗≠𝑖

𝑒
𝜃

(
𝒛𝑑𝑖 ,𝒛𝑑𝑗

)
/𝜏𝑐

︸                     ︷︷                     ︸
negative pairs

))
, ∀𝑣𝑖 ∈ Ṽ and N𝑖 ⊆ Ṽ,

(7)

where N𝑖 represents a subset of masked nodes selected as negative
samples for 𝑣𝑖 , 𝜏𝑐 is the temperature parameter. The overall con-
trastive loss is Lcontrast = − 1

| Ṽ |
∑
𝑣𝑖 ∈Ṽ ℓ (𝒛𝑑𝑖 , 𝒙𝑖 ). This contrastive

objective compels the model to utilize neighborhood structural
information for feature prediction [62], capturing essential graph
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topology in quantized representations. The final training objective
combines losses from both branches:

L =
1
2
(LRec

commit + LContrast
commit )︸                         ︷︷                         ︸

commitment

+ Lrec︸︷︷︸
semantic

+Lcontrast︸    ︷︷    ︸
structural

+ 𝜆LKL︸︷︷︸
alignment

, (8)

where 𝜆 is a balancing parameter, and LRec
commit and LContrast

commit
are commitment losses applied to reconstruction and contrastive
branches, respectively. This multi-objective optimization ensures
effective integration of semantic and structural information while
ensuring compatibility with discrete token spaces.

3.4 Flexible Inference with or without LLMs
Through effective semantic-structural quantization, our framework
bridges continuous graph embeddings and discrete token spaces,
enabling both LLM-based and traditional inference strategies.
Inference with LLMs. To convert continuous node embeddings
into discrete tokens for LLM processing, we first process each
node with its local subgraph through our pre-trained GNN en-
coder and fusion module to obtain its learned embedding. We then
compute its attention distribution over the codebook E and select
the 𝑡𝑜𝑝-𝑘 ∈ N+ corresponding tokens from T with the highest
attention weights:

tokens(𝒙) = [𝑡𝑚1 , 𝑡𝑚2 , ..., 𝑡𝑚𝑡𝑜𝑝-𝑘 ], where
𝑚𝑖 = argmax

𝑗∈{1,...,𝐾 }\{𝑚1,...,𝑚𝑖−1 }
attn(𝒛 𝑓 ), for 𝑖 ∈ [1, 𝑡𝑜𝑝-𝑘] . (9)

For 𝑁 -way 𝑘-shot few-shot learning where 𝑁 represents the num-
ber of classes and 𝑘 is the number of examples per class, we con-
struct a system prompt that includes𝑁 ×𝑘 support examples, where
each example consists of a node’s tokens and its corresponding class
label. The LLM then predicts the class of a new test node based
on its tokens and these support examples. Below is a simplified
example using a 3-way 1-shot setting:

System Prompt: You are a node classifier. Given a list of tokens representing a
node’s features, predict its class from the following options: [Research Paper,
Dataset, Software].
Few-shot Examples: Node tokens: [research, methodology, experiment] Class:
Research Paper
Node tokens: [benchmark, statistics, collection] Class: Dataset
Node tokens: [implementation, code, library] Class: Software
Test Node: Node tokens: [algorithm, computation, optimization] Predict the
class:

Similarly, for zero-shot learning, we directly query the LLM with
only the system prompt and test node tokens. Below is a simplified
4-way zero-shot example (see Appendix C for the complete prompt
templates for both few-shot and zero-shot):

System Prompt: You are a node classifier. Given a list of tokens representing a
node’s features, predict its class from the following options: [Research Paper,
Dataset, Software, Survey Paper].
Test Node:
Node tokens: [algorithm, computation, optimization] Predict the class:

Our quantized tokens integrate both semantic and structural
information from input nodes, enabling us to leverage different
LLM capabilities effectively. In few-shot learning, we combine the
LLM’s in-context learning ability (through support examples) with

its semantic understanding to make predictions. For zero-shot learn-
ing, we rely purely on the LLM’s semantic knowledge, allowing
classification without any labeled examples.
Inference without LLMs. For traditional inference, following
standard practice in graph self-supervised learning [16, 51, 57, 68],
we employ linear probing to evaluate the quality of learned rep-
resentations. Specifically, we freeze the pre-trained GNN encoder
and fusion module, and train only a linear classifier on the fused
features 𝒛 𝑓 . Given a linear classifierW𝑐 ∈ R𝑁×𝑑𝑥 where 𝑁 is the
number of candidate classes, the prediction is computed as:

𝑦 = argmax(softmax(W𝑐𝒛 𝑓 )) . (10)

This approach allows direct comparison with other graph SSL meth-
ods while maintaining the efficiency of our framework. Beyond
these basic inference strategies, our framework enables enhanced
few-shot domain transfer through a prompt tuning mechanism that
can operate both with and without LLMs.

3.5 Prompt-tuning for Domain Transfer
To enhance domain transfer capabilities in few-shot settings, we de-
velop a prompt tuning mechanism [61] that builds on our quantiza-
tion framework while switching to hard token assignment. During
prompt tuning, we keep our pre-trained GNN encoder and fusion
module frozen, and introduce a lightweight prompt network 𝑝 (·)
(two-layer bottleneck neural network) that processes the fused fea-
tures. Specifically, the prompted features 𝒛𝑝 ∈ R𝑑𝑥 are computed
as: 𝒛𝑝 = 𝑝 (𝒛 𝑓 ) ⊙ 𝒛 𝑓 , where ⊙ denotes element-wise multiplication.
For 𝑁 -way 𝑘-shot setting, we obtain class label explanations via
LLMs following [18, 35] and embed them using the same frozen
sentence transformer to create a frozen class-specific codebook
C = {𝒆𝑐𝑛 }𝑁𝑛=1 ∈ R𝑁×𝑑𝑥 , where 𝒆𝑐𝑛 represents the embedded expla-
nation of class 𝑐𝑛 .

The prompt tuning is guided by two objectives. First, following
our quantization design, a commitment loss ensures the prompted
embeddings remain close to C:

L𝑝commit = 𝛽𝑝
(
1 − 𝜃 (𝒛𝑝 , sg[𝒛𝑞])

)
, (11)

where 𝛽𝑝 controls the strength of the commitment.
Second, with 𝑁 × 𝑘 labeled support examples, we employ a

weighted contrastive loss that leverages class labels to guide the
tuning:

L𝑝contrast = − 1
𝑁𝑘

𝑁𝑘∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝜃 (𝑐 (𝒙𝑖 ), 𝑐 𝑗 ) log
𝑒
𝜃 (𝒛𝑝𝑖 ,𝒆𝑐 𝑗 )/𝜏𝑝∑𝑁

𝑛=1 𝑒
𝜃 (𝒛𝑝𝑖 ,𝒆𝑐𝑛 )/𝜏𝑝

,

(12)
where 𝜃 (𝑐 (𝒙𝑖 ), 𝑐 𝑗 ) represents the semantic similarity between the
ground truth class 𝑐 (𝒙𝑖 ) of example 𝒙𝑖 and class 𝑐 𝑗 . This weighted
objective encourages the prompted embeddings to be similar to
their ground truth class embeddings while considering semantic
relationships between classes. This design helps capture the natural
hierarchy and relationships between classes, leading to more robust
few-shot learning.

For inference with LLMs, we quantize the prompted embeddings
using our original codebook E to obtain tokens (we use the same
system prompt as in Section 3.4). For inference without LLMs, we
directly compute similarity with the class embeddings, where the
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most similar class embedding indicates the predicted class:

𝑦 = argmax
𝑛∈{1,...,𝑁 }

𝜃 (𝒛𝑝 , 𝒆𝑐𝑛 ) . (13)

This unified prompt tuning approach enables effective domain trans-
fer by leveraging class semantics while maintaining compatibility
with both LLM-based and traditional classification paths.

4 Experiments
We conduct comprehensive experiments to evaluate our frame-
work’s ability to bridge graph representation learning with LLMs.
Specifically, we investigate three key research questions:

• RQ1: How effectively does STAG integrate structural and
semantic information in few-shot learning?

• RQ2: Can our framework enable effective zero-shot general-
ization across different domains?

• RQ3: How flexible is our framework in supporting different
LLM architectures?

4.1 Experimental Setup
We evaluate our framework on seven text-attributed graph datasets:
five citation networks (Cora Full [39], its pruned subset standard
Cora, CiteSeer, PubMed [65], ogbn-arxiv [25]), one web graph
(WikiCS [40]), and one co-purchase network (a subset of ogbn-
products [25] following [18]). We use sentence transformers [46] to
obtain 768-dimensional embeddings as initial node features. For our
method, this same model is also used for codebook construction.
And we use GAT as both encoder and decoder in our framework.

We compare with three categories of baselines: (1) Traditional
graph learning methods including GCN [31] and GAT [56], and self-
supervised approaches like DGI [57] and GraphMAE2 [23], which
serve as strong baselines for representation learning on graphs;
(2) Few-shot graph learning methods including GPPT [48] and
G2P2 [61], which are specifically designed for few-shot learning
on graphs through prompt tuning; (3) GraphLLM methods like
Prodigy [26] and OFA [35], which both require labeled data from
source datasets during training for model adaptation.

During pre-training, OFA and Prodigy require labeled data with
specific class-splitting strategies, while all other methods use unla-
beled data. For ogbn-arxiv, we follow OFA’s splitting strategy; for
Cora Full and ogbn-products, we create splits with non-overlapping
classes. For evaluation, we conduct 5-way 5-shot experiments across
20 random tasks, with a total of 2000 balanced queries distributed
across all tasks. For OFA and Prodigy, tasks are created from their
test splits (classes unseen during training) to ensure fair evaluation
of their transfer learning capabilities. For all other methods that
don’t require labeled pre-training data, tasks are created from the
full dataset. For LLM inference, we use 𝑡𝑜𝑝-𝑘 = 13 tokens based
on empirical performance. All experiments use LLaMA3-8B [9] by
default and report classification accuracy. Detailed hyperparam-
eter configurations and hardware specifications are provided in
Appendix A.

4.2 RQ1: Cross-dataset Few-shot Learning
Table 1 presents the cross-dataset few-shot learning results across
different source-target dataset combinations, where all methods are

pre-trained on either Cora Full or ogbn-products except GCN and
GAT. Our framework demonstrates three key advantages. (1) Effec-
tive structural-semantic integration: Our framework achieves com-
petitive results compared to traditional GNNs and self-supervised
methods like GraphMAE2, validating our learned representations.
Unlike G2P2 which uses dataset-specific text-graph alignment with
a trainable text encoder, STAG prioritizes generalization through
a frozen sentence transformer with parameter-efficient alignment
modules, showing robust performance while outperforming OFA
despite its need for source dataset labels. (2) Framework versatility:
Prompt tuning enhances performance in both inference paths - with
LLM (‘STAG+Prompt Tuning’) achieving competitive results, and
without LLM (‘STAG+Prompt Tuning*’) achieving state-of-the-art
performance on several datasets. (3) Robust transfer ability: When
pre-trained on ogbn-products, Prodigy and OFA suffer significant
performance drops when tested on different target datasets. In con-
trast, our framework maintains strong performance on citation
networks like ogbn-arxiv, validating its ability to capture generaliz-
able graph representations despite domain shifts. When compared
to raw text and feature variants, our method outperforms both
‘Raw Feat + Quantization’ and ‘Raw Text’ with LLM by effectively
incorporating structural information into learned tokens for both
inference paths, particularly in Cora Full and ogbn-arxiv datasets
despite raw texts’ potential information leakage. Results for models
pre-trained on ogbn-arxiv are in Appendix B.

4.3 RQ2: Zero-shot Generalization
Table 2 presents the 5-way zero-shot classification results across dif-
ferent datasets. Unlike existing methods that require labeled source
data during pre-training, our framework achieves true zero-shot
learning without using labels from either source or target datasets.
All models are pre-trained on Cora Full, with OFA requiring labeled
data during pre-training. STAG demonstrates strong zero-shot gen-
eralization through two inference paths: (1) Direct LLM inference:
By effectively embedding both semantic and structural information
into LLM-compatible formats, STAG achieves significant improve-
ments over baselines, outperforming OFA by large margins on most
datasets. This validates the effectiveness of our quantization strat-
egy in bridging continuous graph embeddings and discrete token
spaces, enabling STAG to fully leverage the semantic capabilities of
LLMs. (2) Class-specific codebook inference: As in Eq. (13), we predict
classes by comparing 𝒛 𝑓 with C. ‘STAG + C’ achieves even stronger
performance, demonstrating the quality of our learned represen-
tations. The strong performance across both paths, particularly in
challenging domain transfers like WikiCS, demonstrates how our
framework effectively captures generalizable graph representations.
When compared to raw variants, STAG consistently outperforms
both ’Raw Feat’ with LLM and ’Raw Feat + C’ without LLM by
effectively incorporating structural information into learned tokens
for both inference paths. Complete results on remaining datasets
are provided in the Appendix B.

4.4 RQ3: Flexibility with Different LLMs
Our quantization strategy enables a unique advantage of STAG:
the ability to flexibly pair a single pre-trained model with differ-
ent LLMs during inference. Unlike existing GraphLLM approaches
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Table 1: 5-way 5-shot node classification across different datasets (except PubMed: 3-way). Models are pre-trained on Cora Full
or ogbn-products with 𝑡𝑜𝑝-𝑘 = 13 for LLM inference. Gray-shaded rows: supervised baselines trained directly on target datasets;
Colored cells: pre-train dataset matches target (blue: Cora Full, green: ogbn-products). Results show accuracy (%) averaged over
20 random tasks, with best results among our variants in bold.

Pre-train data Method LLM Target data
Cora Cora Full CiteSeer PubMed WikiCS ogbn-arxiv ogbn-products

Same as target GCN ✗ 76.10±4.26 82.81±7.40 59.95±6.92 66.35±6.71 70.55±8.26 76.61±7.72 80.08±7.41
GAT ✗ 79.60±5.00 84.72±7.83 60.85±6.78 67.40±7.18 77.95±7.81 80.80±7.99 81.94±7.07

No pre-train
Raw Text ✓ 63.40±9.07 71.66±7.84 62.10±5.35 85.00±5.48 77.15±6.92 54.74±9.21 87.58±5.48

Raw Feat + Quantization ✓ 54.85±6.28 73.74±8.10 56.40±5.48 48.30±7.78 73.40±8.19 63.75±9.98 65.84±9.96
Raw Feat + Linear Probing ✗ 70.25±7.22 81.29±7.47 63.00±6.72 68.30±6.28 78.05±7.47 83.05±7.40 77.53±7.16

Cora Full

DGI ✗ 77.05±5.12 83.32±8.12 63.85±5.39 68.20±7.57 78.65±6.90 81.30±8.51 79.90±7.20
GraphMAE2 ✗ 77.70±6.92 84.74±7.42 65.25±5.84 66.35±6.09 80.95±4.96 80.04±8.15 73.93±7.57

GPPT ✗ 27.16±7.61 67.90±12.72 28.66±7.60 21.53±10.91 29.00±8.08 36.92±10.32 24.32±5.13
G2P2 ✗ 74.90±7.47 81.10±7.44 59.65±9.68 67.85±8.02 69.90±10.52 68.75±10.14 70.97±10.03

Prodigy ✗ 39.50±6.75 60.80±6.38 42.90±5.02 43.68±6.91 43.25±6.91 47.85±6.89 30.70±5.94
OFA ✗ 45.95±4.52 56.95±5.31 36.80±5.50 49.40±4.75 46.45±4.67 50.80±4.73 33.60±4.26
STAG ✓ 67.60±6.72 80.95±8.02 62.45±7.02 54.50±7.83 79.20±8.41 71.56±10.32 69.34±9.93

+ Linear Probing ✗ 78.50±5.62 86.04±6.70 66.70±5.36 69.00±6.31 84.05±5.78 82.99±8.10 79.62±7.12
+ Prompt Tuning ✓ 73.30±4.77 85.20±7.59 65.40±5.98 66.20±5.70 79.45±7.53 79.18±8.28 73.94±9.67
+ Prompt Tuning* ✗ 78.65±5.93 86.66±7.67 65.80±7.03 68.25±6.80 83.55±5.94 83.57±8.30 80.48±6.86

ogbn-products

DGI ✗ OOM OOM OOM OOM OOM OOM OOM
GraphMAE2 ✗ 69.30±5.51 77.74±7.53 55.90±7.73 60.05±6.05 71.15±7.68 67.70±9.51 81.08±8.00

GPPT ✗ 24.52±4.77 25.30±6.61 23.76±4.70 24.70±10.84 23.32±5.42 26.52±6.49 55.18±11.89
G2P2 ✗ 70.70±9.00 76.35±8.62 53.10±9.97 64.95±9.40 69.20±9.51 65.55±9.07 75.52±10.10

Prodigy ✗ 28.90±5.38 36.54±6.04 28.00±4.56 47.11±7.68 33.85±5.82 36.65±5.17 62.20±7.29
OFA ✗ 25.85±3.12 29.70±5.09 23.05±3.81 51.30±5.53 33.80±4.76 28.95±4.07 59.65±5.70
STAG ✓ 59.20±7.07 73.60±8.00 54.90±6.11 48.45±7.61 76.15±8.09 68.56±10.30 79.75±9.33

+ Linear Probing ✗ 73.65±7.49 83.14±6.26 62.30±6.08 69.85±5.89 80.35±7.17 81.62±7.26 83.94±6.78
+ Prompt Tuning ✓ 68.95±5.93 80.07±7.82 60.40±6.63 63.70±5.72 78.55±8.24 74.85±9.89 82.35±6.24
+ Prompt Tuning* ✗ 74.90±6.54 83.52±7.60 63.70±6.00 68.45±6.20 81.40±7.14 81.19±7.68 84.03±5.54

✓/✗: LLM usage during inference; Prompt Tuning*: inference without LLM; Raw Text: Use raw text for LLM inference (To fit in the context window of LLM, raw text is
truncated); Raw Feat + Quantization: Directly quantize raw node features into tokens for LLM inference; Raw Feat + Linear Probing: Train a linear classifier on raw node
features without any pre-training; OOM: Out-of-memory error during training.

Table 2: 5-way zero-shot classification results (𝑡𝑜𝑝-𝑘 = 13).

Pre-train data Method LLM Target data
Cora Cora Full WikiCS ogbn-arxiv

No pre-train Raw Feat + Q ✓ 47.10±5.98 60.33±10.88 70.40±8.88 25.48±5.54
Raw Feat + C ✗ 62.20±8.45 77.23±8.96 73.85±8.02 72.85±10.43

Cora Full

G2P2 ✗ 60.45±7.58 64.29±11.56 50.25±8.43 19.66±6.38
OFA ✗ 20.30±2.93 23.85±3.58 21.45±3.99 17.60±3.74
STAG ✓ 48.05±6.15 62.63±11.70 76.25±8.48 26.01±7.52

STAG + C ✗ 66.55±7.48 82.90±9.52 75.15±7.81 74.23±9.35

Raw Feat + Q: Quantize raw node features into tokens for LLM inference.
+ C: Classification using class-specific codebook.

that require architecture-specific modifications, STAG can seam-
lessly work with various LLMs, from open-source models like
LLaMA2 [53], LLaMA3 [9], and Vicuna [7] to closed-source ones
like GPT-4o [27] by converting graph representations into discrete
tokens that are universally interpretable across different LLM archi-
tectures. Results in Table 3 demonstrate three key patterns (using
𝑡𝑜𝑝-𝑘 = 5 for cost-efficient inference with closed-source LLMs): (1)
Model size matters: Larger models consistently achieve better perfor-
mance, suggesting enhanced semantic understanding capabilities.

Table 3: 5-way 5-shot classification results with different
LLMs (pre-trained on Cora Full, 𝑡𝑜𝑝-𝑘 = 5 for inference).

LLM Cora Full WikiCS ogbn-arxiv CiteSeer

LLaMA2-7B 76.66±7.79 79.00±7.96 65.33±10.46 54.35±9.54
+ PT 81.05±7.77 79.90±7.69 77.42±10.48 58.45±8.61

LLaMA2-13B 77.62±8.67 79.80±7.30 69.38±8.83 54.60±8.79
+ PT 81.95±7.06 80.45±7.66 77.75±9.01 57.30±9.20

Vicuna-7B 74.12±6.47 80.30±7.02 64.84±9.38 49.25±6.72
+ PT 80.77±6.75 80.10±7.39 76.95±9.43 52.25±8.23

Vicuna-13B 77.76±8.58 79.35±7.98 66.03±9.34 52.25±6.39
+ PT 81.38±7.65 79.25±7.50 75.65±9.59 53.00±8.16

LLaMA3-8B 79.22±8.45 78.40±8.05 70.37±8.95 61.25±7.14
+ PT 82.88±8.09 78.35±7.61 76.71±10.20 64.20±7.39

GPT-4o-mini 79.25±8.42 81.05±6.80 71.32±9.13 61.90±7.22
+ PT 83.04±7.84 81.90±6.16 77.51±9.58 65.90±7.04

GPT-4o 81.40±7.41 81.45±7.10 72.75±8.83 62.95±6.61
+ PT 83.28±7.06 81.60±7.19 78.85±9.74 65.90±7.03

+ PT: with prompt tuning. 7B, 8B, and 13B indicate the number of parameters
in billions.
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(2)Advanced architectures show advantages: Newer models like GPT-
4o and LLaMA3-8B outperform their predecessors, with STAG’s
LLM inference becoming competitive even with its traditional vari-
ants. (3) Prompt tuning provides consistent gains: Performance im-
proves across all LLMs, with particularly notable gains in smaller
and older models like LLaMA2-7B and Vicuna-7B, demonstrating
the effectiveness and robustness of our adaptation strategy. These
results validate our framework’s flexibility, offering future-proof
advantages as more powerful LLMs become available.

4.5 Qualitative Analysis
To provide insights into how STAG processes and represents graph
information, we conduct two case studies examining the quantiza-
tion outputs (using 𝑡𝑜𝑝-𝑘 = 5 tokens).
Structure-Aware Tokenization Analysis. We analyze a sam-
ple node from the ‘Computational Complexity’ class in Cora Full
dataset, where our model is pre-trained. This paper, which primar-
ily discusses oracle constructions and isomorphism conjectures,
serves as an illustrative example of how STAG effectively integrates
structural information into token representations:

Raw Text: “In this paper we demonstrate an oracle relative to which there are
one-way functions but every paddable 1-li-degree collapses to an isomorphism
type, thus yielding a relativized failure of the Joseph Young Conjecture [JY85].
We then use this result to construct an oracle relative to which the Isomorphism
Conjecture is true but oneway functions exist, which answers an open question
of Fenner, Fortnow, and Kurtz [FFK96]. Thus, there are now relativizations
realizing every one of the four possible states of affairs between the Isomorphism
Conjecture and the existence of one-way functions.”
Category: Computational Complexity

Raw Feat + Quantization: isomorphism, oracle, numerable, mutable, schemes
STAG: complexity, algebraic, computation, polynomials, compute
STAG + PT: complexity, computational, computation, algorithms, compute

This example illustrates the effectiveness of our structure-aware
tokenization: While the raw text primarily discusses oracle con-
structions and isomorphism conjectures, making raw quantization
focus on surface-level terms (‘isomorphism’, ‘oracle’), STAG suc-
cessfully captures the paper’s theoretical computer science nature
by integrating neighborhood information. The learned tokeniza-
tion emphasizes core complexity theory concepts (‘complexity’,
‘computation’) and mathematical foundations (‘algebraic’), and the
prompted version further refines these tokens toward computa-
tional complexity aspects. This demonstrates how our method can
effectively identify a node’s domain even when its raw content is
not directly indicative of its category.
Intra-class Consistency. To examine how STAG captures class-
specific patterns, we analyze the quantization results for multiple
nodes from the same class. The following example presents to-
kenization outputs for five different nodes from the ‘Operating
Systems’ category in WikiCS, showing how our method consis-
tently captures class-relevant features while preserving individual
paper characteristics:

Node 1: unix linux, os, kernel, system
Node 2: unix, system, network, interface, protocol
Node 3: unix, system, compiler, terminal, execution
Node 4: unix, linux, kernel, system, filesystem
Node 5: linux, unix, kernel, system, filesystem

Table 4: Ablation study on representative datasets (pre-
trained on Cora Full, 5-way 5-shot, 𝑡𝑜𝑝-𝑘 = 13).

Method LLM Inference Linear Probing
Cora Full WikiCS ogbn-arxiv Cora Full WikiCS ogbn-arxiv

Full Model 80.95±8.02 79.20±8.41 71.56±10.32 86.04±6.70 84.05±5.78 82.99±8.10

¬ Fusion 37.49±6.66 29.10±9.65 29.49±8.01 46.73±6.66 35.05±8.61 34.12±6.79
¬L𝐾𝐿 69.74±11.04 57.95±11.48 59.79±8.32 81.83±8.33 75.05±7.21 76.18±9.21
¬ Soft 37.07±8.01 31.55±8.98 28.21±7.63 67.77±9.89 61.35±8.81 50.90±9.53

While all nodes maintain core tokens related to operating sys-
tems (‘unix’, ‘system’), each node’s unique focus is preserved through
specific technical tokens (‘interface’, ‘terminal’). This demonstrates
STAG’s ability to balance class-level consistency with instance-level
specificity. The consistent appearance of system-related tokens
(‘kernel’, ‘filesystem’) also suggests that our quantization process
effectively captures the semantic structure of technical documents
beyond simple keyword matching.

4.6 Ablation Studies
To validate our design choices in addressing the technical chal-
lenges, we conduct ablation studies by systematically removing
key components from our framework. All variants are pre-trained
on Cora Full. Table 4 presents results on representative datasets,
demonstrating each component’s contribution: (1) Semantic and
Structural Fusion: Removing the fusion module (‘¬Fusion’) to di-
rectly quantize node embeddings 𝒛𝑒 leads to substantial perfor-
mance degradation, evenwhen evaluated on the pre-training dataset
Cora Full. This underscores the necessity of integrating semantic
and structural information to ensure semantic preservation. (2)
KL Regularization: Eliminating the L𝐾𝐿 (‘¬L𝐾𝐿 ’) results in con-
siderable performance deterioration across both inference paths,
confirming its importance in preserving semantic similarity during
quantization by encouraging nodes to be mapped to semantically
related tokens. (3) Soft Token Assignment: Replacing soft assign-
ment with hard assignment (‘¬Soft’), which is to quantize into
single token during pre-training and inference, severely hampers
performance, especially in LLM inference. This demonstrates that
soft assignment effectively mitigates overfitting in the quantization
process by maintaining distributional information rather than forc-
ing hard decisions, enabling more robust transfer across datasets.
These results collectively validate that each component directly
addresses a key technical challenge in bridging the gap between
graph structures and LLM-compatible representations.

4.7 Computational Efficiency Analysis
To demonstrate the practical viability of our quantization approach,
we analyze the computational overhead of STAG’s key components.
Our quantization method has time complexity𝑂 (𝐵 ×𝐾 ×𝑑), where
𝐵 is the total number of nodes in a batch (across all subgraphs),
𝐾 is the codebook size (15,062 tokens), and 𝑑 is the embedding
dimension (768).

Table 5 presents a detailed breakdown of computational costs
for a typical batch containing 64 subgraphs with approximately
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Table 5: Computational efficiency breakdown of STAG com-
ponents (pre-trained on Cora Full).

Component Time (ms) Percentage

(a) GNN Encoding 18.4 ± 41.9 57%

(b) Cosine Similarity (Eq. (2)) 8.2 ± 3.1 25%
(c) Weighted Combination (Eq. (3)) 5.7 ± 3.3 18%

Total Quantization (b+c) 13.9 ± 6.4 43%

Total Processing (a+b+c) 32.3 ± 48.3 100%

3,944 total nodes. The analysis shows that our quantization pro-
cess adds minimal overhead compared to the core GNN encoding,
representing only 43% of the total processing time.

Compared to traditional GraphLLM approaches that require
expensive projector networks for embedding alignment [50], our
frozen codebook design eliminates the need for additional parameter-
heavy components during inference. The quantization overhead
is dominated by cosine similarity computation with the codebook,
which scales linearly with the number of nodes and remains compu-
tationally tractable even for large graphs. Our framework achieves
a throughput of approximately 121,920 nodes per second, demon-
strating that STAG provides a practical solution for real-world
deployment scenarios where computational efficiency is crucial.

4.8 Task Generalization
To demonstrate STAG’s versatility beyond node classification, we
evaluate our framework on two additional graph learning tasks:
link prediction and edge classification. All experiments use models
pre-trained on source datasets without any task-specific training.
Link Prediction. We evaluate zero-shot binary link prediction fol-
lowing the protocol established by LLaGA [5]. Given a pair of nodes,
we construct prompts using their quantized tokens and ask the LLM
to predict whether an edge exists between them. For the non-LLM
variant, we use cosine similarity between node embeddings with a
fixed threshold.

Table 6 presents the comparison results. Notably, our model
achieves comparable or superior performance to LLaGA despite
several key differences: (1) STAG is not pre-trained on link pre-
diction tasks, (2) we use only single-dataset pre-training (Arxiv)
compared to LLaGA’s multi-dataset approach (Arxiv + PubMed +
Cora), and (3) our method doesn’t use node text during inference,
unlike LLaGA.

These results highlight STAG’s strong generalization capabilities
and effective representation learning. The superior performance of
our linear probing variant demonstrates that our learned embed-
dings capture meaningful structural relationships that transfer well
to link prediction tasks, even without task-specific training.
Edge Classification. We evaluate edge classification on two text-
attributed knowledge graphs: WN18RR (5-way) and FB15K237 (20-
way) in N-way 5-shot settings. The LLM is prompted with tokenized
(head, tail) pairs to predict the relation type. The non-LLM variant
trains a linear classifier on concatenated node embeddings. All
models are pre-trained on Cora Full.

Table 6: Zero-shot binary link prediction comparison with
LLaGA.

Method Cora ogbn-products

LLaGA 87.35 92.99
STAG 63.00 92.65
STAG + Linear Probing 93.20 96.85

LLaGA uses multi-dataset pre-training (Arxiv + PubMed for Cora, Arxiv +
PubMed + Cora for ogbn-products).
STAG uses single-dataset pre-training (Arxiv only).

Table 7: N-way 5-shot edge classification results (pre-trained
on Cora Full).

Method WN18RR FB15K237

OFA 34.35 19.55
STAG 41.75 56.60
STAG + Linear Probing 58.30 74.80

Table 7 shows that STAG significantly outperforms OFA across
both datasets, demonstrating our framework’s effective structural-
semantic integration for relation prediction tasks. This superior per-
formance highlights STAG’s ability to capture meaningful relational
patterns through quantized representations, even when applied to
knowledge graph domains that differ substantially from the citation
network used for pre-training. The consistent improvements across
both WN18RR and FB15K237 validate the generalizability of our
quantization approach beyond traditional graph learning tasks.

5 Conclusion
We presented STAG, a self-supervised quantization-based frame-
work bridging graph representation learning and LLM. Our frame-
work addresses two fundamental challenges: integrating structural
and semantic information while maintaining LLM compatibility,
and enabling label-free domain transfer. Through soft token as-
signment and distribution alignment, STAG effectively integrates
structural-semantic information, enables robust cross-dataset trans-
fer, and maintains consistent performance across LLM architectures
through a shared vocabulary. Extensive experiments demonstrate
STAG’s superior performance in both few-shot and zero-shot set-
tings across diverse datasets. Looking forward, STAG could be
extended to graph-level tasks like graph classification, as well as
link prediction. Additionally, our framework could potentially ben-
efit from advanced LLM architectures and techniques like chain-of-
thought reasoning to enhance interpretability and performance. We
believe STAG represents a significant step toward more effective
and flexible integration of graph learning with LLMs.
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Table 8: Hyperparameter configurations for model pre-
training on different datasets.

Dataset Cora Full ogbn-arxiv ogbn-products

mask rate 0.53 0.6 0.74
learning rate 5.0 × 10−5 2.32 × 10−4 3.47 × 10−4
weight decay 1.88 × 10−6 9.94 × 10−3 1.57 × 10−3
epoch 20 16 10
activation elu prelu relu
hidden dim 256 512 512
# layers 3 1 2
# heads 2 2 4
# neg 20 23 16
𝜏𝑐 0.831 0.354 0.103
𝛽 1.9 0.58 1.4
𝜆 1.0 1.0 1.6

Appendices
A Implementation Details
A.1 Hardware Configuration
In our experiments, we used a Linux machine equipped with an
AMD EPYC 7763 64-core processor (3.53 GHz) and an NVIDIA L40
GPU (40 GB).

A.2 Model Configuration
Our model is pre-trained using the Adamw optimizer [36], and
we employ the Tree-structured Parzen Estimator (TPE) from Op-
tuna [2] for hyperparameter optimization. The codebook 𝑬 has
15,062 tokens across all datasets. The detailed hyperparameter set-
tings for model pretraining are provided in Table 8.

B Supplementary Experiments and Analysis
B.1 Few-shot Learning Performance
Table 9 presents the few-shot learning results when pre-trained on
ogbn-arxiv. And STAG performance trends remain consistent with
Cora Full pre-training results.

B.2 Zero-shot Performance
Table 10 presents zero-shot classification results on additional datasets
(CiteSeer, PubMed, and ogbn-products). STAG with class-specific
codebook maintains strong performance compared to raw feature
baselines, demonstrating effective transfer of learned representa-
tions even without any target domain examples.

B.3 Subgraph Classification
We evaluate 5-way 5-shot subgraph classification following L2P-
GNN [37]. We sample subgraphs around center nodes and use
their labels for classification. Subgraph embeddings are obtained
by mean-pooling node embeddings across all nodes within each
subgraph, which are then quantized and used in prompts similar to
our node classification approach.

As shown in Table 11, STAG consistently outperforms the raw
feature quantization baseline across all three datasets. While the im-
provements are modest, they demonstrate that our structure-aware
quantization approach successfully incorporates neighborhood in-
formation even at the subgraph level.
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Table 9: 5-way 5-shot node classification across different datasets (except PubMed: 3-way). Models are pre-trained on ogbn-arxiv
with 𝑡𝑜𝑝-𝑘 = 13 for LLM inference. Colored cells: pre-train dataset matches target (red: ogbn-arxiv). Results show accuracy (%)
averaged over 20 random tasks, with best results among our variants in bold.

Pre-train data Method LLM Target data
Cora Cora Full CiteSeer PubMed WikiCS ogbn-arxiv ogbn-products

ogbn-arxiv

DGI ✗ OOM OOM OOM OOM OOM OOM OOM
GraphMAE2 ✗ 78.85±4.78 83.54±7.63 63.35±5.82 65.90±6.82 76.90±7.70 79.61±8.04 74.11±8.73

GPPT ✗ 25.80±5.20 32.95±10.99 28.80±6.20 18.28±11.14 25.05±7.84 64.30±13.19 22.25±3.99
G2P2 ✗ 74.10±7.00 80.50±7.07 58.90±9.66 66.20±8.02 70.25±8.14 71.30±9.15 71.54±10.75

Prodigy ✗ 48.60±6.12 60.90±7.89 44.45±6.30 55.27±7.22 57.40±6.33 46.10±5.67 41.50±6.85
OFA ✗ 49.90±5.67 64.85±3.82 51.40±6.05 42.40±3.68 51.90±6.15 65.00±3.54 42.50±5.01
STAG ✓ 63.50±7.85 79.32±7.47 60.05±6.61 55.00±7.06 79.10±8.37 71.99±7.89 70.05±9.30

+ Linear Probing ✗ 76.95±5.91 84.83±7.22 65.05±6.26 69.70±6.73 82.05±6.96 82.71±8.11 78.22±8.14
+ Prompt Tuning ✓ 71.45±4.97 83.05±7.95 62.65±5.07 62.90±5.86 81.55±7.55 79.28±8.62 71.93±7.02
+ Prompt Tuning* ✗ 76.75±5.78 85.82±8.01 65.40±6.27 70.05±5.49 83.15±7.09 82.91±7.69 79.40±7.43

✓/✗: LLM usage during inference; Prompt Tuning*: inference without LLM; Raw Text: Use raw text for LLM inference (To fit in the context window of LLM, raw
text is truncated); Raw Feat + Quantization: Directly quantize raw node features into tokens for LLM inference; Raw Feat + Linear Probing: Train a linear
classifier on raw node features without any pre-training; OOM: Out-of-memory error during training.

Table 10: 5-way zero-shot node classification results (except
PubMed with 3 classes). We report accuracy (%) averaged over
20 random tasks with standard deviation.

Pre-train data Method LLM Target data
CiteSeer PubMed ogbn-products

No pre-train Raw Feat + Q ✓ 43.90±5.55 42.35±2.95 62.42±10.84
Raw Feat + C ✗ 62.35±6.55 63.50±4.14 74.66±7.68

Cora Full

G2P2 ✗ 35.40±5.63 27.45±3.50 20.11±7.29
OFA ✗ 23.25±5.15 33.40±3.87 19.75±3.73
STAG ✓ 47.50±6.61 34.85±4.89 61.58±10.35

STAG + C ✗ 62.80±7.13 61.80±3.87 73.17±7.89

Raw Feat + Q: Quantize raw node features into tokens for LLM inference.
+ C: Classification using class-specific codebook.

Table 11: 5-way 5-shot subgraph classification results (pre-
trained on Cora Full).

Method Cora Cora Full Arxiv

Raw Feat + Quantization 67.75 78.32 65.18
STAG 69.60 79.25 68.41

These comprehensive evaluations across link prediction, edge
classification, and subgraph classification validate STAG’s flexibility
in handling different granularities and types of graph learning tasks
beyond the primary focus on node classification.

C Few-shot and Zero-shot Prompt Templates
For few-shot classification, we use the following prompt template:

You are an AI assistant tasked with classifying input word sequences
into one of the following categories: [candidate classes are inserted
here].
You must choose strictly from these categories and no others.
Each category has characteristic patterns shown in its examples.
Here are examples of input sequences and their corresponding cate-
gories to guide you:
[Support examples are inserted here]
When given a new input sequence, identify its key patterns and match
them to the most similar category from the examples.
If no category is a clear match, choose the closest one.
**IMPORTANT:** Output only the category name and nothing else.
Input: [tokens of test node inserted here]

For zero-shot classification, we use a simpler prompt template:

You are an AI assistant tasked with classifying input word sequences
into one of the following categories: [candidate classes are inserted
here].
You must choose strictly from these categories and no others.
When given a new input sequence, classify it into one of the categories.
**IMPORTANT:** Output only the category name and nothing else.
Input: [tokens of test node inserted here]


	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Approach: STAG
	3.1 Overall Framework
	3.2 Initial Feature and Codebook Construction
	3.3 Pre-training with Soft Assignment
	3.4 Flexible Inference with or without LLMs
	3.5 Prompt-tuning for Domain Transfer

	4 Experiments
	4.1 Experimental Setup
	4.2 RQ1: Cross-dataset Few-shot Learning
	4.3 RQ2: Zero-shot Generalization
	4.4 RQ3: Flexibility with Different LLMs
	4.5 Qualitative Analysis
	4.6 Ablation Studies
	4.7 Computational Efficiency Analysis
	4.8 Task Generalization

	5 Conclusion
	Acknowledgments
	References
	A Implementation Details
	A.1 Hardware Configuration
	A.2 Model Configuration

	B Supplementary Experiments and Analysis
	B.1 Few-shot Learning Performance
	B.2 Zero-shot Performance
	B.3 Subgraph Classification

	C Few-shot and Zero-shot Prompt Templates

