
Graph Positional Autoencoders as 
Self-supervised Learners

Yang Liu*, Deyu Bo*, Wenxuan Cao, Yuan Fang, Yawen Li, Chuan Shi†

1* Both authors contributed equally to this research. † Corresponding author.



Background1 Masked Graph Autoencoders

Maked Graph Autoencoders (Masked GAEs) follow a corruption-reconstruction framework, 

which learns graph representations by recovering the missing information of the incomplete 

input graphs.
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Background1 Frequency Bases in Graphs
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⚫ Eigenvectors of the graph Laplacian represent different frequencies, acting as 

frequency bases in the spectral domain.

Given eigen-decomposition 𝐿𝑢𝑘 = 𝜆𝑘𝑢𝑘 with 𝑢𝑘
⊤𝑢𝑘 = 1, we have 𝑢𝑘

⊤𝐿𝑢𝑘 = 𝑢𝑘
⊤𝜆𝑘𝑢𝑘 = 𝜆𝑘.

Since 𝑢𝑘
⊤𝐿𝑢𝑘 = σ 𝑖,𝑗 ∈ℇ 𝑢𝑖,𝑘 − 𝑢𝑗,𝑘

2
, we obtain σ 𝑖,𝑗 ∈ℇ 𝑢𝑖,𝑘 − 𝑢𝑗,𝑘

2
= 𝜆𝑘 .

Therefore, 𝜆𝑘 reflects the frequency magnitude of 𝑢𝑘 over the graph.

𝒖𝟎 𝒖𝟏 𝒖𝟓𝟎



Motivation2
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⚫ Limitations of existing methods:

Existing masked GAEs tend to focus on reconstructing low-frequency information of graphs 

while overlooking high-frequency information. 

⚫ How can we design the corruption and reconstruction objectives to exploit 

the diverse frequency information?

Node Masking:𝐔⊤𝐗 vs 𝐔⊤𝐗′

Edge Masking:𝐔⊤𝐗 vs 𝐔′⊤𝐗
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Inspired by Spectral Theory3

⚫ The eigenvectors of graph Laplacian 

correspond to different frequencies in the 

graph signal processing.

⚫ Directly perturbing eigenvectors can explicitly 

corrupt corresponding frequency information 

in the graph.

Incorporating eigenvector corruption-reconstruction into masked GAEs.

✓ GNN Expressivity: Eigenvectors represent global structural patterns, which cannot be 

easily approximated by GNNs, whose expressiveness is bounded by the 1-WL test.

✓ Eigenvector Ambiguity: Eigenvectors suffer from sign- and basis- ambiguity issues.

Directly reconstructing eigenvectors leads to non-unique solutions, thereby affecting 

the robustness of GAEs.

Eigenvector offsetting: 𝐔⊤𝐗 vs 𝐔′⊤𝐗

⚫ Two main challenge of reconstructing the eigenvectors:
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GraphPAE4 Overall Framework
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GraphPAE4 Data Corruption

⚫ Feature Masking.

Randomly sampling a subset of nodes                and reset their 

features. The corrupted feature matrix     is defined as:

⚫ Position Offsetting.

is sampled from

Adding random offsets to node position:

⚫ Relative Positional Encoding.

Feature Masking

Position Offsetting
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GraphPAE4 Encoder

⚫ Overall formulation.

⚫ Feature Path: PE-enhanced MPNNs.

⚫ Position Path: Refine Node Positions.



9

GraphPAE4 Decoder

⚫ Feature Reconstruction.

⚫ Position Reconstruction.

⚫ Overall Loss Function.
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Table 1. Node classification results of different graph self-supervised learning.

Experiments5 Performance of Node Classification
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Table 2. Graph regression and classification results of different graph self-supervised learning 

on OGB datasets.

Experiments5 Performance of Graph Prediction
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Experiments5 Ablation Studies

Table 3. Ablation studies of position reconstruction and framework design.

Figure 1: Influence of loss weight ℒ𝑝𝑜𝑠 and the number of eigenvectors 𝐾.
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