
Graph Positional Autoencoders as Self-supervised Learners
Yang Liu∗

Beijing University of Posts and
Telecommunications

Beijing, China
liuyangjanet@bupt.edu.cn

Deyu Bo∗
National University of Singapore

Singapore
bodeyu1996@gmail.com

Wenxuan Cao
Beijing University of Posts and

Telecommunications
Beijing, China

wenxuanc@bupt.edu.cn

Yuan Fang
Singapore Management University

Singapore
yfang@smu.edu.sg

Yawen Li
Beijing University of Posts and

Telecommunications
Beijing, China

warmly0716@126.com

Chuan Shi†
Beijing University of Posts and

Telecommunications
Beijing, China

shichuan@bupt.edu.cn

Abstract
Graph self-supervised learning seeks to learn effective graph rep-
resentations without relying on labeled data. Among various ap-
proaches, graph autoencoders (GAEs) have gained significant at-
tention for their efficiency and scalability. Typically, GAEs take
incomplete graphs as input and predict missing elements, such as
masked node features or edges. Although effective, our experimen-
tal investigation reveals that traditional feature or edge masking
paradigms primarily capture low-frequency signals in the graph
and fail to learn expressive structural information. To address these
issues, we propose Graph Positional Autoencoders (GraphPAE),
which employ a dual-path architecture to reconstruct both node
features and positions. Specifically, the feature path uses positional
encoding to enhance the message-passing processing, improving
the GAEs’ ability to predict the corrupted information. The posi-
tion path, on the other hand, leverages node representations to
refine positions and approximate eigenvectors, thereby enabling
the encoder to learn diverse frequency information. We conduct
extensive experiments to verify the effectiveness of GraphPAE,
including heterophilic node classification, graph property predic-
tion, and transfer learning. The results demonstrate that GraphPAE
achieves state-of-the-art performance and consistently outperforms
the baselines by a large margin.

CCS Concepts
• Information systems→ Data mining.

Keywords
Graph Neural Networks, Self-supervised Learning, Graph Autoen-
coders, Positional Encoding
∗Both authors contributed equally to this research.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’25, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1454-2/2025/08
https://doi.org/10.1145/3711896.3736990

ACM Reference Format:
Yang Liu, Deyu Bo,Wenxuan Cao, Yuan Fang, Yawen Li, and Chuan Shi. 2025.
Graph Positional Autoencoders as Self-supervised Learners. In Proceedings
of the 31st ACM SIGKDDConference on Knowledge Discovery and DataMining
V.2 (KDD ’25), August 3–7, 2025, Toronto, ON, Canada. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3711896.3736990

KDD Availability Link:
The source code of this paper has been made publicly available at https:
//doi.org/10.5281/zenodo.15516721.

1 Introduction
Graph neural networks (GNNs) have achieved significant success
across various fields, including social network analysis [7, 47, 72],
recommendation systems [13, 44], and drug discovery [5, 24, 67].
However, training effective GNNs in real-world applications re-
mains challenging due to the limited availability of labeled data
in many domains [73, 79]. To address this problem, graph self-
supervised learning is proposed to learn graph representations
without labeled data [33, 66, 74].

Among existing approaches, the generative [56, 62] and con-
trastive [25] learning paradigms have dominated recent advances.
In particular, graph autoencoders (GAEs) [18, 26] have gained at-
tention due to their simplicity, efficiency, and scalability. The GAEs
follow a corruption-reconstruction framework, which learns graph
representations by recovering the missing information of the in-
complete input graphs, as Table 1 illustrates. For example, Graph-
MAE [18] replaces node features with a learnable token, while
Bandana [77] proposes a non-discrete edge masking strategy. More-
over, some GAEs even go beyond reconstructing node features and
edges by targeting structural features like degree [28]. Despite their
success, the performance of GAEs highly depends on the choice
of corruption and reconstruction objectives. Therefore, a natural
question arises: Do existing feature or edge masking mechanisms
fully exploit the graph data? If not, what alternative objectives could
be designed to further improve the performance of GAEs? A well-
informed answer can help us identify the weaknesses of existing
masking strategies and deepen our understanding of GAEs.

To answer this question, we first revisit the feature and edge
masking strategies from a spectral perspective [2, 3]. Specifically,
we transform the node features X into the spectral domain by using
the eigenvectors of graph Laplacian U⊤ and examine its frequency

https://orcid.org/0000-0002-6230-0282
https://orcid.org/0000-0003-2063-8223
https://orcid.org/0009-0001-0304-8363
https://orcid.org/0000-0002-4265-5289
https://orcid.org/0000-0003-2662-3444
https://orcid.org/0000-0002-3734-0266
https://doi.org/10.1145/3711896.3736990
https://doi.org/10.1145/3711896.3736990
https://doi.org/10.5281/zenodo.15516721
https://doi.org/10.5281/zenodo.15516721

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Yang Liu et al.

(a) Feature Masking (b) Edge Masking (c) Eigenvector offsetting

Figure 1: Frequency magnitudes of the original and corrupted graphs in the Squirrel dataset.

Table 1: Comparison of different graph autoencoders.

Model
Corruption Reconstruction

Feature Edge Position Feature Edge Other

GraphMAE [18] ! - - ! - -
StructMAE [32] ! - - ! - -
AUG-MAE [59] ! - - ! - -
S2GAE [50] - ! - - ! -
SeeGera [30] ! ! - ! ! -
Bandana [77] - ! - - ! -
MaskGAE [28] - ! - ! - Degree
GiGaMAE [45] ! ! - - - Latent

Our work ! - ! ! - Position

magnitude U⊤X. In case of feature masking, we randomly mask
20% node features and denote it as X̃, while for edge masking, we
randomly remove 20% edges and construct the corrupted graph
eigenvectors Ũ⊤. The frequency magnitude changes of U⊤X̃ and
Ũ⊤X are shown in Figures 1(a) and 1(b), respectively. It can be
observe that the magnitude differences between original and cor-
rupted graphs are more pronounced in the low-frequency band,
i.e., [0.0, 0.1], while the differences decrease at higher frequencies.
Notably, to effectively minimize the reconstruction loss, GAEs will
primarily focus on the frequency bands with larger discrepancies.
As a result, existing GAEs mainly reconstruct low-frequency in-
formation and overlook the high-frequency information, which
has been shown to be valuable in real-world tasks [4, 60]. More
experimental details are provided in Appendix A.

Given the above weakness of existing GAEs, it is natural to ask:
How can we design the corruption and reconstruction objectives to ex-
ploit the diverse frequency information? Essentially, the eigenvectors
of graph Laplacian represent different frequencies. Directly per-
turbing and reconstructing the eigenvectors can help GAEs learn
different frequency information in graphs. Figure 1(c) illustrates
the frequency magnitudes of the eigenvectors with random offsets,
i.e., Ũ⊤𝑋 = (U + 𝛿)⊤𝑋 . We observe that this strategy perturbs a
broader range of frequency components, particularly in higher-
frequency, i.e. [0.2, 0.5], enabling the model to capture more diverse

frequency information. However, reconstructing the eigenvectors is
not a trivial task and presents two main challenges: (1) Eigenvectors
represent the global structural patterns of a graph, which cannot be
easily approximated by basic GNNs. Existing GAEs typically adopt
message-passing neural networks (MPNNs) as the encoder, whose
expressiveness is bounded by the 1-WL test [68]. The intrinsic weak-
ness of MPNNs restricts GAEs’ ability to capture long-range depen-
dencies between nodes and higher-order graph patterns [12, 63].
(2) Eigenvectors suffer from sign- and basis-ambiguity issues [31].
Directly reconstructing the eigenvectors leads to non-unique solu-
tions, affecting the robustness of GAEs [1, 58].

To overcome these challenges, we propose Graph Positional Au-
toencoders (GraphPAE) for graph self-supervised learning. Graph-
PAE adopts a dual-path architecture to address both the expressivity
and ambiguity issues. Specifically, in the feature path, GraphPAE
integrates positional encoding (PE) into the message-passing pro-
cess to enhance the expressiveness of MPNNs, thus improving the
model’s ability to reconstruct corrupted information. Moreover,
in the position path, node representations are used to refine the
PE, which approximates the eigenvectors, thereby transferring di-
verse frequency information into the encoder. Finally, in the recon-
struction stage, instead of directly recovering the raw eigenvectors,
GraphPAE uses the relative node distance as a surrogate objective,
avoiding potential ambiguity issues.

Contributions. The contributions of our paper are as follows:

(1) We are the first to explore the masking strategy in GAEs from a
spectral perspective. By comparing the frequency magnitudes
between original and corrupted graphs, we identify that existing
GAEs focus on reconstructing the low-frequency information
of graphs and neglecting other frequencies.

(2) We propose GraphPAE, a novel graph positional autoencoder
that learns graph representations by reconstructing both node
features and positions, thereby enabling GAEs to capture a
broader range of frequency information.

(3) We benchmark GraphPAE against state-of-the-art baselines
across various tasks, including node classification, graph prop-
erty prediction, and transfer learning. The results on 14 graphs
demonstrate that GraphPAE consistently outperforms the base-
lines and shows impressive performance on heterophilic graphs.

Graph Positional Autoencoders as Self-supervised Learners KDD ’25, August 3–7, 2025, Toronto, ON, Canada

2 Related Work
We provide an overview of two main areas related to our work,
namely generative approaches in graph self-supervised learning
and positional encoding techniques to enhance structural expres-
siveness in GNNs.

2.1 Generative Graph Self-supervised Learning
Generative graph learning encompasses a set of graph self-supervised
learning techniques aimed at reconstructing missing information
in incomplete input graphs. It can be broadly categorized into au-
toregressive and autoencoding approaches.
Graph Autoregressive models (GARs). GARs treat sequential
graph generation as the pre-training task, where the node or edge is
predicted based on its prior context. GPT-GNN [21] factorizes each
node generation into attribute and edge generation and replenishes
the omitted parts by an adaptive queue. MGSSL [76] introduces
motif generation into pre-training. GraphsGPT [14] transforms non-
Euclidean graphs into learnable Euclidean words and reconstructs
the original graph from these words.
Graph Autoencoders (GAEs). GAEs reconstruct all desired con-
tent once from the latent representation output by the encoder.
Early GAEs (e.g., VGAE [26] and ARGVA [38]) learn representations
through link reconstruction and spark a series of work, including
feature reconstruction (e.g., GALA [39] and WGDN [8]) and com-
bination reconstruction of structure and feature (e.g., GATE [43]).
However, these traditional GAEs often perform poorly in down-
stream tasks, except link prediction, which is attributed to their
overemphasis on proximity information at the expense of struc-
tural information [15]. Recently, masked GAEs [18, 20] have be-
come highly successful models for representation learning. Graph-
MAE [18] and GraphMAE2 [17] successfully bridge the perfor-
mance gap between graph contrastive learning and generative learn-
ing by reconstructing masked features for training. AUG-MAE [59]
introduces an adversarial masking strategy to enhance feature align-
ment and add a uniformity regularizer to promote high-quality
graph representations. Additionally, some works are focusing on
masking and reconstructing graph structures (e.g., edges [28, 50]
and paths [28]). Bandana [77] uses continuous and dispersive edge
masks and bandwidth prediction instead of discrete edge masks and
reconstruction. Besides, some works mask features and edges si-
multaneously [30, 45] and propose novel reconstruction objectives
such as latent embeddings [45].

2.2 Graph Positional Encoding
Positional encodings (PEs), originally designed to enhance trans-
formers by encoding positional information in sequential data,
have been introduced in graph learning to provide explicit position-
aware features. By assigning unique identifiers to nodes based on
their structural positions, PEs enable graph neural networks (GNNs)
to distinguish non-isomorphic structures beyond the limitations
of the 1-WL test. Existing graph PEs can be divided into two main
categories: Laplacian-based PEs and Distance-based PEs.
Laplacian-based PEs. These methods leverage the eigenvectors of
the graph Laplacian matrix as initial node positional features [9–11].

Eigenvectors form a natural basis for encoding graph structure, sim-
ilar to how sinusoidal functions represent positional information
in sequential models [53]. Serving as PEs, eigenvectors have two
traditional constraints, i.e., sign- and basis ambiguity [31]. To keep
the models robust to sign ambiguity, [9, 10] randomly flip the sign
of the eigenvectors during training. SAN [27] introduces the infor-
mation of eigenvalues into PEs and leverages a transformer-based
positional encoder, enabling models to be more informative and ex-
pressive. PEG [58] solves the sign- and basis-ambiguity by treating
the distance of eigenvectors between node pairs as PEs. [31] pro-
pose SignNet and BasisNet to learn sign- and basis-invariant PEs,
respectively. [1, 22] study stable PEs that are robust to disturbance
of the Laplacian matrix.
Distance-based PEs. These approaches assign positional features
to nodes based on their relative distances within the graph struc-
ture, which are typically derived from spatial relationships [29, 41].
One common approach is to use the random walk matrix cap-
turing structural relationships in a probabilistic manner [10, 11].
Another popular method is to encode the shortest distance between
node pairs [29, 41, 69]. For example, Graphormer [69] incorporates
shortest-path distances into its attention mechanism. Additionally,
GraphiT [37] encodes PEs with a diffusion kernel, enabling more
flexible and adaptive representations of node relationships. [46]
introduces a novel positional encoding scheme that extends trans-
formers to tree-structured data, enabling efficient and parallelizable
sequence-to-tree, tree-to-sequence, and tree-to-tree mappings. [61]
first introduces PEs in graph self-supervised learning and designs
a GNN framework that integrates a k-hop message-passing mecha-
nism to enhance its expressiveness.

3 Preliminaries
Before describing our method, we first define some notations and
introduce some important concepts used in this paper.
Problem Definition. Given a graph G = {V, E,X}, where V is
the node set withV = {𝑣𝑖 }𝑁𝑖=1, E is the set of edges, and X ∈ R𝑁×𝑑

represents the 𝑑-dimensional node feature matrix. We use the ad-
jacency matrix A ∈ {0, 1}𝑁×𝑁 to describe the graph structure,
where 𝐴𝑖 𝑗 = 1 if there is an edge between 𝑣𝑖 and 𝑣 𝑗 , and 𝐴𝑖 𝑗 = 0
otherwise. The goal of our framework is to learn an effective
graph encoder 𝑓𝑒𝑛𝑐 (·) without relying on labels from downstream
tasks. Once trained, the encoder 𝑓𝑒𝑛𝑐 (·) generates node represen-
tations as H = 𝑓𝑒𝑛𝑐 (G) ∈ R𝑁×𝑑ℎ or graph representations as
HG = READOUT

(
H𝑣𝑖 | 𝑣𝑖 ∈ V

)
∈ R𝑑ℎ , where READOUT is a

permutation-invariant function such as mean, max or sum pool-
ing. The representations can then be used to train a simple linear
classifier on labeled data from downstream tasks.
Laplacian Graph Eigenvectors. The normalized graph Laplacian
matrix L is defined as L = I𝑁−D−1/2AD−1/2, where I𝑁 is an identity
matrix and D is the degree matrix with 𝐷𝑖𝑖 =

∑
𝑗 𝐴𝑖 𝑗 for 𝑣𝑖 ∈ V ,

and 𝐷𝑖 𝑗 = 0 for 𝑖 ≠ 𝑗 . The Laplacian matrix L can be decomposed
as L = U𝚲U⊤, where 𝚲 = diag({𝜆𝑖 }𝑁𝑖=1) is the diagonal matrix of
eigenvalues, and U = [u1, · · · , u𝑁] ∈ R𝑁×𝑁 consists of a set of
eigenvectors. Each eigenvector u𝑖 ∈ R𝑁 corresponds to eigenvalue
𝜆𝑖 , where the eigenvalues are ordered as 0 ≤ 𝜆1 ≤ · · · ≤ 𝜆𝑁 ≤ 2.
Given eigen-decomposition Lu𝑖 = 𝜆𝑖u𝑖 with u⊤

𝑖
u𝑖 = 1, we have

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Yang Liu et al.

𝑓!"#

X" ∈ ℝ!×#

Encoder DecoderCorruption

Feature Masking

Position Offsetting

X ∈ ℝ!×#

P" ∈ ℝ|ℰ|

P ∈ ℝ|ℰ|

X" & ∈ ℝ!×#!

P & ∈ ℝ ℰ ×#"

X & ∈ ℝ!×#!

P" & ∈ ℝ ℰ ×#"

X′ ∈ ℝ!×#

P′ ∈ ℝ|ℰ|

𝑓$!#
%

𝑓$!#
&

𝐿'!()

𝐿*+,

1

5

4

2

3

𝑥["]

𝑥["]

1

5

4

2

3

X ∈ ℝ!×#

P ∈ ℝ|ℰ|

(a) Overall pipeline of GraphPAE.

{P!,#
(%)}

{P!,#
(%'()}

X

M
LP

G
aussian

𝑓!"#
$ 𝑓!"#

%

X)
X * X (

P P)
P (P *

X!
(%) {X#

(%)}

𝑓&''

⊕

Normalization

⊙

Sum

X!
(%'()

Linear Linear Linear

Feature Position

(b) Encoder of GraphPAE

Figure 2: (a): GraphPAE integrates a positional corruption-reconstruction mechanism to encourage the GAE to capture diverse
frequency information. For feature reconstruction, masked features are encoded with P and decoded to recover original features.
For positional reconstruction, noise is added to Ũ to corrupt relative distances, which are then encoded with X and decoded to
recover the original distances. Figure (b): The encoder employs a dual-path architecture to update node X(𝑙) and positional
representations P(𝑙) at each layer. The feature path integrates positional encodings to enhance message passing, improving the
GAE’s ability to reconstruct corrupted features. The position path utilizes node representations to refine positional embeddings
to approximate original pairwise distances.

u⊤
𝑖
Lu𝑖 = 𝜆𝑖 . Since u⊤𝑖 Lu𝑖 =

∑
(𝑗,𝑘) ∈E (u𝑖, 𝑗 −u𝑖,𝑘)2, we finally derive

that
∑

(𝑗,𝑘) ∈E (u𝑖, 𝑗 −u𝑖,𝑘)2 = 𝜆𝑖 , which indicates that 𝜆𝑖 reflects the
frequency magnitude of eigenvector u𝑖 over the graph. In this paper,
we follow the popular positional encoding methods and adopt top-𝑘
eigenvectors as initial positions to reduce complexity. Therefore,
we redefine U = [u1, · · · , u𝐾] ∈ R𝑁×𝐾 , where 𝐾 ≤ 𝑁 .

4 Proposed Framework: GraphPAE
In this section, we introduce GraphPAE, a novel GAE designed to
reconstruct both node features and positions. There are three key
components in GraphPAE: corruption, encoder, and decoder, as
illustrated in Figure 2(a).

4.1 Data Corruption
The corruption-reconstruction paradigm has become a basic com-
ponent of autoencoders. A well-designed masking strategy can
prevent information leakage and enhance model efficiency [16].
Existing GAEs commonly apply the random masking strategy to
the discrete nodes and edges. However, node positions, such as
eigenvectors, are continuous by nature and are not suitable for the

random masking approach. Therefore, we adopt different corrup-
tion strategies for these two modalities.
Feature Masking. We follow GraphMAE [18] and replace the
masked node features with a learnable vector. Specifically, we ran-
domly sample a subset of nodes Ṽ ⊂ V and reset their features.
The corrupted feature matrix X̃ is defined as:

X̃𝑖 =

{
x[𝑀] , if 𝑣𝑖 ∈ Ṽ
X𝑖 , if 𝑣𝑖 ∉ Ṽ

(1)

where X𝑖 ∈ R𝑑 is the original feature of node 𝑣𝑖 , and x[𝑀] ∈ R𝑑 is
a learnable vectors.
Position Offsetting. Inspired by the recent advances in molecular
representation learning [78], we propose to add random offsets
to node positions. Specifically, we use the top-𝑘 eigenvectors of
graph Laplacian U ∈ R𝑁×𝐾 as the initialization of node positions.
Similar to the feature corruption, we define the corruption of node
positions as:

Ũ𝑖 =

{
U𝑖 + 𝛿, if 𝑣𝑖 ∈ Ṽ
U𝑖 , if 𝑣𝑖 ∉ Ṽ

(2)

Graph Positional Autoencoders as Self-supervised Learners KDD ’25, August 3–7, 2025, Toronto, ON, Canada

where U𝑖 ∈ R𝐾 denotes the position for node 𝑣𝑖 and 𝛿 ∈ R𝐾 is a
noise vector sampled from a uniform distributionU

(
−𝜇𝑝 , 𝜇𝑝

)
. In

practice, we set 𝜇𝑝 to 0.001 or 0.01 for different datasets.
Relative Positional Encoding. Reconstructing eigenvectors en-
ables GAEs to learn different frequency information. However, it
is challenging to recover the corrupted eigenvectors as they suffer
from the sign- and basis-ambiguity [1, 31]. To address this, we com-
pute the Euclidean distance between each pair of nodes to obtain
their relative node distances

P𝑖, 𝑗 =

{
∥U𝑖 − U𝑗 ∥2, if A𝑖, 𝑗 = 1
0, otherwise

(3)

where P ∈ R𝑁×𝑁 is the relative distance matrix and we use P̃
to indicate its corrupted version. The relative distance matrix is
used as a surrogate of node positions to eliminate the ambiguity of
eigenvectors.

4.2 GraphPAE Encoder
After corruption, the node features and pair-wise distances are then
fed into the encoder to learn node and position representations
through message-passing, which can be formulated as

X(𝑙+1)
𝑖

, P(𝑙+1)
𝑖

= 𝑓
(𝑙+1)
enc

(
X(𝑙)
𝑖
,

{
X(𝑙)
𝑗

}
𝑗∈N𝑖

, P(𝑙)
𝑖

)
, (4)

where 𝑙 ∈ {0, 1, 2, ..., 𝐿} indicates the layer of encoder, and N𝑖 is
the neighbors of node 𝑣𝑖 . The first layer of the encoder, e.g., 𝑓

(0)
enc ,

is designed to align the dimensions of node features and position
representations. Specifically, it first lifts the scalar relative distance
P𝑖, 𝑗 ∈ R into a vector representation P(0)

𝑖, 𝑗
∈ R𝑑ℎ through a series

of Gaussian RBF kernels

P(0)
𝑖, 𝑗

= MLP
([
𝐺 (P𝑖, 𝑗 ; 𝜇1, 𝜎), · · · ,𝐺 (P𝑖, 𝑗 ; 𝜇𝑑 , 𝜎)

])
, (5)

where MLP stands for Multi-layer Perceptron and 𝐺 (P𝑖, 𝑗 ; 𝜇𝑘 , 𝜎) =
exp

(
−

(
P𝑖, 𝑗 − 𝜇𝑘

)2 /2𝜎2
)
is the 𝑘-th Gaussian basis functions with

mean 𝜇𝑘 and standard deviation 𝜎 . As for the node features, it uses
another MLP to transform them into 𝑑ℎ-dimension representations

X(0)
𝑖

= MLP (X𝑖) . (6)

After transformation, the encoder needs to aggregate information
from both sides to update the node and position representations
layer by layer, as shown in Figure 2(b).
Feature Path: PE-enhanced MPNNs. It is well-established that
the expressive power of traditional MPNNs is bounded by the 1-WL
test [6, 10]. Fortunately, existing methods prove that adding posi-
tion information to the message-passing process can significantly
improve the expressive power of MPNNs [11, 22]. Inspired by the
recent progress in graph PEs [57], we propose to incorporate the
position representation into MPNNs as follows:

𝛼
(𝑙)
𝑖, 𝑗

= 𝑓att
(
X(𝑙)
𝑖
,X(𝑙)

𝑗

)
, 𝛼

(𝑙)
𝑖, 𝑗

∈ R𝑑 ,

X(𝑙+1)
𝑖

=
∑︁
𝑗∈N𝑖

(
𝛼
(𝑙)
𝑖, 𝑗

+ P(𝑙)
𝑖, 𝑗

)
⊙ MLP

(
X(𝑙)
𝑗

)
,

(7)

where 𝑓att is the attention function to calculate the weights of neigh-
bors and ⊙ indicates the element-wise multiplication. In general,
there are many MPNNs to implement the attention function. For

example, if the encoder is GAT [54], then 𝑑ℎ corresponds to the
number of attention heads, and the attention function is defined as

𝛼
(𝑙)
𝑖, 𝑗

= LeakyReLU
(
w𝑇

[
W(𝑙)X(𝑙)

𝑖
∥ W(𝑙)X(𝑙)

𝑗

])
, w ∈ R2𝑑ℎ .

(8)
For GatedGCN, 𝑑ℎ is equal to the dimension of the node represen-
tation, and the attention function is defined as

𝛼
(𝑙)
𝑖, 𝑗

= Sigmoid
(
W(𝑙)

1 X(𝑙)
𝑖

+W(𝑙)
2 X(𝑙)

𝑗

)
. (9)

Without loss of generality, we omit edge features in the formulation.
Regarding the normalization function in Figure 2(b), GAT uses the
Softmax function, and GatedGCN applies degree normalization.
Position Path: RefineNode Positions. The feature path improves
the expressiveness of GraphPAE, but still lacks diverse frequency
information. To solve this issue, the position path uses the learned
attention weights to update the position representations

P(𝑙+1)
𝑖, 𝑗

= 𝛼
(𝑙)
𝑖, 𝑗

+ P(𝑙)
𝑖, 𝑗
. (10)

Intuitively, the attention weights gradually refine position represen-
tations to approach the ground-truth node positions. Notably, the
relative distance P is calculated based on the eigenvectors of graph
Laplacian, which contains various frequency information, from
low-frequency u1 to high-frequency u𝐾 . Therefore, leveraging the
refined position representations to reconstruct the relative distance
can force the encoder to learn diverse frequency information. We
find that this design is quite useful in the heterophilic node clas-
sification task, where high-frequency information dominates the
classification performance. Experiments can be seen in Section 5.1.

4.3 GraphPAE Decoder
So far, we have described the encoder of GraphPAE, which effec-
tively learns both node and position representations. The decoder
then utilizes these representations to recover the corrupted infor-
mation. In practice, we find that corrupting both node features and
positions simultaneously can negatively impact performance, as
the recovery process in one path depends on the information from
the other. To resolve this, we corrupt only one path’s data during
training, leaving the other path’s data intact.
Feature Reconstruction. The node representations are learned
by masking node features and preserving the node positions

X̃(𝐿)
𝑖

, P(𝐿)
𝑖

= 𝑓enc

(
X̃(0)
𝑖
,

{
X̃(0)
𝑗

}
𝑗∈N𝑖

, P(0)
𝑖

)
, (11)

To reconstruct the original node features, we apply a feature decoder
𝑓 𝑋dec to map the node representations back to the feature space. The
reconstruction process is defined as

X
′
𝑖 = 𝑓

𝑋
dec

(
X̃(𝐿)
𝑖

)
, (12)

where X
′
𝑖
is the is the reconstructed feature of node 𝑣𝑖 . We follow

GraphMAE and use the scaled cosine error (SCE) as the loss function
of feature reconstruction

Lfeat =
1
|Ṽ |

∑︁
𝑣𝑖 ∈Ṽ

(
1 −

X𝑇
𝑖
X

′
𝑖

∥X𝑖 ∥ · ∥X
′
𝑖
∥

)𝛾
, (13)

where 𝛾 ≥ 1 is a hyperparameter.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Yang Liu et al.

Algorithm 1 GraphPAE.

1: Input: Graph G = {V, E,X}, masking ratio 𝑟 , epochs 𝑇 , and
noise scale 𝜇𝑝 .

2: Preprocess: Compute top-𝐾 eigenvectors U and node distance
matrix P with U.

3: Init: Encoder 𝑓enc, feature decoder 𝑓 𝑋dec, position decoder 𝑓 𝑃dec,
and learnable token x[𝑀] .

4: for 𝑡 = 1 to 𝑇 do
5: Randomly select 𝑟 |V| nodes fromV to form Ṽ .
6: Replace features in Ṽ with x[𝑀] to obtain X̃.
7: Add noise 𝛿 ∼ U(−𝜇𝑝 , 𝜇𝑝) to eigenvectors of nodes in Ṽ

for Ũ; compute corrupted distances P̃ with Ũ.
⊲ Data Corruption

8: Encode X̃ with P via 𝑓enc for node representations X̃(𝐿) .
9: Encode P̃ with X via 𝑓enc for positional encodings P̃(𝐿) .

⊲ Encoder
10: Decode X̃(𝐿) and P̃(𝐿) via 𝑓 𝑋dec and 𝑓

𝑃
dec to reconstruct fea-

tures X′ and distances P′.
11: Compute Lfeat with X and X′, and Lpos with P and P′.
12: L = Lfeat + 𝛼Lpos.

⊲ Decoder
13: Update 𝑓enc, 𝑓 𝑋dec, and 𝑓

𝑃
dec by minimizing L.

14: end for
15: return Trained encoder 𝑓enc.

PositionReconstruction.The position representations are learned
by offsetting eigenvectors and preserving the original node features

X(𝐿)
𝑖

, P̃(𝐿)
𝑖

= 𝑓enc

(
X(0)
𝑖
,

{
X(0)
𝑗

}
𝑗∈N𝑖

, P̃(0)
𝑖

)
, (14)

Similarly, a position decoder 𝑓 𝑃dec is used to recover the original
pair-wise node distances

P
′
𝑖, 𝑗 = 𝑓

𝑃
dec

(
P̃(𝐿)
𝑖, 𝑗

)
(15)

For position reconstruction loss, we adopt Huber loss [23], which
can make smooth gradients for better convergence

L𝑖, 𝑗pos =


(
P′𝑖,𝑗−P𝑖,𝑗

)2

2 , if |P′
𝑖, 𝑗

− P𝑖, 𝑗 | < 1
|P′
𝑖, 𝑗

− P𝑖, 𝑗 | − 1
2 , otherwise

Lpos =
1∑

𝑣𝑖 ∈Ṽ |N𝑖 |
∑︁

𝑣𝑖 ∈Ṽ, 𝑗∈N𝑖

L𝑖, 𝑗pos

(16)

The overall loss function is formulated as a weighted combination
of the feature and position reconstruction losses

L = Lfeat + 𝛼Lpos (17)

where 𝛼 is the hyperparameter. The pseudocode of GraphPAE is
presented in Algorithm 1.

5 Experiments
In this section, we conduct extensive experiments, including node
classification, graph prediction, and transfer learning on large-scale
molecule graphs to verify the effectiveness of GraphPAE. Moreover,

we perform ablation studies on position reconstruction and dual-
path design. Finally, we analyze the influence of the loss of weight
and the number of eigenvectors.

5.1 Node Classification
Dataset.We evaluate the performance of GraphPAE on 6 represen-
tative heterophilic graphs: BlogCatalog [35], Chameleon, Squirrel,
Actor [40], arXiv-year [19], and Penn94 [52]. Specifically, arXiv-
year and Penn94 are large-scale graphs (> 40,000) to evaluate the
scalability of the methods. As these datasets place greater emphasis
on high-frequency information, they are well suited to evaluate
GraphPAE’s ability to capture diverse frequency components.
Baselines and Settings.We benchmark GraphPAE against a wide
range of graph self-supervised baselines, which can be roughly di-
vided into: (1) contrastive learning, i.e., DGI [55], BGRL [51], MV-
GRL [15], CCA-SSG [75], and Sp2GCL [1]. (2) graph autoencoders,
i.e., VGAE [26], GraphMAE [18], GraphMAE2 [17], MaskGAE [28],
S2GAE [50], and AUG-MAE [59]. We use GAT with 4 heads and
1024 hidden units as the encoder for all methods, and the number
of layers is searched in the range of {2, 3}. Moreover, we adopt
two-layer MLPs with ReLU activation as both feature and position
decoders for efficiency and scalability. In the evaluation protocol,
we freeze the encoder and generate node representations. The node
representations are then input into a linear classifier for training
with labeled data and inference for node classification. For all meth-
ods, we use the Adam optimizer and run 10 times on each graph.
Results. As shown in Table 2, GraphPAE consistently outperforms
all baseline methods across all datasets, demonstrating the effective-
ness of our framework. We highlight two important observations
as follows. (1) GraphPAE surpasses both spatial- and spectral-based
contrastive learning methods on most datasets, indicating its ability
to effectively encode both spatial and spectral patterns through the
joint reconstruction of features and positions. (2) GraphPAE also
consistently outperforms existing GAEs, including those focused on
feature reconstruction, structure reconstruction, and hybrid strate-
gies. This superior performance is mainly attributed to two key
factors. First, the incorporation of positional encodings enhances
the expressivity of node representations. Second, reconstructing
positions encourages the GAE to capture diverse frequency infor-
mation, leading to high-quality graph representations.

5.2 Graph Prediction
Datasets. For graph-level tasks, we evaluate GraphPAE on 7 OGB
datasets [19], including 3 graph regression tasks and 4 graph classi-
fication tasks. For all datasets, we use public splits for a fair com-
parison. We use MSE and ROC-AUC as the evaluation metrics for
regression and classification, respectively.
Baselines and Settings. We select 5 contrastive learning meth-
ods, i.e., InfoGraph [49], GraphCL [71], MVGRL [15], JOAO [70],
and Sp2GCL [1], and 4 graph autocoders, i.e., GraphMAE [18],
GraphMAE2 [17], StructMAE [32], and AUG-MAE [59]. We use
a two-layer GatedGCN as the encoder and set the hidden dimen-
sion 𝑑ℎ = 300. We adopt two-layer MLPs as feature and position
decoders. For evaluation, we freeze the encoder to output node
representations and input them into pooling functions for graph
representations. Similarly, we input the graph representations into

Graph Positional Autoencoders as Self-supervised Learners KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Table 2: Node classification results of different graph self-supervised learning, mean accuracy (%) ± standard deviation. Bold
indicates the best performance and underline means the runner-up.

Dataset
Small Graphs Large Graphs

BlogCatalog Chameleon Squirrel Actor arXiv-year Penn94

Supervised 80.52±2.10 80.02±0.87 71.91±1.03 33.93±2.47 46.02±0.26 81.53±0.55

DGI 72.07±0.16 43.83±0.14 34.56±0.10 27.98±0.09 - -
BGRL 79.74±0.46 61.24±1.07 43.24±0.52 26.61±0.57 41.43±0.04 63.31±0.49
MVGRL 63.24±0.94 73.19±0.42 60.09±0.44 34.64±0.20 - -
CCA-SSG 74.00±0.28 75.00±0.75 61.58±1.98 27.79±0.58 40.78±0.01 62.63±0.20
Sp2GCL 72.73±0.46 78.88±1.04 62.61±0.87 34.70±0.92 39.09±0.02 68.80±0.45

VGAE 60.47±1.84 62.32±1.90 42.50±1.35 31.57±0.75 36.39±0.21 55.31±0.28
GraphMAE 79.90±1.13 79.50±0.57 61.13±0.60 32.15±1.33 40.30±0.04 67.97±0.21
GraphMAE2 77.34±0.12 79.13±0.19 70.27±0.88 34.48±0.26 38.97±0.03 67.86±0.42
MaskGAE 73.10±0.08 74.50±0.87 68.53±0.44 33.44±0.34 40.59±0.04 63.84±0.03
S2GAE 75.76±0.43 60.24±0.37 68.60±0.56 26.17±0.38 40.32±0.12 70.24±0.09

AUG-MAE 82.03±0.69 70.10±1.88 62.57±0.67 33.42±0.38 37.10±0.13 69.90±0.43

GraphPAE 85.76±1.22 80.51±1.25 72.05±1.40 38.55±1.35 41.85±0.04 71.79±0.37

Table 3: Graph regression and classification results of different graph self-supervised learning on OGB datasets. Bold indicates
the best performance and underline means the runner-up. ↓means lower the better and ↑means higher the better.

Task Regression (Metric: RMSE ↓) Classification (Metric: ROC-AUC% ↑)
Dataset molesol molipo molfreesolv molbace molbbbp molclintox moltocx21

Supervised 1.173±0.057 0.757±0.018 2.755±0.349 80.42±0.96 68.17±1.48 88.14±2.51 74.91±0.51

InfoGraph 1.344±0.178 1.005±0.023 10.005±8.147 73.64±3.64 66.33±2.79 64.50±5.32 69.74±0.57
GraphCL 1.272±0.089 0.910±0.016 7.679±2.748 73.32±2.70 68.22±2.19 74.92±4.42 72.40±1.07
MVGRL 1.433±0.145 0.962±0.036 9.024±1.982 74.88±1.43 67.24±3.19 73.84±2.75 70.48±0.83
JOAO 1.285±0.121 0.865±0.032 5.131±0.782 74.43±1.94 67.62±1.29 71.28±4.12 71.38±0.92
Sp2GCL 1.235±0.119 0.835±0.026 4.144±0.573 78.76±1.43 68.72±1.53 80.88±3.86 73.06±0.75

GraphMAE 1.050±0.034 0.850±0.022 2.740±0.233 79.14±1.31 66.55±1.78 80.56±5.55 73.84±0.58
GraphMAE2 1.225±0.081 0.885±0.019 2.913±0.293 80.74±1.53 67.67±1.44 75.75±3.65 72.93±0.69
StructMAE 1.499±0.043 1.089±0.002 2.568±0.262 77.75±0.42 65.66±1.16 79.42±4.56 71.13±0.61
AUG-MAE 1.248±0.026 0.917±0.013 2.395±0.158 78.54±2.49 67.05±0.63 82.66±1.98 74.33±0.07

GraphPAE 1.015±0.045 0.810±0.018 2.058±0.188 81.11±1.24 68.56±0.71 82.69±3.39 74.46±0.54

a linear classifier to evaluate the performance for downstream tasks.
We use Adam optimizer and report the metrics with mean results
and standard deviation of 10 seeds.
Results. Table 3 summarizes the results of graph-level tasks. Graph-
PAE consistently achieves superior performance across both re-
gression and classification benchmarks, highlighting its ability
to learn high-quality graph representations. Notably, GraphPAE
shows competitive performance against contrastive learning meth-
ods and even exhibits notable improvements compared against the
spectral-based method Sp2GCL on molfreesolv, molbace, and mol-
clintox. In addition, GraphPAE also outperforms other GAEs across
most datasets. We attribute these gains to the proposed position
corruption-reconstruction strategy, which improves the encoder’s
ability to identify crucial substructures for downstream tasks.

5.3 Transfer Learning
Settings.We conduct transfer learning experiments on molecule
property prediction to evaluate the generalization ability of Graph-
PAE. Specifically, we follow the setting of [34], which first pre-trains
the encoder on 2 million molecules sampled from ZINC15 [48], and
then fine-tunes on QM9 [64] to predict the quantum chemistry
properties. We compare GraphPAE with the state-of-the-art mole-
cule graph pre-training model, i.e., GraphCL [71], GraphMAE [18],
Mole-BERT [65], and SimSGT [34]. We use a five-layer GatedGCN
with 300 hidden units. Upon finishing pre-training, a two-layer MLP
is attached after the graph representations for property prediction.
During the fine-tuning protocol, the encoder and attached MLP
are trained together on labeled data of downstream tasks. Consis-
tent with [34], we divided QM9 into train/validation/test sets with

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Yang Liu et al.

Table 4: Quantum chemistry property results of transfer learning on QM9. The best and runner-up results are highlighted with
bold and underline, respectively.

Target 𝜇 𝛼 𝜖homo 𝜖lumo Δ𝜖 𝑅2 ZPVE 𝑈0 𝑈 𝐻 𝐺 𝐶𝑣

Unit D 𝑎3
0 10−2meV 10−2meV 10−2meV 𝑎2

0 10−2meV meV meV meV meV cal/mol/K

GraphCL 1.035 2.321 2.030 3.667 4.523 40.725 2.063 2.461 1.745 1.734 1.751 1.747
GraphMAE 1.030 2.924 2.407 6.373 4.813 41.955 4.623 1.411 2.207 2.208 2.207 2.200
Mole-BERT 1.031 1.918 1.477 4.127 4.240 44.374 2.190 2.532 2.509 2.511 2.516 2.508
SimSGT 1.064 2.413 2.837 4.227 4.107 40.504 2.127 1.948 2.420 2.416 2.416 2.410

GraphPAE 0.703 0.879 1.199 2.141 2.289 36.480 0.502 0.510 0.639 0.639 0.641 0.643

Table 5: Ablation studies of position reconstruction and framework design on node- and graph-level tasks. Exp No.: the
number of different experimental settings. Corrupt Info.: corrupted information during training. Recon Info.: information to be
reconstructed during training. Bold indicates the best performance.

Exp Corrupt Info. Recon Info. Dual-Path Node-level Graph-level

No. Feature Position Feature Position Blog (↑) Squirrel (↑) Bace (↑) Bbbp (↑) Freesolv (↓)

a ! ! ! 82.8±1.7 66.4±1.6 78.4±1.2 66.4±1.7 2.79±0.40
b ! ! ! ! 83.5±1.0 68.5±0.9 78.9±2.1 66.8±0.6 2.44±0.36
c ! ! 84.6±1.6 71.3±0.9 79.4±3.4 67.7±0.9 2.20±0.14
d ! ! ! ! ! 85.8±1.2 72.1±1.4 81.1±1.2 68.6±0.7 2.06±0.19

80%/10%/10% by scaffold splits. We use Adam optimizer and run it
5 times to report average MAE and standard deviation.
Results. From Table 4, we observe that GraphPAE demonstrates
robust generalization across all prediction targets compared to state-
of-the-art models. Among the baselines, Mole-BERT and SimSGT
are specially designed for molecular graph pretraining, incorpo-
rating customized reconstruction objectives tailored to the charac-
teristics of molecular graphs. Specifically, Mole-BERT pretrains a
discrete codebook within the subgraph of nodes, inherently captur-
ing both features and local structural patterns. During reconstruc-
tion, the model replaces the raw features with codebook entries
as predictive targets. SimSGT employs a tokenizer to encode fea-
ture and local structure information, using tokenized output as
reconstruction targets. Despite these tailored strategies, GraphPAE
consistently outperforms these models. The superiority is largely
attributed to the effective positional encodings obtained by position
corruption-reconstruction, enabling the graph representations to
capture crucial substructures for prediction targets such as cycles.

5.4 Ablation Studies
To verify the effectiveness of important designs of GraphPAE, we
conduct extensive ablation experiments. We select 2 datasets for
node-level tasks and 3 datasets for graph-level tasks.
Effectiveness of Position Reconstruction. To achieve position
corruption-reconstruction, GraphPAE inevitably introduces posi-
tional encodings into the encoder. Firstly, we verify that the superior
performance is attributed not only to the introduction of positional
encodings but also to the position reconstruction. We conducted
two sets of comparative experiments in Table 5: one comparing
Exp a with Exp b, and another comparing Exp c with Exp d. We

have the following summaries: (1) In Exp a, both features and posi-
tions are corrupted, but only the features are reconstructed. In Exp
b, both features and positions are reconstructed. We observe that
Exp b performs better than Exp a, demonstrating the effectiveness
of position reconstruction. (2) In Exp c, we remove both position
corruption and reconstruction from GraphPAE. Comparing Exp
d against Exp c, we find that the encoder incorporating position
reconstruction consistently improves performance compared to
feature reconstruction alone.
Effectiveness of Dual-Path Reconstruction. Comparing Exp b
and Exp c in Table 5, we observe that position reconstruction with-
out the dual-path architecture fails to improve performance and
may even lead to degradation. Specifically, in Exp b, both masked
features and noisy positions are reconstructed directly from node
representations. However, recovering relative distances from node
representations generated with corrupted positions is more diffi-
cult than recovering them from refined distance encoding directly.
Rather than enhancing node representations or capturing diverse
frequency information, the corrupted positional inputs introduce
additional noise during training. As a result, applying position
corruption-reconstruction without appropriate design hinders the
model’s ability to learn meaningful structural patterns. Based on
these observations, we propose a dual-path architecture that disen-
tangles feature and relative distance encodings for reconstruction.
Experimental results from Exp d demonstrate that this strategy con-
sistently achieves the best performance across datasets, validating
the effectiveness of our dual-path encoder design.
Improvement Attributed to L𝑝𝑜𝑠 and PEs. Since integrating po-
sitional encodings also enhances representation learning, it remains
unclear how much of the performance gain in GraphPAE stems

Graph Positional Autoencoders as Self-supervised Learners KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Table 6: Ablation studies of L𝑝𝑜𝑠 and positional encodings.

Methods Bace (↑) Bbbp (↑) Freesolv (↓)
GraphPAE 81.11±1.24 68.56±0.71 2.058±0.19
w/o L𝑝𝑜𝑠 79.40±3.45 67.74±0.92 2.204±0.14

w/o L𝑝𝑜𝑠 & PEs 79.14±1.31 66.55±1.78 2.740±0.23

0.0 1e-4 1e-3 1e-2 1e-1 1e-0
The value of

67.30

67.65

68.00

68.35

68.70

RO
C-

AU
C

(%
)

67.7
67.5

68.4
68.6

67.8

67.5

(a) Molbbbp

0.0 1e-4 1e-3 1e-2 1e-1 1e-0
The value of

83.00

83.75

84.50

85.25

86.00
Ac

cu
ra

cy
 (%

)

84.6 84.7
85.0

85.5
85.8

83.2

(b) BlogCatalog

0 10 50 100 200 500
The number of eigenvectors K

60.00

64.25

68.50

72.75

77.00

Ac
cu

ra
cy

 (%
)

61.1

70.5
72.1 72.3 72.9

74.9

(c) Squirrel

0 10 50 100 200 500
The number of eigenvectors K

79.3

79.9

80.5

81.1

81.7

Ac
cu

ra
cy

 (%
)

79.5

80.4 80.5

81.0

81.4 81.4

(d) Chameleon

Figure 3: Influence of the loss weight 𝛼 and the number of
eigenvectors 𝐾 .

from the position corruption-reconstruction mechanism, and how
much from the positional information itself. Therefore, we conduct
ablation studies on bothL𝑝𝑜𝑠 and positional encodings. Specifically,
we remove L𝑝𝑜𝑠 from Equation 17 while keeping PEs, to evaluate
the effect of position reconstruction. Then, we remove both L𝑝𝑜𝑠
and PEs to isolate the impact of positional information. The results
are reported in Table 6. Notably, even with positional encodings
retained, removing L𝑝𝑜𝑠 consistently leads to a noticeable per-
formance decline across all datasets, highlighting the importance
of the proposed position corruption-reconstruction mechanism in
enhancing GAEs.

5.5 Parameters Analysis
We conduct additional parameter analysis of the loss weight 𝛼 and
the number of eigenvectors 𝐾 .
Influence of the loss weight 𝛼 in GraphPAE. Figure 3(a) and 3(b)
present the hyperparameter analysis of 𝛼 to further examine the
influence of the positional reconstruction loss L𝑝𝑜𝑠 . We summarize
the key observations as follows: (1) As 𝛼 increases within a cer-
tain threshold, the performance improves progressively, indicating
that position reconstruction contributes positively to the quality
of learned representations. (2) However, excessively large values
of 𝛼 lead to performance degeneration. This suggests assigning a
high weight to position reconstruction may cause the encoder to

overemphasize positional information at the expense of overall rep-
resentation learning. (3) While the optimal value of 𝛼 varies slightly
across datasets, we observe that the best-performing range typically
lies within {1e-3, 1e-2, 1e-1}, making it easy to search in practice.
Additional hyperparameter details are provided in Appendix B.2.
Influence of the number of eigenvectors 𝐾 in GraphPAE. We
further analyze the effect of the number of eigenvectors𝐾 on perfor-
mance using the Squirrel and Chameleon datasets, as shown in Fig-
ure 3(c) and 3(d). As 𝐾 increases, performance generally improves
due to the model’s ability to capture a wider range of frequency
information. However, once 𝐾 surpasses a certain threshold, the
performance gains become marginal. Therefore, to balance effec-
tiveness and computational efficiency, we adopt a moderate value
of 𝐾 , typically in the range of [50, 100], which provides a good
trade-off in practice.

6 Conclusion
In this paper, we propose GraphPAE, a graph autoencoder that
reconstructs both node features and relative distance. To enhance
models’ expressivity to distinguish intricate patterns and the ability
to integrate various frequency information, GraphPAE introduces
position corruption and recovery into GAEs and designs a dual-path
reconstruction strategy. Extensive experiments, including node
classification, graph prediction, and transfer learning, demonstrate
the superiority of our GraphPAE.

Acknowledgments
This work is supported in part by the National Natural Science
Foundation of China (No. 62192784, U22B2038, 62472329).

References
[1] Deyu Bo, Yuan Fang, Yang Liu, and Chuan Shi. 2024. Graph contrastive learning

with stable and scalable spectral encoding. Advances in Neural Information
Processing Systems 36 (2024).

[2] Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. 2023. Specformer: Spectral
graph neural networks meet transformers. arXiv preprint arXiv:2303.01028 (2023).

[3] Deyu Bo, Xiao Wang, Yang Liu, Yuan Fang, Yawen Li, and Chuan Shi. 2023. A
survey on spectral graph neural networks. arXiv preprint arXiv:2302.05631 (2023).

[4] Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. 2021. Beyond low-frequency
information in graph convolutional networks. In Proceedings of the AAAI confer-
ence on artificial intelligence, Vol. 35. 3950–3957.

[5] Pietro Bongini, Monica Bianchini, and Franco Scarselli. 2021. Molecular gen-
erative graph neural networks for drug discovery. Neurocomputing 450 (2021),
242–252.

[6] Semih Cantürk, Renming Liu, Olivier Lapointe-Gagné, Vincent Létourneau, Guy
Wolf, Dominique Beaini, and Ladislav Rampášek. [n. d.]. Graph Positional and
Structural Encoder. In Forty-first International Conference on Machine Learning.

[7] Peter J Carrington, John Scott, and StanleyWasserman. 2005. Models and methods
in social network analysis. Vol. 28. Cambridge university press.

[8] Jiashun Cheng, Man Li, Jia Li, and Fugee Tsung. 2023. Wiener graph deconvo-
lutional network improves graph self-supervised learning. In Proceedings of the
AAAI conference on artificial intelligence, Vol. 37. 7131–7139.

[9] Vijay Prakash Dwivedi and Xavier Bresson. 2020. A generalization of transformer
networks to graphs. arXiv preprint arXiv:2012.09699 (2020).

[10] Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent,
Yoshua Bengio, and Xavier Bresson. 2023. Benchmarking graph neural networks.
Journal of Machine Learning Research 24, 43 (2023), 1–48.

[11] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. 2021. Graph neural networks with learnable structural and
positional representations. arXiv preprint arXiv:2110.07875 (2021).

[12] Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy
Wolf, Anh Tuan Luu, and Dominique Beaini. 2022. Long range graph benchmark.
Advances in Neural Information Processing Systems 35 (2022), 22326–22340.

[13] Chen Gao, Yu Zheng, Nian Li, Yinfeng Li, Yingrong Qin, Jinghua Piao, Yuhan
Quan, Jianxin Chang, Depeng Jin, Xiangnan He, et al. 2023. A survey of graph

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Yang Liu et al.

neural networks for recommender systems: Challenges, methods, and directions.
ACM Transactions on Recommender Systems 1, 1 (2023), 1–51.

[14] Zhangyang Gao, Daize Dong, Cheng Tan, Jun Xia, Bozhen Hu, and Stan Z Li.
[n. d.]. A Graph isWorth𝐾 Words: Euclideanizing Graph using Pure Transformer.
In Forty-first International Conference on Machine Learning.

[15] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view
representation learning on graphs. In International conference onmachine learning.
PMLR, 4116–4126.

[16] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross B.
Girshick. 2022. Masked Autoencoders Are Scalable Vision Learners. In CVPR.
IEEE, 15979–15988.

[17] Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, Evgeny Kharlamov,
and Jie Tang. 2023. Graphmae2: A decoding-enhanced masked self-supervised
graph learner. In Proceedings of the ACM web conference 2023. 737–746.

[18] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang,
and Jie Tang. 2022. Graphmae: Self-supervised masked graph autoencoders. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 594–604.

[19] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118–22133.

[20] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,
and Jure Leskovec. [n. d.]. STRATEGIES FOR PRE-TRAINING GRAPH NEURAL
NETWORKS. ([n. d.]).

[21] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020.
Gpt-gnn: Generative pre-training of graph neural networks. In Proceedings of
the 26th ACM SIGKDD international conference on knowledge discovery & data
mining. 1857–1867.

[22] Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie
Jegelka, and Pan Li. 2023. On the stability of expressive positional encodings for
graph neural networks. arXiv preprint arXiv:2310.02579 (2023).

[23] Peter J Huber. [n. d.]. Robust estimation of a location parameter. In Breakthroughs
in statistics: Methodology and distribution. Springer, 492–518.

[24] Dejun Jiang, Zhenxing Wu, Chang-Yu Hsieh, Guangyong Chen, Ben Liao, Zhe
Wang, Chao Shen, Dongsheng Cao, Jian Wu, and Tingjun Hou. 2021. Could
graph neural networks learn better molecular representation for drug discovery?
A comparison study of descriptor-based and graph-based models. Journal of
cheminformatics 13 (2021), 1–23.

[25] Wei Ju, Yifan Wang, Yifang Qin, Zhengyang Mao, Zhiping Xiao, Junyu Luo, Jun-
wei Yang, Yiyang Gu, Dongjie Wang, Qingqing Long, et al. 2024. Towards Graph
Contrastive Learning: A Survey and Beyond. arXiv preprint arXiv:2405.11868
(2024).

[26] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).

[27] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Pru-
dencio Tossou. 2021. Rethinking graph transformers with spectral attention.
Advances in Neural Information Processing Systems 34 (2021), 21618–21629.

[28] Jintang Li, Ruofan Wu, Wangbin Sun, Liang Chen, Sheng Tian, Liang Zhu,
Changhua Meng, Zibin Zheng, and Weiqiang Wang. 2023. What’s Behind the
Mask: Understanding Masked Graph Modeling for Graph Autoencoders. In Pro-
ceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining. 1268–1279.

[29] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. 2020. Distance encod-
ing: Design provably more powerful neural networks for graph representation
learning. Advances in Neural Information Processing Systems 33 (2020), 4465–4478.

[30] Xiang Li, Tiandi Ye, Caihua Shan, Dongsheng Li, and Ming Gao. 2023. Seegera:
Self-supervised semi-implicit graph variational auto-encoders with masking. In
Proceedings of the ACM web conference 2023. 143–153.

[31] Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai
Maron, and Stefanie Jegelka. 2022. Sign and basis invariant networks for spectral
graph representation learning. arXiv preprint arXiv:2202.13013 (2022).

[32] Chuang Liu, Yuyao Wang, Yibing Zhan, Xueqi Ma, Dapeng Tao, Jia Wu, and
Wenbin Hu. 2024. Where to mask: structure-guided masking for graph masked
autoencoders. In Proceedings of the Thirty-Third International Joint Conference
on Artificial Intelligence (Jeju, Korea) (IJCAI ’24). Article 241, 9 pages. https:
//doi.org/10.24963/ijcai.2024/241

[33] Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and S Yu Philip.
2022. Graph self-supervised learning: A survey. IEEE transactions on knowledge
and data engineering 35, 6 (2022), 5879–5900.

[34] Zhiyuan Liu, Yaorui Shi, An Zhang, Enzhi Zhang, Kenji Kawaguchi, Xiang Wang,
and Tat-Seng Chua. 2024. Rethinking tokenizer and decoder in masked graph
modeling for molecules. Advances in Neural Information Processing Systems 36
(2024).

[35] Zaiqiao Meng, Shangsong Liang, Hongyan Bao, and Xiangliang Zhang. 2019. Co-
embedding attributed networks. In Proceedings of the twelfth ACM international
conference on web search and data mining. 393–401.

[36] Péter Mernyei and Cătălina Cangea. 2020. Wiki-cs: A wikipedia-based benchmark
for graph neural networks. arXiv preprint arXiv:2007.02901 (2020).

[37] Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. 2021. Graphit:
Encoding graph structure in transformers. arXiv preprint arXiv:2106.05667 (2021).

[38] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang.
2018. Adversarially regularized graph autoencoder for graph embedding. arXiv
preprint arXiv:1802.04407 (2018).

[39] Jiwoong Park, Minsik Lee, Hyung Jin Chang, Kyuewang Lee, and Jin Young
Choi. 2019. Symmetric graph convolutional autoencoder for unsupervised graph
representation learning. In Proceedings of the IEEE/CVF international conference
on computer vision. 6519–6528.

[40] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang.
2020. Geom-gcn: Geometric graph convolutional networks. arXiv preprint
arXiv:2002.05287 (2020).

[41] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu,
Guy Wolf, and Dominique Beaini. 2022. Recipe for a general, powerful, scalable
graph transformer. Advances in Neural Information Processing Systems 35 (2022),
14501–14515.

[42] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2021. Multi-scale attributed
node embedding. Journal of Complex Networks 9, 2 (2021), cnab014.

[43] Amin Salehi and Hasan Davulcu. 2019. Graph attention auto-encoders. arXiv
preprint arXiv:1905.10715 (2019).

[44] Kartik Sharma, Yeon-Chang Lee, Sivagami Nambi, Aditya Salian, Shlok Shah,
Sang-Wook Kim, and Srijan Kumar. 2024. A survey of graph neural networks for
social recommender systems. Comput. Surveys 56, 10 (2024), 1–34.

[45] Yucheng Shi, Yushun Dong, Qiaoyu Tan, Jundong Li, and Ninghao Liu. 2023.
Gigamae: Generalizable graph masked autoencoder via collaborative latent space
reconstruction. In Proceedings of the 32nd ACM International Conference on Infor-
mation and Knowledge Management. 2259–2269.

[46] Vighnesh Shiv and Chris Quirk. 2019. Novel positional encodings to enable
tree-based transformers. Advances in neural information processing systems 32
(2019).

[47] Shashank Sheshar Singh, Samya Muhuri, Shivansh Mishra, Divya Srivastava,
Harish Kumar Shakya, and Neeraj Kumar. 2024. Social Network Analysis: A
Survey on Process, Tools, and Application. Comput. Surveys 56, 8 (2024), 1–39.

[48] Teague Sterling and John J Irwin. 2015. ZINC 15–ligand discovery for everyone.
Journal of chemical information and modeling 55, 11 (2015), 2324–2337.

[49] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2019. Infograph: Un-
supervised and semi-supervised graph-level representation learning via mutual
information maximization. arXiv preprint arXiv:1908.01000 (2019).

[50] Qiaoyu Tan, Ninghao Liu, Xiao Huang, Soo-Hyun Choi, Li Li, Rui Chen, and Xia
Hu. 2023. S2gae: Self-supervised graph autoencoders are generalizable learners
with graph masking. In Proceedings of the sixteenth ACM international conference
on web search and data mining. 787–795.

[51] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos,
Petar Veličković, and Michal Valko. 2021. Bootstrapped representation learning
on graphs. In ICLR 2021 Workshop on Geometrical and Topological Representation
Learning.

[52] Amanda L Traud, Peter J Mucha, and Mason A Porter. 2012. Social structure of
facebook networks. Physica A: Statistical Mechanics and its Applications 391, 16
(2012), 4165–4180.

[53] A Vaswani. 2017. Attention is all you need. Advances in Neural Information
Processing Systems (2017).

[54] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International Con-
ference on Learning Representations.

[55] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2018. Deep graph infomax. arXiv preprint arXiv:1809.10341
(2018).

[56] Lilapati Waikhom and Ripon Patgiri. 2023. A survey of graph neural networks
in various learning paradigms: methods, applications, and challenges. Artificial
Intelligence Review 56, 7 (2023), 6295–6364.

[57] Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. [n. d.]. Equivariant
and Stable Positional Encoding for More Powerful Graph Neural Networks. In
International Conference on Learning Representations.

[58] Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. 2022. Equivariant and
stable positional encoding for more powerful graph neural networks. arXiv
preprint arXiv:2203.00199 (2022).

[59] Liang Wang, Xiang Tao, Qiang Liu, and Shu Wu. 2024. Rethinking Graph Masked
Autoencoders through Alignment and Uniformity. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 38. 15528–15536.

[60] Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, and Jian Pei. 2020. Am-
gcn: Adaptive multi-channel graph convolutional networks. In Proceedings of
the 26th ACM SIGKDD International conference on knowledge discovery & data
mining. 1243–1253.

[61] Asiri Wijesinghe, Hao Zhu, and Piotr Koniusz. [n. d.]. Graph Self-Supervised
Learning with Learnable Structural and Positional Encodings. In THE WEB CON-
FERENCE 2025.

https://doi.org/10.24963/ijcai.2024/241
https://doi.org/10.24963/ijcai.2024/241

Graph Positional Autoencoders as Self-supervised Learners KDD ’25, August 3–7, 2025, Toronto, ON, Canada

[62] Lirong Wu, Haitao Lin, Cheng Tan, Zhangyang Gao, and Stan Z Li. 2021. Self-
supervised learning on graphs: Contrastive, generative, or predictive. IEEE
Transactions on Knowledge and Data Engineering 35, 4 (2021), 4216–4235.

[63] ZhanghaoWu, Paras Jain, MatthewWright, Azalia Mirhoseini, Joseph E Gonzalez,
and Ion Stoica. 2021. Representing long-range context for graph neural networks
with global attention. Advances in Neural Information Processing Systems 34
(2021), 13266–13279.

[64] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Ge-
niesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande. 2018. MoleculeNet: a
benchmark for molecular machine learning. Chemical science 9, 2 (2018), 513–530.

[65] Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu,
Siyuan Li, and Stan Z Li. 2023. Mole-bert: Rethinking pre-training graph neural
networks for molecules. (2023).

[66] Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. 2022.
Self-supervised learning of graph neural networks: A unified review. IEEE trans-
actions on pattern analysis and machine intelligence 45, 2 (2022), 2412–2429.

[67] Zhaoping Xiong, Dingyan Wang, Xiaohong Liu, Feisheng Zhong, Xiaozhe Wan,
Xutong Li, Zhaojun Li, Xiaomin Luo, Kaixian Chen, Hualiang Jiang, et al. 2019.
Pushing the boundaries of molecular representation for drug discovery with
the graph attention mechanism. Journal of medicinal chemistry 63, 16 (2019),
8749–8760.

[68] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[69] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,
Yanming Shen, and Tie-Yan Liu. 2021. Do transformers really perform badly
for graph representation? Advances in neural information processing systems 34
(2021), 28877–28888.

[70] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. 2021. Graph
contrastive learning automated. In International Conference on Machine Learning.
PMLR, 12121–12132.

[71] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
neural information processing systems 33 (2020), 5812–5823.

[72] Xingtong Yu, Zhou Chang, Kuai Zhongwei, Zhang Xinming, and Fang Yuan.
2025. GCoT: Chain-of-Thought Prompt Learning for Graphs. In the ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (SIGKDD).

[73] Xingtong Yu, Yuan Fang, Zemin Liu, Yuxia Wu, Zhihao Wen, Jianyuan Bo, Xin-
ming Zhang, and Steven CH Hoi. 2024. Few-Shot Learning on Graphs: from
Meta-learning to Pre-training and Prompting. arXiv preprint arXiv:2402.01440
(2024).

[74] Xingtong Yu, Zhenghao Liu, Yuan Fang, Zemin Liu, Sihong Chen, and Xinming
Zhang. 2024. Generalized graph prompt: Toward a unification of pre-training
and downstream tasks on graphs. IEEE TKDE (2024).

[75] Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S Yu. 2021. From
canonical correlation analysis to self-supervised graph neural networks. Advances
in Neural Information Processing Systems 34 (2021), 76–89.

[76] Zaixi Zhang, Qi Liu, HaoWang, Chengqiang Lu, and Chee-Kong Lee. 2021. Motif-
based graph self-supervised learning for molecular property prediction. Advances
in Neural Information Processing Systems 34 (2021), 15870–15882.

[77] Ziwen Zhao, Yuhua Li, Yixiong Zou, Jiliang Tang, and Ruixuan Li. 2024. Masked
Graph Autoencoder with Non-discrete Bandwidths. In Proceedings of the ACM
on Web Conference 2024. 377–388.

[78] Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei
Wei, Linfeng Zhang, and Guolin Ke. 2023. Uni-Mol: A Universal 3D Molecular
Representation Learning Framework. In ICLR. OpenReview.net.

[79] Yun Zhu, Haizhou Shi, Xiaotang Wang, Yongchao Liu, Yaoke Wang, Boci Peng,
Chuntao Hong, and Siliang Tang. 2025. Graphclip: Enhancing transferability in
graph foundation models for text-attributed graphs. In Proceedings of the ACM
on Web Conference 2025. 2183–2197.

Appendices
A Spectral Analysis of Masking Strategies
Masking Strategies for Node Features and Edges. We conduct
the experiments in the Squirrel datasets with a 20% masking ratio.
For node feature masking, given the node feature matrix X, we
randomly mask 20% of the node in the dataset and set the feature
vector to zero. The remaining 80% of nodes retain their original
feature. The corrupted feature matrix is defined as X̃. For edge
masking, given the original graph structureA, we randomly remove
20% of the edges from the graph while preserving the node features.
This process results in a structurally corrupted graph with a new
adjacency matrix Ã.

Table 7: Statistics of node classification datasets.

Datasets Nodes Edges Features Classes Train/Valid/Test

BlogCatalog 5,196 343,486 8,189 6 120/1,000/1,000
Chameleon 2,277 62,792 2,325 5 1,092/729/456
Squirrel 5,201 396,846 2,089 5 2,496/1,664/1,041
Actor 7,600 53,411 932 5 3,648/2,432/1,520
arXiv-year 169,343 2,315,598 128 5 84671/42335/42337
Penn94 41,554 2,724,458 4,814 2 19,407/9,703/9,705

Table 8: Statistics of graph prediction datasets.

Dataset Graphs Avg. Nodes Avg. Edges Classes Task Metric

molesol 1,128 13.3 13.7 1 Regression RMSE
mollipo 4,200 27.0 29.5 1 Regression RMSE
molfreesolv 642 8.7 8.4 1 Regression RMSE
molbace 1,513 34.1 36.9 1 Binary Class. ROC-AUC
molbbbp 2,039 24.1 26.0 1 Binary Class. ROC-AUC
molcintox 1,477 26.2 27.9 2 Binary Class. ROC-AUC
moltox21 7,831 18.6 19.3 12 Binary Class. ROC-AUC

ZINC15 2,000,000 26.62 57.72 - Pre-Training -
QM9 1,177,631 8.80 18.81 12 Targets Finetuning MAE

Computation of Frequency Magnitudes. First, we calculate
Laplacian matrix by:

L = I𝑁 − D−1/2AD−1/2 (18)

The eigenvectors of L are decomposed as L = U𝚲U⊤, where 𝚲 =

diag({𝜆𝑖 }𝑁𝑖=1), U = [u1, · · · , u𝑁] ∈ R𝑁×𝑁 , and the eigenvalues
are ordered as 0 ≤ 𝜆1 ≤ · · · ≤ 𝜆𝑁 ≤ 2. 𝜆𝑖 reflects the frequency
magnitude of corresponding eigenvector u𝑖 over the graph. We
transform node features into the spectral domain by

X𝑠 = U⊤X, X𝑠 ∈ R𝑁×𝑑 . (19)

In particular, the i-th row of X𝑠 corresponds to the frequency mag-
nitude at eigenvalue 𝜆𝑖 . With 𝑑-dimensional X𝑠 , we first calculate
the mean magnitude by:

X̄𝑠 =
1
𝑑

𝑑∑︁
𝑖=1

X𝑠:,𝑖 , X̄𝑠 ∈ R𝑁 (20)

For a given frequency band [𝑓1, 𝑓2], we extract the set of indices I
corresponding to eigenvalues within this range:

I = {𝑖 | 𝑓1 ≤ 𝜆𝑖 ≤ 𝑓2} (21)
The average frequency magnitude within this band is computed as:

X̄𝑠[𝑓1,𝑓2] =
1
|I |

∑︁
𝑖∈I

X̄𝑠 [𝑖], X̄𝑠[𝑓1,𝑓2] ∈ R (22)

For feature masking case, we calculate L by substituting A into
Equation 18. Then we decompose L and get U. By substituting U, X,
and X̃ in Equation (19)-(22), we can get the frequency magnitude
of original and corrupted graphs. The comparison of differences is
shown in Figure 1(a). For edge masking case, we calculate L and L̃
by substituting A and Ã into Equation 18. Then we decompose L
and L̃, and get U and Ũ. By substituting U, Ũ, and X in Equation
(19) - (22), we can also get the frequency magnitude of original and
corrupted graphs as shown in Figure 1(b).

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Yang Liu et al.

Table 9: Hyperparameters of node classification.

Dataset lr wd 𝑟 𝛼 dp dpedge 𝐾

BlogCatalog 0.001 0.0 0.25 0.1 0.6 0.0 50
Chameleon 0.001 0.0 0.25 0.01 0.0 0.0 50
Squirrel 0.001 0.0 0.5 0.001 0.6 0.0 50
Actor 0.0005 0.0 0.25 0.01 0.0 0.0 50
arXiv-year 0.001 0.0 0.5 0.01 0.0 0.0 100
Penn94 0.001 0.0 0.25 0.001 0.0 0.0 200

Table 10: Hyperparameters of graph prediction.

Dataset pooling epoch lr wd 𝑟 𝛼 dp dpedge 𝐾

molesol sum 20 0.0005 0.0 0.75 0.1 0.6 0.5 8
molipo sum 20 0.0005 0.0001 0.25 0.001 0.6 0.0 30
molfreesolv sum 100 0.0001 0.0 0.5 0.1 0.5 0.5 15
molbace mean 100 0.001 0.0 0.75 0.1 0.5 0.5 30
molbbbp mean 20 0.001 0.0 0.5 0.01 0.6 0.6 30
molclintox mean 20 0.0001 0.0 0.25 0.01 0.6 0.0 30
moltocx21 mean 20 0.0001 0.0 0.25 0.1 0.0 0.6 8

Table 11: Additional experiment results on homophilic and
large-scale graphs.

Methods Facebook Wiki ogbg-products

BGRL 89.71±0.35 79.02±0.13 78.59±0.02
CCA-SSG 89.45±0.60 78.85±0.32 75.27±0.05
GraphMAE 89.54±0.36 78.94±0.48 78.89±0.01
GraphMAE2 88.49±0.43 78.84±0.44 81.59±0.02

GraphPAE 91.46±0.23 79.32±0.29 79.10±0.02

B Experimental Details
B.1 Statistics of Datasets
We benchmark GraphPAE across various tasks, including node
classification, graph prediction, and transfer learning. Specifically,
we conduct experiments on six node classification datasets and
seven graph-level prediction datasets and select ZINC15 and QM9
for transfer learning. For datasets in node classification and graph
prediction, we utilize public data splits. In transfer learning, we fol-
low [34] and divide QM9 into train/valid/test sets with 80%/10%/10%

by scaffold split. Detailed statistics of the node- and graph-level
datasets are presented in Table 7 and Table 8, respectively.

B.2 Hyperparameters
Hyperparameter details of node classification and graph prediction
are reported in Table 9 and Table 10. 𝑟 denotes the mask ratio and
𝛼 is the loss weight of L𝑝𝑜𝑠 . dp and dp𝑒𝑑𝑔𝑒 represent the dropout
of node features and edge features, respectively. For transfer learn-
ing, we pre-train GraphPAE on 2 million molecules sampled from
ZINC15 with 100 epochs. The mask ratio is set to 0.35, and the loss
weight for L𝑝𝑜𝑠 is 0.01. Both node and edge dropout are set to 0.0,
and the number of eigenvectors for positional encoding is 6. During
fine-tuning, the encoder and the attached MLP are jointly trained
on the QM9 dataset using an initial learning rate of 0.001 and no
weight decay. We apply a dropout rate of 0.1 to both node features
and edge features within GNN layers.

B.3 Additional Experiment Results.
We further evaluate GraphPAE on homophilic graphs, including
Facebook [42] and Wiki [36], as well as a large-scale graph ogbn-
products [19]. Notably, ogbn-products contains 2,449,029 nodes and
61,859,140 edges, making it a suitable benchmark to demonstrate the
scalability of GraphPAE. The experimental results are summarized
in Table 11, and we make the following observations: (1) GraphPAE
consistently achieves competitive performance across these differ-
ent benchmarks. (2) The performance gains on homophilic graphs
are less pronounced compared to those on heterophilic graphs. We
conjecture this is because, in homophilic graphs, a small portion of
very low-frequency information is sufficient.

C Complexity Analysis
The eigen-decomposition complexity is O(𝑁 3). However, we only
need to decompose the smallest 𝐾 eigenvalues, which reduces com-
plexity to O

(
𝑁 2𝐾

)
. Additionally, the decomposition is performed

once per graph, so its cost is amortized over the entire experiment.
During training, GraphPAE introduces an additional O (E) com-

plexity per layer for PE computation and an extra cost for relative
node distance reconstruction. Since we only reconstruct corrupted
node pairs, the complexity remains much lower than O (E). How-
ever, this slight overhead enables the encoder to capture more
diverse frequency information.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Generative Graph Self-supervised Learning
	2.2 Graph Positional Encoding

	3 Preliminaries
	4 Proposed Framework: GraphPAE
	4.1 Data Corruption
	4.2 GraphPAE Encoder
	4.3 GraphPAE Decoder

	5 Experiments
	5.1 Node Classification
	5.2 Graph Prediction
	5.3 Transfer Learning
	5.4 Ablation Studies
	5.5 Parameters Analysis

	6 Conclusion
	Acknowledgments
	References
	A Spectral Analysis of Masking Strategies
	B Experimental Details
	B.1 Statistics of Datasets
	B.2 Hyperparameters
	B.3 Additional Experiment Results.

	C Complexity Analysis

