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Abstract

Graphs are ubiquitous for modeling complex relationships between
objects across various fields. Graph neural networks (GNNs) have
become a mainstream technique for graph-based applications, but
their performance heavily relies on abundant labeled data. To re-
duce labeling requirement, pre-training and prompt learning has
become a popular alternative. However, most existing prompt meth-
ods do not distinguish between homophilic and heterophilic char-
acteristics in graphs. In particular, many real-world graphs are
non-homophilic—neither strictly nor uniformly homophilic—as they
exhibit varying homophilic and heterophilic patterns across graphs
and nodes. In this paper, we propose ProNoG, a novel pre-training
and prompt learning framework for such non-homophilic graphs.
First, we examine existing graph pre-trainingmethods, providing in-
sights into the choice of pre-training tasks. Second, recognizing that
each node exhibits unique non-homophilic characteristics, we pro-
pose a conditional network to characterize node-specific patterns
in downstream tasks. Finally, we thoroughly evaluate and analyze
ProNoG through extensive experiments on ten public datasets.
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• Information systems→ Data mining; • Computing method-

ologies→Machine learning.
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1 Introduction

Graph data are pervasive in real-world applications, such as citation
networks, social networks, transportation systems, and molecular
graphs. Traditional methods typically train graph neural networks
(GNNs) [18, 41] or graph transformers [51, 58] in a supervised
manner. However, they require substantial labeled data and re-
training for each specific task.

To mitigate the limitations of supervised methods, pre-training
methods have gained significant traction [15, 42, 52]. They first
learn universal, task-independent properties from unlabeled graphs,
and then fine-tune the pre-trained models to various downstream
tasks using task-specific labels [42, 52]. However, a significant
gap occurs between the pre-training objectives and downstream
tasks, resulting in suboptimal performance [39, 53]. Moreover, fine-
tuning large pre-trained models is costly and still requires suffi-
cient task-specific labels to prevent overfitting. As an alternative to
fine-tuning, prompt learning has emerged as a popular parameter-
efficient technique for adaptation to downstream tasks [7, 23, 37, 54].
They first utilize a universal template to unify pre-training and
downstream tasks. Then, a learnable prompt is employed to mod-
ify the input features or hidden embeddings of the pre-trained
model to align with the downstream task without updating the
pre-trained weights. Since a prompt has far fewer parameters than
the pre-trained model, prompt learning can be especially effective
in low-resource settings [53].

However, current graph “pre-train, prompt” approaches rely
on the homophily assumption or overlook the presence of het-
erophilic edges. Specifically, the homophily assumption [26, 65]
states that neighboring nodes should share the same labels, whereas
heterophily refers to the opposite scenario where two neighboring
nodes have different labels. We observe that real-world graphs are
typically non-homophilic, meaning they are neither strictly nor uni-
formly homophilic and mix both homophilic and heterophilic patterns
[47, 48]. In this work, we investigate the pre-training and prompt
learning methodology for non-homophilic graphs. We first revisit
existing graph pre-training methods, and then propose a Prompt
learning framework for Non-homophilic Graphs (or ProNoG in
short). The solution is non-trivial, as the notion of homophily en-
compasses two key aspects, each with its own unique challenge.

First, different graphs exhibit varying degrees of non-homophily.
As shown in Fig. 1(a), the Cora citation network is typically con-
sidered largely homophilic with 81% homophilic edges1, whereas

1Defined as edges connecting two nodes of the same label; see Eq. (1) in Sect. 3.
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Figure 1: Non-homophilic characteristics of graphs.

the Wisconsin web graph links different kinds of webpages, which
is highly heterophilic with only 21% homophilic edges. Moreover,
the non-homophilic characteristics of a graph also depends on the
target label. For example, in a dating network shown in Fig. 1(b),
taking gender as the node label, the graph is more heterophilic
with 2/7 homophilic edges. However, taking hobbies as the node
label, the graph becomes more homophilic with 4/7 homophilic
edges. Hence, how do we pre-train a graph model irrespective of the
graph’s homophily characteristics? In this work, we propose defi-
nitions for homophily tasks and homophily samples. We show that
pre-training with non-homophily samples increases the loss of any
homophily task. Meanwhile, a less homophilic graph results in a
higher number of non-homophily samples, subsequently increas-
ing the pre-training loss for homophily tasks. This motivates us to
move away from homophily tasks for graph pre-training [23, 37]
and instead choose a non-homophily task [47, 52].

Second, different nodes within the same graph are distributed
differently in terms of their non-homophilic characteristics. As
shown in Fig. 1(c), on each dataset, different nodes within the same
graph generally exhibit diverse homophily ratios2. Hence, how do
we capture the fine-grained, node-specific non-homophilic charac-
teristics? Due to the diverse characteristics across nodes, a one-
size-fits-all solution for all nodes would be inadequate. However,
existing approaches generally apply a single prompt to all nodes
[23, 37], treating all nodes uniformly. Thus, these methods overlook
the fine-grained node-wise non-homophilic characteristics, leading
to suboptimal performance. Although some recent works [5, 40]
have proposed node-specific prompts, they are not designed to
account for the variation in nodes’ non-homophilic charactersitics.

2Defined as the proportion of a node’s neighbors that share the same label as the node;
refer to Eq. (2) in Sect. 3.

Inspired by conditional prompt learning [62], we propose generat-
ing a unique prompt from each node with a conditional network
(condition-net) to capture the distinct characteristics of each node.
We first capture the non-homophilic patterns of each node by read-
ing out its multi-hop neighborhood. Then, conditioned on these
non-homophilic patterns, the condition-net produces a series of
prompts, one for each node that reflects its varying non-homophilic
characteristics. These prompts can adjust the node embeddings to
better align them with the downstream task.

In summary, the contributions of this work are threefold: (1)
We observe varying degrees of homophily across graphs, which
motivates us to revisit graph pre-training tasks. We provide theo-
retical insights which guide us to choose non-homophily tasks for
graph pre-training. (2) We further observe that, within the same
graph, different nodes have diverse distributions of non-homophilic
characteristics. To adapt to the unique non-homophilic patterns of
each node, we propose the ProNoG framework for non-homophilic
prompt learning, which is equipped with a condition-net to gener-
ate a series of prompts conditioned on each node. The node-specific
prompts enables fine-grained, node-wise adaptation for the down-
stream tasks. (3) We perform extensive experiments on ten bench-
mark datasets, demonstrating the superior performance of ProNoG
compared to a suite of state-of-the-art methods.

2 Related Work

In the following, we briefly review the literature on general and
non-homophilic graph learning, as well as graph prompt learning.
Graph representation learning. GNNs [18, 41] are mainstream
approaches for graph representation learning. They typically op-
erate on a message-passing framework, where nodes iteratively
update their representations by aggregatingmessages received from
their neighboring nodes [11, 49, 55]. However, their effectiveness re-
lies on abundant task-specific labeled data and requires re-training
for each task. Inspired by the success of the pre-training paradigm
in the language [4, 6, 9, 35] and vision [1, 59, 62, 63] domains, pre-
training methods [14, 15, 17, 24] have been widely explored for
graphs. These methods first pre-train a graph encoder based on
self-supervised tasks, and subsequently transfer the pre-trained
prior knowledge to downstream tasks. However, these pre-training
methods often make the homophily assumption, overlooking that
real-world graphs are generally non-homophilic.
Non-homophilic graph learning.Many GNNs [25, 26, 64] have
been proposed for non-homophilic graphs, employing techniques
such as capturing high-frequency signals [2], discovering potential
neighbors [16, 30], and high-order message passing [65]. More-
over, recent works have explored pre-training on non-homophilic
graphs [13, 47, 48] by capturing neighborhood information to con-
struct unsupervised tasks for pre-training a graph encoder, and
then transferring prior non-homophilic knowledge to downstream
tasks through fine-tuning with task-specific supervision. However,
a significant gap exists between the objectives of pre-training and
fine-tuning [20, 39, 53]. While pre-training focuses on learning in-
herent graph properties without supervision, fine-tuning adapts
these properties to downstream tasks based on task-specific super-
vision. This discrepancy hinders effective knowledge transfer and
negatively impacts downstream performance.
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Graph prompt learning. Originally developed for the language
domain, prompt learning effectively unifies pre-training and down-
stream objectives [4, 19, 21]. Recently, graph prompt learning has
emerged as a popular alternation to fine-tuning methods [23, 37,
54, 56]. These methods first propose a unified template, then design
prompts specifically tailored to each downstream task, allowing
them to better align with the pre-trained model while keeping the
pre-trained parameters frozen. However, current graph prompt
learning methods [38, 53] typically do not consider the fact that
real-world graphs are generally non-homophilic, exhibiting a mix-
ture of diverse homophilic and heterophilic patterns across nodes.
Hence, these methods usually apply a single prompt to all nodes,
overlooking the unique non-homophilic pattern of each node.

3 Preliminaries

Graph. A graph is defined as 𝐺 = (𝑉 , 𝐸), where 𝑉 represents
the set of nodes and 𝐸 represents the set of edges. The nodes are
also associated with a feature matrix X ∈ R |𝑉 |×𝑑 , such that x𝑣 ∈
R𝑑 is a row of X representing the feature vector for node 𝑣 ∈
𝑉 . For a collection of multiple graphs, we use the notation G =

{𝐺1,𝐺2, . . . ,𝐺𝑁 }.
Homophily ratio. Given a mapping between the nodes of a graph
and a predefined set of labels, let𝑦𝑣 denote the label mapped to node
𝑣 . The homophily ratioH(𝐺) evaluates the relationships between
the labels and the graph structure [26, 65], measuring the fraction
of homophilic edges whose two end nodes share the same label.
More concretely,

H(𝐺) = |{(𝑢, 𝑣) ∈ 𝐸 : 𝑦𝑢 = 𝑦𝑣}|
|𝐸 | . (1)

Additionally, the homophily ratio can be defined for each node
based on its local structure [27, 48], measuring the fraction of a
node’s neighbors that share the same label. This node-specific ratio
can be defined as

H(𝑣) = |{𝑢 ∈ N (𝑣) : 𝑦𝑢 = 𝑦𝑣}|
|N (𝑣) | , (2)

where N(𝑣) is the set of neighboring nodes of 𝑣 . Note that both
H(𝐺) and H(𝑣) fall in [0, 1]. Graphs or nodes with a larger pro-
portion of homophilic edges have a higher homophily ratio.
Graph encoder. Graph encoders learn latent representations of
graphs, embedding their nodes into some feature space. A widely
used family of graph encoders is GNNs, which typically utilize a
message-passing mechanism [46, 61]. Specifically, each node aggre-
gates messages from its neighbors to generate its own representa-
tion. By stacking multiple layers, GNNs enables recursive message
passing throughout the graph. Formally, the embedding of a node
𝑣 in the 𝑙-th GNN layer, denoted as h𝑙𝑣 , is computed as follows.

h𝑙𝑣 = Aggr(h𝑙−1𝑣 , {h𝑙−1𝑢 : 𝑢 ∈ N (𝑣)};𝜃𝑙 ), (3)

where 𝜃𝑙 are the learnable parameters in the 𝑙-th layer, and Aggr(·)
is the aggregation function, which can take various forms [11, 18, 41,
49, 55]. In the first layer, the input node embedding h0𝑣 is typically
initialized from the node feature vector x𝑣 . The full set of learnable
parameters is denoted as Θ = {𝜃1, 𝜃2, . . .}. For simplicity, we define
the output node representations of the final layer as h𝑣 , which can
then be fed into the loss function for a specific task.

Problem statement. In this work, we aim to pre-train a graph en-
coder and develop a prompt learning framework for non-homophilic
graphs. More specifically, both the pre-training and prompt learn-
ing are not sensitive to the diverse non-homophilic characteristics
of the graph and its nodes.

To evaluate our non-homophilic pre-training and prompt learn-
ing, we focus on two common tasks on graph data: node classi-
fication and graph classification, in few-shot settings. For node
classification within a graph 𝐺 = (𝑉 , 𝐸) over a set of node classes
𝑌 , each node 𝑣𝑖 ∈ 𝑉 has a class label 𝑦𝑖 ∈ 𝑌 . Similarly, for graph
classification across a graph collection G with class labels 𝑌 , each
graph𝐺𝑖 ∈ G has a class label 𝑌𝑖 ∈ 𝑌 . In the few-shot setting, there
are only 𝑘 labeled samples per class, where 𝑘 is a small number (e.g.,
𝑘 ≤ 10). This scenario is known as 𝑘-shot classification [23, 54, 57].
Note that the homophily ratio is defined with respect to some pre-
defined set of labels, which may or may not be related to the class
labels in downstream tasks.

4 Revisiting Graph Pre-training

In this section, we revisit graph pre-training tasks to cope with non-
homophilic graphs. We first propose the definition of homophily
tasks and reveal its connection to the training loss. The theoretical
insights further guide us in choosing graph pre-training tasks.

4.1 Theoretical Insights

We focus on contrastive graph pre-training tasks. Consider a main-
stream contrastive task [12, 23, 32, 52, 54, 66], 𝑇 = ({A𝑢 : 𝑢 ∈
𝑉 }, {B𝑢 : 𝑢 ∈ 𝑉 }), where A𝑢 is the set of positive instances for
node𝑢, andB𝑢 is the set of negative instances for𝑢. Its loss function
L𝑇 can be standardized [54] to a similar form as follows.

L𝑇 = −
∑︁
𝑢∈𝑉

ln 𝑃 (𝑢,A𝑢 ,B𝑢 ), (4)

𝑃 (𝑢,A𝑢 ,B𝑢 ) ≜
∑
𝑎∈A𝑢

sim(h𝑢 , h𝑎)∑
𝑎∈A𝑢

sim(h𝑢 , h𝑎) +
∑
𝑏∈B𝑢 sim(h𝑢 , h𝑏 )

, (5)

where sim(·, ·) represents a similarity function such as cosine simi-
larity in our experiments. The optimization objective of task 𝑇 in
Eq. (4) is to maximize the similarity between 𝑢 and its positive in-
stances while minimizing the similarity between 𝑢 and its negative
instances. Based on this loss, we further propose the definitions of
homophily tasks and homophily samples.

Definition 1 (Homophily Task). On a graph 𝐺 = (𝑉 , 𝐸), a pre-
training task 𝑇 = ({A𝑢 : 𝑢 ∈ 𝑉 }, {B𝑢 : 𝑢 ∈ 𝑉 }) is a homophily task
if and only if, ∀𝑢 ∈ 𝑉 ,∀𝑎 ∈ A𝑢 ,∀𝑏 ∈ B𝑢 , (𝑢, 𝑎) ∈ 𝐸 ∧ (𝑢,𝑏) ∉ 𝐸. A
task that is not a homophily task is called a non-homophily task. □

In particular, the widely used link prediction task [23, 29, 31, 54,
56, 57] is a homophily task, where A𝑢 is a subset of nodes linked
to 𝑢 and B𝑢 is a subset of nodes not linked to 𝑢.

Definition 2 (Homophily Sample). On a graph 𝐺 = (𝑉 , 𝐸),
consider a triplet (𝑢, 𝑎, 𝑏) where 𝑢 ∈ 𝑉 , (𝑢, 𝑎) ∈ 𝐸 and (𝑢,𝑏) ∉ 𝐸. The
triplet (𝑢, 𝑎, 𝑏) is a homophily sample if and only if sim(h𝑢 , h𝑎) >
sim(h𝑢 , h𝑏 ), and it is a non-homophily sample otherwise. □

Subsequently, we can establish the following theorems.

Theorem 1. For a homophily task 𝑇 , adding a homophily sample
always results in a smaller loss than adding a non-homophily sample.
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Proof. Consider a homophily sample (𝑢, 𝑎, 𝑏) for some (𝑢, 𝑎) ∈
𝐸 and (𝑢,𝑏) ∉ 𝐸, as well as a non-homophily sample (𝑢, 𝑎′, 𝑏′) for
some (𝑢, 𝑎′) ∈ 𝐸 and (𝑢,𝑏′) ∉ 𝐸. Let the overall loss with (𝑢, 𝑎, 𝑏)
be 𝐿𝑇 , and that with (𝑢, 𝑎′, 𝑏′) be 𝐿′

𝑇
. Since (𝑢, 𝑎, 𝑏) is a homophily

sample, we have sim(h𝑢 , h𝑎) > sim(h𝑢 , h𝑏 ), and thus

𝑝 (𝑢, 𝑎, 𝑏) = sim(h𝑢 ,h𝑎 )
sim(h𝑢 ,h𝑎 )+sim(h𝑢 ,h𝑏 ) > 0.5.

Moreover, since (𝑢, 𝑎′, 𝑏′) is a non-homophily sample, we have
sim(h𝑢 , h′𝑎) ≤ sim(h𝑢 , h′𝑏 ), and thus 𝑝 (𝑢, 𝑎′, 𝑏′) ≤ 0.5. Hence,
𝑝 (𝑢, 𝑎, 𝑏) > 𝑝 (𝑢, 𝑎′, 𝑏′), implying that 𝐿𝑇 < 𝐿′

𝑇
. □

Theorem 2. Consider a graph𝐺 = (𝑉 , 𝐸) with a label mapping
function𝑉 → 𝑌 , where 𝑦𝑣 ∈ 𝑌 is the label mapped to 𝑣 ∈ 𝑉 . Suppose
that the label mapping and node similarity are consistent, i.e.,

∀𝑢, 𝑎, 𝑏 ∈ 𝑉 ,𝑦𝑢 = 𝑦𝑎 ∧ 𝑦𝑢 ≠ 𝑦𝑏 ⇒ sim(h𝑢 , h𝑎) > sim(h𝑢 , h𝑏 ) .

Let E𝑇 denote the expected number of homophily samples for a ho-
mophily task 𝑇 on the graph 𝐺 . Then, E𝑇 increases monotonically as
the homophily ratioH(𝐺) defined w.r.t. 𝑌 increases.

Proof. For a homophily task𝑇 = ({A𝑢 : 𝑢 ∈ 𝑉 }, {B𝑢 : 𝑢 ∈ 𝑉 }),
a triplet (𝑢, 𝑎, 𝑏) for some𝑢 ∈ 𝑉 , 𝑎 ∈ A𝑢 and 𝑏 ∈ B𝑢 is a homophily
sample with a probability of 𝑃 (𝑦𝑢 = 𝑦𝑎) (1 − 𝑃 (𝑦𝑢 = 𝑦𝑏 )), since
𝑦𝑢 = 𝑦𝑎 ∧ 𝑦𝑢 ≠ 𝑦𝑏 implies sim(h𝑢 , h𝑎) > sim(h𝑢 , h𝑏 ). Hence, the
expected number of homophily samples for 𝑇 is

E𝑇 =
∑︁
𝑢∈𝑉
|A𝑢 | |B𝑢 |𝑃 (𝑦𝑢 = 𝑦𝑎) (1 − 𝑃 (𝑦𝑢 = 𝑦𝑏 )) . (6)

For a constant number of nodes with label 𝑦𝑢 , asH(𝐺) increases,
𝑃 (𝑦𝑢 = 𝑦𝑎) increases while 𝑃 (𝑦𝑢 = 𝑦𝑏 ) decreases, leading to a
larger E𝑇 . □

In the next part, the theorems will guide us in choosing the
appropriate pre-training tasks for non-homophilic graphs.

4.2 Non-homophilic Graph Pre-training

Consider a homophily task𝑇 . Following Theorem 2, non-homophilic
graphs with lower homophily ratios are expected to have fewer ho-
mophily samples and more non-homophily samples for 𝑇 . Further-
more, based on Theorem 1, adding a non-homophily sample results
in a larger loss than adding a homophily sample. Consequently,
for non-homophilic graphs, especially those with low homophily
ratio, homophily tasks are not optimal for working with standard
contrastive training losses, whereas non-homophily tasks may offer
a better alternative.

We revisit mainstream graph pre-training methods and catego-
rize them into two categories: homophily methods that employ
homophily tasks, and non-homophily methods that do not. Specif-
ically, GPPT [37], GraphPrompt [23] and HGPrompt [56] are all
homophily methods, since their pre-training tasks utilizes a form
of link prediction, where A𝑢 is a set of nodes linked to 𝑢, and B𝑢
is a set of nodes not linked from 𝑢. In contrast, DGI [42], GraphCL
[52], and GraphACL [48] are non-homophily methods, since A𝑢

or B𝑢 in their pre-training tasks is not related to the connectivity
with 𝑢. Further details of these methods are shown in Appendix B.

In our experiments, we find that GraphCL [52], a non-homophily
pre-training method, performs well across most graphs, including

non-homophilic ones. We also experiment with link prediction [23,
37] and GraphACL [48] to study their effects on different graphs.

5 Non-homophilic Prompt Learning

In this section, we propose ProNoG, a prompt learning framework
for non-homophilic graphs. We first introduce the overall frame-
work, and then develop the prompt generation and tuning process.
Finally, we analyze the complexity of the proposed algorithm.

5.1 Overall Framework

We illustrate the overall framework of ProNoG in Fig. 2. It involves
two stages: (a) graph pre-training and (b) downstream adaptation.
In graph pre-training, we pre-train a graph encoder using a non-
homophilic pre-training task, as shown in Fig. 2(a). Subsequently,
to adapt the pre-trained model to downstream tasks, we propose
a conditional network (condition-net) that generates a series of
prompts, as depicted in Fig. 2(b). As a result, each node is equipped
with its own prompt, which can be used to modify its features
to align with the downstream task. More specifically, the prompt
generation is conditioned on the unique patterns of each node, in
order to achieve fine-grained adaptation catering to the diverse
non-homophilic characteristics of each node, as detailed in Fig. 2(c).

5.2 Prompt Generation and Tuning

Prompt generation. In non-homophilic graphs, different nodes
are characterized by unique non-homophilic patterns. Specifically,
different nodes typically have diverse homophily ratiosH(𝑣), indi-
cating distinct topological structures linking to their neighboring
node. Moreover, even nodes with similar homophily ratios may
have different neighborhood distributions in terms of the varying
homophily ratios of the neighboring nodes. Therefore, instead of
learning a single prompt for all nodes as in standard graph prompt
learning [23, 37, 38, 54], we design a condition-net [62] to generate
a series of non-homophilic pattern-conditioned prompts. Conse-
quently, each node is equipped with its own unique prompt, aiming
to adapt to its distinct non-homophilic characteristics.

First, the non-homophilic patterns of a node can be character-
ized by considering a multi-hop neighborhood around the node.
Specifically, given a node 𝑣 , we readout their 𝛿-hop ego-network
𝑆𝑣 , which is an induced subgraph containing the node 𝑣 and nodes
reachable from 𝑣 in at most 𝛿 steps. Inspired by GGCN [50], the
readout is weighted by the similarity between 𝑣 and their neighbors,
as shown in Fig. 2(c) , obtaining a representation of the subgraph
𝑆𝑣 given by

s𝑣 =
1

|𝑉 (𝑆𝑣) |
∑︁

𝑢∈𝑉 (𝑆𝑣 )
h𝑢 · sim(h𝑢 , h𝑣), (7)

where 𝑉 (𝑆𝑣) denotes the set of nodes in 𝑆𝑣 . In our experiment, we
set 𝛿 = 2 to balance between efficiency and capturing more unique
non-homophilic patterns in the neighborhood of 𝑣 .

Next, for each downstream task, our goal is to assign a unique
prompt vector to each node. However, directly parameterizing these
prompt vectors would significantly increase the number of learn-
able parameters, which may overfit to the lightweight supervision
in few-shot settings. To cater to the unique non-homophilic char-
acteristics of each node with minimal parameters, we propose to



Non-Homophilic Graph Pre-Training and Prompt Learning KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

𝟏

Subgraph 

emb matrix

(b) Downstream adaptation with conditional prompting

Node emb 

matrix

Pre-trained 

graph encoder
Downstream 

𝑙𝑜𝑠𝑠

∙

Condition-net

Prompt generation

Prompting

(a) Pre-training

Graph 

encoder

Prompt

matrix

Readout

(c) Details of prompt generation

𝒗

𝒖𝟑

𝒗

2-hop 

subgraph of v

𝒖𝟒

𝒖0𝒖𝟏

𝒖𝟐

𝐡
𝒖𝟎𝐡
𝒖𝟏𝐡
𝒖𝟐

𝐡𝒗
𝐬𝐢𝐦(𝐡𝒗, 𝐡𝒖𝟎

)
𝐬𝐢𝐦(𝐡𝒗, 𝐡𝒖𝟏

)
𝐬𝐢𝐦(𝐡𝒗, 𝐡𝒖𝟐

)∙𝒖𝟐

𝒖𝟏

𝒖𝟑

𝒗

𝒖𝟒

𝒖𝟎

𝐡
𝒖𝟑𝐡
𝒖𝟒

𝐬𝐢𝐦(𝐡𝒗, 𝐡𝒖𝟑

)
𝐬𝐢𝐦(𝐡𝒗, 𝐡𝒖𝟒

)

R
ead

o
u
t

M
ean

𝐬𝒗

Condition-net

𝐩𝒗

prompt

Frozen

TunedNon-homophily 

pre-training loss

Figure 2: Overall framework of ProNoG.

employ a condition-net [62] to generate node-specific prompt vec-
tors. Specifically, conditioned on the subgraph readout s𝑣 of a node
𝑣 , the condition-net generates a unique prompt vector for 𝑣 w.r.t. a
task 𝑡 , denoted by p𝑡,𝑣 , as follows.

p𝑡,𝑣 = CondNet(s𝑣 ;𝜙𝑡 ), (8)

where CondNet is the condition-net parameterized by 𝜙𝑡 . It outputs
a unique prompt vector p𝑡,𝑣 , which varies based on the input 𝑠𝑣
that characterizes the non-homophily patterns of node 𝑣 . Note that
this is a form of hypernetworks [10], which employs a secondary
network to generate the parameters for the main network condi-
tioned on the input feature. In our context, the condition-net is
the secondary network, generating prompt parameters without ex-
panding the number of learnable parameters in the main network.
The secondary network CondNet can be any learnable function,
such as a fully-connected layer or a multi-layer perceptron (MLP).
We employ an MLP with a compact bottleneck architecture [45].

Subsequently, we perform fine-grained, node-wise adaptation to
task 𝑡 . Concretely, the prompt p𝑡,𝑣 for node 𝑣 is employed to adjust
𝑣 ’s features or its embeddings in the hidden or output layers [54]. In
our experiments, we choose a simple yet effective implementation
that modifies the nodes’ output embeddings through an element-
wise product, as follows.

h̃𝑡,𝑣 = p𝑡,𝑣 ⊙ h𝑣, (9)

where the prompt p𝑡,𝑣 is generated with an equal dimension as h𝑣 .
Prompt tuning. In this work, we focus on two common types
of downstream task: node classification and graph classification.
The prompt tuning process does not directly optimize the prompt
vectors; instead it optimizes the condition-net, which subsequently
generates the prompt vectors, for a given downstream task.

We utilize a loss function based on node/graph similarity fol-
lowing previous work [23, 54]. Formally, for a task 𝑡 with a labeled
training set D𝑡 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . .}, where 𝑥𝑖 can be either a
node or a graph, and 𝑦𝑖 ∈ 𝑌 is 𝑥𝑖 ’s class label from a set of classes
𝑌 . The downstream loss function is

Ldown (𝜙𝑡 ) = −
∑︁

(𝑥𝑖 ,𝑦𝑖 ) ∈D𝑡

ln
exp

(
1
𝜏 sim(h̃𝑡,𝑥𝑖 , h̄𝑡,𝑦𝑖 )

)
∑
𝑐∈𝑌 exp

(
1
𝜏 sim(h̃𝑡,𝑥𝑖 , h̄𝑡,𝑐 )

) , (10)

where h̃𝑡,𝑥𝑖 denotes the output embedding of node 𝑣/graph𝐺 for
task 𝑡 . Specifically, for node classification h̃𝑡,𝑣 is the output embed-
ding in Eq. (9); for graph classification, h̃𝑡,𝐺 =

∑
𝑢∈𝑉 h̃𝑡,𝑢 , involving

an additional graph readout. The prototype embedding for class 𝑐 ,
h̄𝑡,𝑐 , is the average of the embedding of all labeled nodes/graphs
belonging to class 𝑐 .

During prompt tuning, we update only the lightweight parame-
ters of the condition-net (𝜙𝑡 ), while freezing the pre-trained GNN
weights. Thus, our approach is parameter-efficient and amenable
to few-shot settings, where D𝑡 contains only a small number of
training examples for task 𝑡 .

5.3 Algorithm and Complexity Analysis

Algorithm.We detail the main steps for the conditional prompt
generation and tuning in Algorithm 1, Appendix A.
Complexity analysis. For a downstream graph 𝐺 , the computa-
tional process of ProNoG involves two main parts: encoding nodes
via a pre-trained GNN, and conditional prompt learning. The first
part’s complexity is determined by the GNN architecture, akin to
other methods employing a pre-trained GNN. In a standard GNN,
each node aggregates features from up to 𝐷 neighbors per layer.
Thus, the complexity of calculating node embeddings over 𝐿 layers
is𝑂 (𝐷𝐿 · |𝑉 |), where |𝑉 | denotes the number of nodes. The second
part, conditional prompt learning, has two stages: prompt gener-
ation and prompt tuning. In prompt generation, each subgraph
embedding is fed into the condition-net. The subgraph embedding
of each node involves a readout from the 𝛿-hop neighborhood, re-
sulting in a complexity of 𝑂 (𝐷𝛿 · |𝑉 |) with at most 𝐷 neighbors
per hop. During prompt tuning, each node in𝐺 is adjusted using
a prompt vector, with a complexity of 𝑂 ( |𝑉 |). Therefore, the total
complexity for conditional prompt learning is 𝑂 (𝐷𝛿 · |𝑉 |).

In conclusion, the overall complexity of ProNoG is 𝑂 ((𝐷𝐿 +
𝐷𝛿 ) · |𝑉 |). As both 𝐿 and 𝛿 are small constants, the two parts have
comparable complexity. That is, the proposed conditional prompt
learning does not increase the order of complexity relative to the
pre-trained GNN encoder, if 𝛿 is chosen to be no larger than 𝐿.

6 Experiments

In this section, we conduct experiments to evaluate ProNoG, and
analyze the empirical results.
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Table 1: Accuracy evaluation on one-shot node classification.

Methods Wisconsin Squirrel Chameleon Cornell PROTEINS ENZYMES Citeseer Cora

GCN 21.39 ± 6.56 20.00 ± 0.29 25.11 ± 4.19 21.81 ± 4.71 43.32 ± 9.35 48.08 ± 4.71 31.27 ± 4.53 28.57 ± 5.07
GAT 28.01 ± 5.40 21.55 ± 2.30 24.82 ± 4.35 23.03 ± 13.19 31.79 ± 20.11 35.32 ± 18.72 30.76 ± 5.40 28.40 ± 6.25
H2GCN 23.60 ± 4.64 21.90 ± 2.15 25.89 ± 4.96 32.77 ± 14.88 29.60 ± 6.99 37.27 ± 8.73 26.98 ± 6.25 34.58 ± 9.43
FAGCN 35.03 ± 17.92 20.91 ± 1.79 22.71 ± 3.74 28.67 ± 17.64 32.63 ± 9.94 35.87 ± 13.47 26.46 ± 6.34 28.28 ± 9.57

DGI 28.04 ± 6.47 20.00 ± 1.86 19.33 ± 4.57 32.54 ± 15.66 45.22 ± 11.09 48.05 ± 14.83 45.00 ± 9.19 54.11 ± 9.60
GraphCL 29.85 ± 8.46 21.42 ± 2.22 27.16 ± 4.31 24.69 ± 14.06 46.15 ± 10.94 48.88 ± 15.98 43.12 ± 9.61 51.96 ± 9.43
DSSL 28.46 ± 10.31 20.94 ± 1.88 27.92 ± 3.93 20.36 ± 5.38 40.42 ± 10.08 66.59 ± 19.28 39.86 ± 8.60 40.79 ± 7.31
GraphACL 34.57 ± 10.46 24.44 ± 3.94 26.72 ± 4.67 33.17 ± 16.06 42.16 ± 13.50 47.57 ± 14.36 35.91 ± 7.87 46.65 ± 9.54

GPPT 27.39 ± 6.67 20.09 ± 0.91 24.53 ± 2.55 25.09 ± 2.92 35.15 ± 11.40 35.37 ± 9.37 21.45 ± 3.45 15.37 ± 4.51
GraphPrompt 31.48 ± 5.18 21.22 ± 1.80 25.36 ± 3.99 31.00 ± 13.88 47.22 ± 11.05 53.54 ± 15.46 45.34 ± 10.53 54.25 ± 9.38
GraphPrompt+ 31.54 ± 4.54 21.24 ± 1.82 25.73 ± 4.50 31.65 ± 14.48 46.08 ± 9.96 57.68 ± 13.12 45.23 ± 10.01 52.51 ± 9.73

ProNoG 44.72 ± 11.93 24.59 ± 3.41 30.67 ± 3.73 37.90 ± 9.31 48.95 ± 10.85 72.94 ± 20.23 49.02 ± 10.66 57.92 ± 11.50
Results are reported in percent. The best method is bolded and the runner-up is underlined.

Table 2: Accuracy evaluation on one-shot graph classification.

Methods Wisconsin Squirrel Chameleon Cornell PROTEINS ENZYMES BZR COX2

GCN 21.39 ± 6.56 11.77 ± 3.10 17.21 ± 4.80 26.36 ± 4.35 51.66 ± 10.87 19.30 ± 6.36 45.06 ± 16.30 43.84 ± 13.94
GAT 24.93 ± 7.59 20.70 ± 1.51 25.71 ± 3.32 22.66 ± 12.46 51.33 ± 11.02 20.24 ± 6.39 46.28 ± 15.26 51.72 ± 13.70
H2GCN 22.23 ± 6.38 20.69 ± 1.42 26.76 ± 3.98 23.11 ± 11.78 53.81 ± 8.85 19.40 ± 5.57 50.28 ± 12.13 53.70 ± 11.73
FAGCN 23.81 ± 9.50 20.83 ± 1.43 25.93 ± 4.03 25.71 ± 13.12 55.45 ± 11.57 19.95 ± 5.94 50.93 ± 12.41 50.22 ± 11.50

DGI 29.77 ± 6.22 20.50 ± 1.52 24.29 ± 4.33 18.60 ± 12.79 50.32 ± 13.47 21.57 ± 5.37 49.97 ± 12.63 54.84 ± 14.76
GraphCL 27.93 ± 5.27 21.01 ± 1.86 26.45 ± 4.30 20.03 ± 10.05 54.81 ± 11.44 19.93 ± 5.65 50.50 ± 18.62 47.64 ± 22.42
DSSL 22.05 ± 3.90 20.74 ± 1.61 26.19 ± 3.72 18.38 ± 10.63 52.73 ± 10.98 23.14 ± 6.71 49.04 ± 8.75 54.23 ± 14.17
GraphACL 22.98 ± 5.89 20.80 ± 1.28 26.28 ± 3.93 26.50 ± 17.18 56.11 ± 13.95 20.28 ± 5.60 49.24 ± 17.87 49.59 ± 23.93

GraphPrompt 28.34 ± 3.89 21.22 ± 1.80 26.51 ± 4.67 24.06 ± 13.71 53.61 ± 8.90 21.85 ± 6.17 50.46 ± 11.46 55.01 ± 15.23
GraphPrompt+ 26.95 ± 7.42 20.80 ± 1.45 26.03 ± 4.17 25.31 ± 7.65 54.55 ± 12.61 21.85 ± 5.15 53.26 ± 14.99 54.73 ± 14.58

ProNoG 31.54 ± 5.30 20.92 ± 1.37 28.50 ± 5.30 27.17 ± 9.58 56.11 ± 10.19 22.55 ± 6.70 51.62 ± 14.27 56.46 ± 14.57

6.1 Experimental Setup

Datasets.We conduct experiments on ten benchmark datasets.Wis-
consin [30], Cornell [30], Chameleon [34], and Squirrel [34] are all
web graphs. Each dataset features a single graph, where nodes cor-
respond to web pages and edges represent hyperlinks connecting
these pages. Cora [28] and Citeseer [36] are citation networks. They
consist of a single graph each, with nodes representing academic
papers and edges indicating citation relationships. PROTEINS [3]
consists of a series of protein graphs. Nodes in these graphs denote
secondary structures, while edges depict neighboring relationships
either within the amino acid sequence or in three-dimensional
space. ENZYMES [44], BZR [33], and COX2 [33] are collections
of molecular graphs. These datasets describe enzyme structures
from the BRENDA enzyme database, ligands related to benzodi-
azepine receptors, and cyclooxygenase-2 inhibitors, respectively.
We summarize these datasets in Table 6, Appendix C.
Baselines. We evaluate ProNoG against a series of state-of-the-
art methods from the following three categories. (1) End-to-end
GNNs: GCN [18], GAT [41], H2GCN [65], and FAGCN [2] are
trained in a supervised manner directly using downstream labels.
Specifically, GCN and GAT are designed for homophilic graphs,

whereas H2GCN is developed for heterophilic graphs, and FAGCN
for non-homophilic graphs. (2) Graph pre-training models: DGI [42],
GraphCL [52], DSSL [47], and GraphACL [48] follow the “pre-train,
fine-tune” paradigm. (3) Graph prompt learning models: GPPT [37],
GraphPrompt [23], and GraphPrompt+ [54] employ self-supervised
pre-training tasks, and use the same prompts for all nodes in down-
stream adaptation. Note that GPPT is specifically designed for node
classification and cannot be directly used for graph classification.
Therefore, we evaluate GPPT on node classification tasks only.

Note that some graph few-shot learning methods, such as Meta-
GNN [60], AMM-GNN [43], RALE [22], VNT [40], and ProG [38],
are based on the meta-learning paradigm [8]. They require a set of
labeled base classes in addition to the few-shot classes, and thus
are not compared here.
Parameter settings. For all baselines, we use the original authors’
code and reference their recommended settings, while further tun-
ing their hyperparameters to ensure optimal performance. Detailed
descriptions of the implementations and settings for both the base-
lines and our ProNoG are provided in Appendix C.
Downstream tasks and evaluation. We conduct two types of
downstream task: node classification, and graph classification. These
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tasks are set up as 𝑘-shot classification problems, meaning that for
each class, 𝑘 instances (nodes or graphs) are randomly selected for
supervision. The low-homophily datasets, i.e.,Wisconsin, Squirrel,
Chameleon and Cornell, only comprise a single graph and cannot
be directly used for graph classification. Thus, following previous
research [24, 56], we generate multiple graphs by constructing ego-
networks centered on the labeled nodes in each dataset. We then
perform graph classification on these ego-networks, each labeled
according to its ego node. Among datasets with high homophily
ratios, PROTEINS, ENZYMES, BZR and COX2 have ground-truth
graph labels, which we employ directly for graph classification.

Since the 𝑘-shot tasks are balanced classification problems, we
use accuracy to evaluate the performance, in line with prior studies
[22, 23, 43, 54].We pre-train the graph encoder once for each dataset
and then use the same pre-trained model for all downstream tasks.
We generate 100 𝑘-shot tasks for both node classification and graph
classification by repeating the sampling process 100 times. Each
task is executed with five different random seeds, leading to a total
of 500 results per task type. We report the mean and standard
deviation of these 500 outcomes.

6.2 Performance Evaluation

We first evaluate one-shot classification tasks. Then, we vary the
number of shots to investigate their impact on performance.
One-shot performance. We present the results of one-shot node
and graph classification tasks on non-homophilic graphs in Ta-
bles 1 and 2, respectively. We make the following observations: (1)
ProNoG surpasses the vast majority of baseline methods, outper-
forming the best competitor by up to 21.49% on node classification
and 6.50% on graph classification. These results demonstrate its
effectiveness in learning prior knowledge from non-homophilic
graphs and capturing node-specific patterns. (2) Other graph prompt
learning methods, i.e., GPPT, GraphPrompt, and GraphPrompt+,
significantly lag behind ProNoG. Their suboptimal performance
can be attributed to their inability to account for a variety of node-
specific patterns. These results underscore the importance of our
conditional prompting in characterizing node embeddings to cap-
ture the unique pattern of each node. (3) GPPT is at best comparable
to, and often performs worse than other baselines because it is not
well suited to few-shot learning.
Few-shot performance. To assess the performance of ProNoG
with different amounts of labeled data, we vary the number of shots
in the node classification tasks. We present the results in Fig. 3
with several competitive baselines for selected datasets. Note that
given the limited number of nodes inWisconsin, we only conduct
tasks up to 3 shots. We observe that ProNoG generally outper-
forms these baselines in low-shot scenarios (𝑘 ≤ 5) by a significant
margin, showcasing the effectiveness of our approach with limited
labeled data. Furthermore, as the number of shots increases, while
all methods generally show improved performance, ProNoG re-
mains competitive and often surpasses the other methods. We focus
on the one-shot setting for the remaining experimental results.

6.3 Ablation Study

To comprehensively understand the influence of conditional prompt
learning in ProNoG, we perform an ablation study comparing

Squirrel

Chamelon

ENZYMES

PROTEINS

Cora

Wisconsin

Figure 3: Impacts of different shots on node classification.

ProNoG with four of its variants: (1) NoPrompt replaces condi-
tional prompt learning with a classifier for downstream tasks; (2)
SinglePrompt uses a single prompt instead of conditional prompts
to modify all nodes; (3) NodeCond directly uses the output em-
bedding of a node from the pre-trained graph encoder as input to
the condition-net to generate the prompt, without reading out the
subgraph in Eq. (7); (4) ProNoG\sim reads out the subgraph via a
mean pooling without similarity weighting between the ego nodes
and their neighbors as in Eq. (7).

As shown in Table 3, ProNoG consistently outperforms these
variants in all but one instance, in which its performance is still
competitive. This highlights the necessity of reading out subgraphs
with similarity weighting in order to capture the characteristics of
each node, and the advantage of using conditional prompt learning
to adapt to each node.

6.4 Analysis on Pre-Training Methods

To investigate the effect of homophily and non-homophily tasks on
pre-training, we employ two forms of link prediction from GPPT
[37] and GraphPrompt [23] as the homophily tasks, as well as
GraphCL [52] and GraphACL [48] as non-homophily tasks. To
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Table 3: Ablation study on the effects of key components.

Methods Node classification Graph classification
Wisconsin Squirrel Chameleon PROTEINS ENZYMES Citeseer Wisconsin Squirrel Chameleon PROTEINS ENZYMES COX2

NoPrompt 25.41± 3.13 20.60±1.30 22.71±3.54 47.22±11.05 66.59±19.28 43.12± 9.61 20.85±6.74 20.18±1.30 22.34±4.15 53.61± 8.90 21.85±6.17 54.29±17.31
SinglePrompt 32.76± 5.21 20.85±1.32 22.78±3.35 30.33±19.59 65.32±21.67 48.64±10.09 25.77±6.24 20.68±0.91 27.03±3.98 56.35±10.59 19.38±7.12 47.24±15.53
NodeCond 35.56± 4.65 21.26±3.95 21.13±2.23 36.01±19.70 68.54±19.31 48.30±10.22 25.30±4.62 20.98±1.56 27.24±5.24 56.61±10.03 20.70±6.67 55.92±14.66
ProNoG\sim 30.65± 4.05 20.05±0.59 20.96±4.21 33.73±17.82 36.02±20.64 48.74± 2.66 22.05±5.86 19.93±0.42 20.20±1.11 52.30±10.94 16.70±1.28 50.05±17.67
ProNoG 44.72±11.93 24.59±3.41 30.67±3.73 48.95±10.85 72.94±20.23 49.02±10.66 31.54±5.30 20.92±1.37 28.50±5.30 56.11±10.19 22.55±6.70 56.46±14.57

Table 4: Comparison between homophily and non-homophily tasks in pre-training.

Pre-training task
Node classification Graph classification

Wisconsin Cornell PROTEINS ENZYMES Wisconsin Cornell PROTEINS ENZYMES
0.21 0.30 0.66 0.67 0.21 0.30 0.66 0.67

Link Prediction [37] 23.01±11.40 26.27± 7.61 35.88± 5.41 36.74± 2.61 20.96± 4.21 25.38± 2.50 51.50± 6.02 17.47± 4.04
Link Prediction [23] 28.93±11.74 16.29± 7.93 48.95±10.85 52.87±14.73 23.15± 5.67 22.05±13.80 55.83±10.87 22.23± 5.51
GraphACL [48] 33.91± 9.04 29.55±12.30 44.08±10.03 50.57±13.11 26.42± 7.25 26.15± 3.87 54.15±10.58 21.64± 5.88
GraphCL [52] 44.72±11.93 37.90± 9.31 48.28±11.09 51.46±13.93 31.54± 1.37 27.17± 5.30 53.91± 5.51 21.78±12.12

CornellWisconsin

Cora Citeseer

Figure 4: Results across nodeswith varying homophily ratios.

isolate their effects, we apply the same conditional prompt learning
from ProNoG for downstream adaptation.

We present the comparison in Table 4. It can be observed that,
for graphs with lower homophily ratios (i.e., Wisconsin and Cor-
nell), non-homophily tasks significantly outperform the homophily
tasks. Conversely, for graphs with higher homophily ratios (i.e.,
PROTEINS and ENZYMES), the performance of homophily and non-
homophily tasks becomes more comparable. While the homophily
tasks with link prediction may have a slight advantage on highly ho-
mophilic graphs, non-homophily tasks are competitive across both
homophilic and non-homophilic graphs. Hence, non-homophily
tasks provide a more robust solution overall.

6.5 Analysis on Diverse Node Patterns

To evaluate the ability of ProNoG in capturing node-specific pat-
terns, we investigate the classification accuracy of different node
groups with varying homophily ratios, i.e., [0.0, 0.2), [0.2, 0.4),
[0.4, 0.6), [0.6, 0.8), [0.8, 1.0]. In each node group, we compare the
performance of ProNoG with several competitive baselines.

As shown in Fig. 4, ProNoG outperforms the baselines across var-
ious node groups, regardless of their unique characteristics reflected
in different homophily ratios. These consistent improvements in
all groups further demonstrate the effectiveness of ProNoG in cap-
turing diverse node patterns and highlight the advantage of our
proposed conditional prompt learning.

7 Conclusions

In this paper, we explored pre-training and prompt learning on non-
homophilic graphs. The goals are twofold: learning comprehensive
knowledge irrespective of the varying non-homophilic patterns of
graphs, and adapting the nodes with diverse distributions of non-
homophily patterns to downstream tasks in a fine-grained, node-
wise manner. We first revisit graph pre-training on non-homophilic
graphs, providing theoretical insights into the choice of pre-training
tasks. Then, for downstream adaptation, we proposed a condition-
net to generate a series of prompts conditioned on node-specific
non-homophilic patterns. Finally, we conducted extensive experi-
ments on ten public datasets, showing that ProNoG significantly
outperforms diverse state-of-the-art baselines.
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Appendices

A Algorithm

We detail the main steps for conditional prompt generation and
tuning in Algorithm 1. In brief, we iterate through each downstream
task to learn the corresponding prompt vectors. In lines 3–5, we
compute the embedding for each node using the pre-trained graph
encoder, with the pre-trained weights Θ0 frozen throughout the
adaptation process. In lines 6–22, we optimize the condition-net.
Specifically, we perform similarity-weighted readout (lines 9–11),
generate prompts (lines 12–13), modify nodes’ embeddings using
these prompts (lines 14–15), calculate the embedding of the cor-
responding graph (line 16), and update the embeddings for the
prototypical nodes/graphs based on the few-shot labeled data pro-
vided in the task (lines 17–19).

B Homophily and Non-Homophily Methods

We provide further details about the set of positive samples A and
negative samples B for various homophily and non-homophily
methods in Table 5.

C Further Experimental Details

Datasets.We summarize the statistics of the ten datasets used in
our experiments in Table 6.
Details of baselines. We use the authors’ code for all baselines, if
available. To ensure a fair comparison, each model is tuned while
referencing the settings recommended in their respective publica-
tions.We use early stopping strategy in training and set the patience
value to 50 steps. The number of training epochs is set to 2,000.
• For GCN [18], we employ a 3-layer architecture on Wisconsin,
Squirrel, Chameleon, Cornell datasets and a 2-layer architecture
on Cora, Citeseer, ENZYMES, PROTEINS, COX2, BZR datasets.
The hidden dimension is set to 256.
• For GAT [41], we employ a 2-layer architecture and set the hidden
dimension to 256. Additionally, we apply 8 attention heads in the
first GAT layer.
• For H2GCN [65], we employ a 2-layer architecture and set the
hidden dimension to 256.
• For FAGCN [2], we employ a 2-layer architecture. The hyper-
parameter settings are: eps = 0.3, dropout = 0.5, hidden = 256. We
use relu as the activation function.

Algorithm 1 Conditional Prompt Learning for ProNoG
Input: Pre-trained graph encoder with parametersΘ0, a set of downstream

tasks T = {𝑡1, . . . , 𝑡𝑛 }.
Output: Optimized parameters {𝜙𝑡1 , . . . , 𝜙𝑡𝑛 } of 𝑛 condition-nets
1: for 𝑖 ← 1 to 𝑛 do

2: /* Encoding graphs via pre-trained graph encoder */
3: for each graph𝐺 = (𝑉 , 𝐸,X) in task 𝑡𝑖 do
4: H← GraphEncoder(𝐺 ;Θ0 )
5: h𝑣 ← H[𝑣 ], where 𝑣 is a node in𝐺
6: 𝜙𝑖 ← initialization
7: while not converged do

8: for each node 𝑣 ∈ 𝑉 in task 𝑡𝑖 do
9: /* Subgraph sampling and readout by Eq. (7) */
10: Sample 𝑣’s 𝑘-hop subgraph 𝑆𝑣

11: s𝑣 ← Average({h𝑢 · sim(h𝑢 , h𝑣 ) : 𝑢 ∈ 𝑉 (𝑆𝑣 ) } )
12: /* Generate pattern-based prompts by Eq. (8) */
13: p𝑡𝑖 ,𝑣 ← CondNet(s𝑣 ;𝜙𝑡𝑖 )
14: /* Prompt modification by Eq. (9) */
15: h̃𝑡𝑖 ,𝑣 ← p𝑡𝑖 ,𝑣 ⊙ h𝑣

16: h𝑡𝑖 ,𝐺 = Average(h̃𝑡𝑖 ,𝑣 : 𝑣 ∈ V)
17: /* Update prototypical subgraphs */
18: for each class 𝑐 in task 𝑡𝑖 do
19: h̄𝑡𝑖 ,𝑐 ← Average(h̃𝑡𝑖 ,𝑥 : instance 𝑥 belongs to class 𝑐)
20: /* Optimizing the parameters in condition-net */
21: Calculate Ldown (𝜙𝑖 ) by Eq. (10)
22: Update 𝜙𝑖 by backpropagating Ldown (𝜙𝑡𝑖 )
23: return {𝜙𝑡1 , . . . , 𝜙𝑡𝑛 }

• For DGI [41], we utilize a 1-layer GCN as the base model and set
the hidden dimension to 256. Additionally, we employ prelu as
the activation function.
• For GraphCL [52], a 1-layer GCN is also employed as its base
model, with the hidden dimension set to 256. Specifically, we
select edge dropping as the augmentation, with a default aug-
mentation ratio of 0.2.
• For DSSL [47], we search the hidden dimension in {64, 256, 2048}.
We report the best performance on PROTEINS and ENZYMES
with a hidden size of 64, Cora and Citeseer with 2048, and the
rest datasets with 256.
• For GraphACL [48], we search the hidden dimension in {64, 256,
1024, 2048}. We report the best performance on PROTEINS and
ENZYMES with a hidden size of 64, Cora and Citeseer with 2048,
and the rest datasets with 256.
• For GPPT [37], we utilize a 2-layer GraphSAGE as its base model,
setting the hidden dimensions to 256. For the GraphSAGE back-
bone, we employ a mean aggregator.
• For GraphPrompt [23], we employ a 3-layer architecture on Wis-
consin, Squirrel, Chameleon, and Cornell, and a 2-layer architec-
ture on the rest. Hidden dimensions are set to 256. We use link
prediction as the pre-training task.
• For GraphPrompt+ [54], we employ a 2-layer GCN on Cora,
Citeseer, ENZYMES, PROTEINS, COX2, and BZ, and a 3-layer
GCN on the rest. Hidden dimensions are set to 256. We use link
prediction as the pre-training task.

Details of ProNoG. For our proposed ProNoG, we utilize a 2-
layer FAGCN architecture as the backbone for pre-training on the
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Table 5: Positive and negative samples for homophily and non-homophily contrastive methods.

Pre-training task Positive instances A𝑢 Negative instances B𝑢 Homophily task

Link prediction [23, 54, 56] a node connected to node 𝑢 nodes disconnected to node 𝑢 Yes
DGI [42] nodes in graph𝐺 nodes in corrupted graph𝐺 ′ No

GraphCL [52] an augmented graph from graph𝐺 augmented graphs from𝐺 ′ ≠ 𝐺 No
GraphACL [48] nodes with similar ego-subgraph to node 𝑢 nodes with dissimilar ego-subgraph to node 𝑢 No

Table 6: Summary of datasets.

Graphs Homophily
ratio

Graph
classes

Avg.
nodes

Avg.
edges

Node
features

Node
classes

Wisconsin 1 0.21 - 251 199 1,703 5
Squirrel 1 0.22 - 5,201 217,073 2,089 5

Chameleon 1 0.23 - 2,277 36,101 2,325 5
Cornell 1 0.30 - 183 295 1,703 5

PROTEINS 1,113 0.66 2 39.06 72.82 1 3
ENZYMES 600 0.67 6 32.63 62.14 18 3
Citeseer 1 0.74 - 3,327 4,732 3,703 6
Cora 1 0.81 - 2,708 5,429 1,433 7
BZR 405 - 2 35.75 38.36 3 -
COX2 467 - 2 41.22 43.45 3 -

Homophily ratios are calculated by Eq. (1). Note that BZR and COX2 do not have any
node label, and thus no homophily ratios can be calculated.

Table 7: Comparison of the number of tunable parameters

during the downstream adaptation phase.

Methods Wisconsin Chameleon Citeseer Cora

GCN 501,504 660,736 947,968 366,848
FAGCN 440,654 601,130 956,654 370,994
GraphCL 1,280 1,280 1,536 1,792
GraphACL 1,280 1,280 12,288 14,336
GraphPrompt 256 256 256 256
GraphPrompt+ 512 512 512 512
ProNoG 32,768 32,768 32,768 32,768

non-homophilic graphs, namely, Wisconsin, Squirrel, Chameleon,
and Cornell, with edge-dropping implemented on the subgraph
level and hidden dimensions set to 256. For the remaining more
homophilic graphs, we employ a 1-layer GCN for pre-training,
with the hidden dimensions set to 256, except for PROTEINS and
ENZYMES, which use hidden dimensions of 64. We adopt a non-
homophily pre-training task GraphCL [52] for all datasets except
for PROTEINS and ENZYMES. Specifically, GraphCL does not work
well for ProNoG on the two datasets, and instead we use link
prediction [23] and DSSL [47], respectively. Note that the non-
homophily task GraphCL still workswell onmost datasets including
all of the non-homophilic graphs. For the condition-net, we set
the hidden dimension to 64 for all datasets. All experiments are
conducted with a random seed of 39.

D Parameter Efficiency

We evaluate the parameter efficiency of ProNoG compared to
other notable methods. Specifically, we evaluate the number of
parameters that need to be updated or tuned during the down-
stream adaptation phase, and present the results in Table 7. For

Node classification Graph classification

Figure 5: Impact of hidden dimension𝑚 in the condition-net.

GCN and FAGCN, since these models are trained end-to-end, all
model weights must be updated, leading to the least parameter
efficiency. In contrast, for GraphCL and GraphACL, only the down-
stream classifier is fine-tuned, while the pre-trained model weights
are frozen, significantly reducing the number of tunable parameters
in the downstream phase. Prompt-based methods GraphPrompt
and GraphPrompt+ are the most parameter-efficient, as prompts
are lightweight and typically contain fewer parameters than the
downstream classifier. Although our conditional prompt design
requires updating more tunable parameters than GraphPrompt and
GraphPrompt+ during downstream adaptation, the increase is mi-
nor compared to updating the entire model weights, and thus does
not pose a major issue.

E Hyperparameter Analysis

In our experiments, we use a 2-layer MLP with a bottleneck struc-
ture as the condition-net. We evaluate the impact of the hidden
dimension𝑚 of the condition-net, and report the corresponding
performance in Fig. 5. We observe that for both node and graph
classification,𝑚 = 64 generally yields optimal performance, which
we have adopted in all other experiments. Specifically, smaller val-
ues of𝑚 may lack sufficient model capacity, while larger𝑚 may
introduce too many learnable parameters, leading to overfitting in
few-shot settings.
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