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Abstract
Graph self-supervised learning seeks to learn effective graph rep-
resentations without relying on labeled data. Among various ap-
proaches, graph autoencoders (GAEs) have gained significant at-
tention for their efficiency and scalability. Typically, GAEs take
incomplete graphs as input and predict missing elements, such as
masked node features or edges. Although effective, our experimen-
tal investigation reveals that traditional feature or edge masking
paradigms primarily capture low-frequency signals in the graph
and fail to learn expressive structural information. To address these
issues, we propose Graph Positional Autoencoders (GraphPAE),
which employ a dual-path architecture to reconstruct both node
features and positions. Specifically, the feature path uses positional
encoding to enhance the message-passing processing, improving
the GAEs’ ability to predict the corrupted information. The posi-
tion path, on the other hand, leverages node representations to
refine positions and approximate eigenvectors, thereby enabling
the encoder to learn diverse frequency information. We conduct
extensive experiments to verify the effectiveness of GraphPAE,
including heterophilic node classification, graph property predic-
tion, and transfer learning. The results demonstrate that GraphPAE
achieves state-of-the-art performance and consistently outperforms
the baselines by a large margin.
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1 Introduction
Graph neural networks (GNNs) have achieved significant success
across various fields, including social network analysis [7, 47, 72],
recommendation systems [13, 44], and drug discovery [5, 24, 67].
However, training effective GNNs in real-world applications re-
mains challenging due to the limited availability of labeled data
in many domains [73, 79]. To address this problem, graph self-
supervised learning is proposed to learn graph representations
without labeled data [33, 66, 74].

Among existing approaches, the generative [56, 62] and con-
trastive [25] learning paradigms have dominated recent advances.
In particular, graph autoencoders (GAEs) [18, 26] have gained at-
tention due to their simplicity, efficiency, and scalability. The GAEs
follow a corruption-reconstruction framework, which learns graph
representations by recovering the missing information of the in-
complete input graphs, as Table 1 illustrates. For example, Graph-
MAE [18] replaces node features with a learnable token, while
Bandana [77] proposes a non-discrete edge masking strategy. More-
over, some GAEs even go beyond reconstructing node features and
edges by targeting structural features like degree [28]. Despite their
success, the performance of GAEs highly depends on the choice
of corruption and reconstruction objectives. Therefore, a natural
question arises: Do existing feature or edge masking mechanisms
fully exploit the graph data? If not, what alternative objectives could
be designed to further improve the performance of GAEs? A well-
informed answer can help us identify the weaknesses of existing
masking strategies and deepen our understanding of GAEs.

To answer this question, we first revisit the feature and edge
masking strategies from a spectral perspective [2, 3]. Specifically,
we transform the node features X into the spectral domain by using
the eigenvectors of graph Laplacian U⊤ and examine its frequency
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(a) Feature Masking (b) Edge Masking (c) Eigenvector offsetting

Figure 1: Frequency magnitudes of the original and corrupted graphs in the Squirrel dataset.

Table 1: Comparison of different graph autoencoders.

Model
Corruption Reconstruction

Feature Edge Position Feature Edge Other

GraphMAE [18] ! - - ! - -
StructMAE [32] ! - - ! - -
AUG-MAE [59] ! - - ! - -
S2GAE [50] - ! - - ! -
SeeGera [30] ! ! - ! ! -
Bandana [77] - ! - - ! -
MaskGAE [28] - ! - ! - Degree
GiGaMAE [45] ! ! - - - Latent

Our work ! - ! ! - Position

magnitude U⊤X. In case of feature masking, we randomly mask
20% node features and denote it as X̃, while for edge masking, we
randomly remove 20% edges and construct the corrupted graph
eigenvectors Ũ⊤. The frequency magnitude changes of U⊤X̃ and
Ũ⊤X are shown in Figures 1(a) and 1(b), respectively. It can be
observe that the magnitude differences between original and cor-
rupted graphs are more pronounced in the low-frequency band,
i.e., [0.0, 0.1], while the differences decrease at higher frequencies.
Notably, to effectively minimize the reconstruction loss, GAEs will
primarily focus on the frequency bands with larger discrepancies.
As a result, existing GAEs mainly reconstruct low-frequency in-
formation and overlook the high-frequency information, which
has been shown to be valuable in real-world tasks [4, 60]. More
experimental details are provided in Appendix A.

Given the above weakness of existing GAEs, it is natural to ask:
How can we design the corruption and reconstruction objectives to ex-
ploit the diverse frequency information? Essentially, the eigenvectors
of graph Laplacian represent different frequencies. Directly per-
turbing and reconstructing the eigenvectors can help GAEs learn
different frequency information in graphs. Figure 1(c) illustrates
the frequency magnitudes of the eigenvectors with random offsets,
i.e., Ũ⊤𝑋 = (U + 𝛿)⊤𝑋 . We observe that this strategy perturbs a
broader range of frequency components, particularly in higher-
frequency, i.e. [0.2, 0.5], enabling the model to capture more diverse

frequency information. However, reconstructing the eigenvectors is
not a trivial task and presents two main challenges: (1) Eigenvectors
represent the global structural patterns of a graph, which cannot be
easily approximated by basic GNNs. Existing GAEs typically adopt
message-passing neural networks (MPNNs) as the encoder, whose
expressiveness is bounded by the 1-WL test [68]. The intrinsic weak-
ness of MPNNs restricts GAEs’ ability to capture long-range depen-
dencies between nodes and higher-order graph patterns [12, 63].
(2) Eigenvectors suffer from sign- and basis-ambiguity issues [31].
Directly reconstructing the eigenvectors leads to non-unique solu-
tions, affecting the robustness of GAEs [1, 58].

To overcome these challenges, we propose Graph Positional Au-
toencoders (GraphPAE) for graph self-supervised learning. Graph-
PAE adopts a dual-path architecture to address both the expressivity
and ambiguity issues. Specifically, in the feature path, GraphPAE
integrates positional encoding (PE) into the message-passing pro-
cess to enhance the expressiveness of MPNNs, thus improving the
model’s ability to reconstruct corrupted information. Moreover,
in the position path, node representations are used to refine the
PE, which approximates the eigenvectors, thereby transferring di-
verse frequency information into the encoder. Finally, in the recon-
struction stage, instead of directly recovering the raw eigenvectors,
GraphPAE uses the relative node distance as a surrogate objective,
avoiding potential ambiguity issues.

Contributions. The contributions of our paper are as follows:

(1) We are the first to explore the masking strategy in GAEs from a
spectral perspective. By comparing the frequency magnitudes
between original and corrupted graphs, we identify that existing
GAEs focus on reconstructing the low-frequency information
of graphs and neglecting other frequencies.

(2) We propose GraphPAE, a novel graph positional autoencoder
that learns graph representations by reconstructing both node
features and positions, thereby enabling GAEs to capture a
broader range of frequency information.

(3) We benchmark GraphPAE against state-of-the-art baselines
across various tasks, including node classification, graph prop-
erty prediction, and transfer learning. The results on 14 graphs
demonstrate that GraphPAE consistently outperforms the base-
lines and shows impressive performance on heterophilic graphs.
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2 Related Work
We provide an overview of two main areas related to our work,
namely generative approaches in graph self-supervised learning
and positional encoding techniques to enhance structural expres-
siveness in GNNs.

2.1 Generative Graph Self-supervised Learning
Generative graph learning encompasses a set of graph self-supervised
learning techniques aimed at reconstructing missing information
in incomplete input graphs. It can be broadly categorized into au-
toregressive and autoencoding approaches.
Graph Autoregressive models (GARs). GARs treat sequential
graph generation as the pre-training task, where the node or edge is
predicted based on its prior context. GPT-GNN [21] factorizes each
node generation into attribute and edge generation and replenishes
the omitted parts by an adaptive queue. MGSSL [76] introduces
motif generation into pre-training. GraphsGPT [14] transforms non-
Euclidean graphs into learnable Euclidean words and reconstructs
the original graph from these words.
Graph Autoencoders (GAEs). GAEs reconstruct all desired con-
tent once from the latent representation output by the encoder.
Early GAEs (e.g., VGAE [26] and ARGVA [38]) learn representations
through link reconstruction and spark a series of work, including
feature reconstruction (e.g., GALA [39] and WGDN [8]) and com-
bination reconstruction of structure and feature (e.g., GATE [43]).
However, these traditional GAEs often perform poorly in down-
stream tasks, except link prediction, which is attributed to their
overemphasis on proximity information at the expense of struc-
tural information [15]. Recently, masked GAEs [18, 20] have be-
come highly successful models for representation learning. Graph-
MAE [18] and GraphMAE2 [17] successfully bridge the perfor-
mance gap between graph contrastive learning and generative learn-
ing by reconstructing masked features for training. AUG-MAE [59]
introduces an adversarial masking strategy to enhance feature align-
ment and add a uniformity regularizer to promote high-quality
graph representations. Additionally, some works are focusing on
masking and reconstructing graph structures (e.g., edges [28, 50]
and paths [28]). Bandana [77] uses continuous and dispersive edge
masks and bandwidth prediction instead of discrete edge masks and
reconstruction. Besides, some works mask features and edges si-
multaneously [30, 45] and propose novel reconstruction objectives
such as latent embeddings [45].

2.2 Graph Positional Encoding
Positional encodings (PEs), originally designed to enhance trans-
formers by encoding positional information in sequential data,
have been introduced in graph learning to provide explicit position-
aware features. By assigning unique identifiers to nodes based on
their structural positions, PEs enable graph neural networks (GNNs)
to distinguish non-isomorphic structures beyond the limitations
of the 1-WL test. Existing graph PEs can be divided into two main
categories: Laplacian-based PEs and Distance-based PEs.
Laplacian-based PEs. These methods leverage the eigenvectors of
the graph Laplacian matrix as initial node positional features [9–11].

Eigenvectors form a natural basis for encoding graph structure, sim-
ilar to how sinusoidal functions represent positional information
in sequential models [53]. Serving as PEs, eigenvectors have two
traditional constraints, i.e., sign- and basis ambiguity [31]. To keep
the models robust to sign ambiguity, [9, 10] randomly flip the sign
of the eigenvectors during training. SAN [27] introduces the infor-
mation of eigenvalues into PEs and leverages a transformer-based
positional encoder, enabling models to be more informative and ex-
pressive. PEG [58] solves the sign- and basis-ambiguity by treating
the distance of eigenvectors between node pairs as PEs. [31] pro-
pose SignNet and BasisNet to learn sign- and basis-invariant PEs,
respectively. [1, 22] study stable PEs that are robust to disturbance
of the Laplacian matrix.
Distance-based PEs. These approaches assign positional features
to nodes based on their relative distances within the graph struc-
ture, which are typically derived from spatial relationships [29, 41].
One common approach is to use the random walk matrix cap-
turing structural relationships in a probabilistic manner [10, 11].
Another popular method is to encode the shortest distance between
node pairs [29, 41, 69]. For example, Graphormer [69] incorporates
shortest-path distances into its attention mechanism. Additionally,
GraphiT [37] encodes PEs with a diffusion kernel, enabling more
flexible and adaptive representations of node relationships. [46]
introduces a novel positional encoding scheme that extends trans-
formers to tree-structured data, enabling efficient and parallelizable
sequence-to-tree, tree-to-sequence, and tree-to-tree mappings. [61]
first introduces PEs in graph self-supervised learning and designs
a GNN framework that integrates a k-hop message-passing mecha-
nism to enhance its expressiveness.

3 Preliminaries
Before describing our method, we first define some notations and
introduce some important concepts used in this paper.
Problem Definition. Given a graph G = {V, E,X}, where V is
the node set withV = {𝑣𝑖 }𝑁𝑖=1, E is the set of edges, and X ∈ R𝑁×𝑑

represents the 𝑑-dimensional node feature matrix. We use the ad-
jacency matrix A ∈ {0, 1}𝑁×𝑁 to describe the graph structure,
where 𝐴𝑖 𝑗 = 1 if there is an edge between 𝑣𝑖 and 𝑣 𝑗 , and 𝐴𝑖 𝑗 = 0
otherwise. The goal of our framework is to learn an effective
graph encoder 𝑓𝑒𝑛𝑐 (·) without relying on labels from downstream
tasks. Once trained, the encoder 𝑓𝑒𝑛𝑐 (·) generates node represen-
tations as H = 𝑓𝑒𝑛𝑐 (G) ∈ R𝑁×𝑑ℎ or graph representations as
HG = READOUT

(
H𝑣𝑖 | 𝑣𝑖 ∈ V

)
∈ R𝑑ℎ , where READOUT is a

permutation-invariant function such as mean, max or sum pool-
ing. The representations can then be used to train a simple linear
classifier on labeled data from downstream tasks.
Laplacian Graph Eigenvectors. The normalized graph Laplacian
matrix L is defined as L = I𝑁−D−1/2AD−1/2, where I𝑁 is an identity
matrix and D is the degree matrix with 𝐷𝑖𝑖 =

∑
𝑗 𝐴𝑖 𝑗 for 𝑣𝑖 ∈ V ,

and 𝐷𝑖 𝑗 = 0 for 𝑖 ≠ 𝑗 . The Laplacian matrix L can be decomposed
as L = U𝚲U⊤, where 𝚲 = diag({𝜆𝑖 }𝑁𝑖=1) is the diagonal matrix of
eigenvalues, and U = [u1, · · · , u𝑁 ] ∈ R𝑁×𝑁 consists of a set of
eigenvectors. Each eigenvector u𝑖 ∈ R𝑁 corresponds to eigenvalue
𝜆𝑖 , where the eigenvalues are ordered as 0 ≤ 𝜆1 ≤ · · · ≤ 𝜆𝑁 ≤ 2.
Given eigen-decomposition Lu𝑖 = 𝜆𝑖u𝑖 with u⊤

𝑖
u𝑖 = 1, we have
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Figure 2: (a): GraphPAE integrates a positional corruption-reconstruction mechanism to encourage the GAE to capture diverse
frequency information. For feature reconstruction, masked features are encoded with P and decoded to recover original features.
For positional reconstruction, noise is added to Ũ to corrupt relative distances, which are then encoded with X and decoded to
recover the original distances. Figure (b): The encoder employs a dual-path architecture to update node X(𝑙 ) and positional
representations P(𝑙 ) at each layer. The feature path integrates positional encodings to enhance message passing, improving the
GAE’s ability to reconstruct corrupted features. The position path utilizes node representations to refine positional embeddings
to approximate original pairwise distances.

u⊤
𝑖
Lu𝑖 = 𝜆𝑖 . Since u⊤𝑖 Lu𝑖 =

∑
( 𝑗,𝑘 ) ∈E (u𝑖, 𝑗 −u𝑖,𝑘 )2, we finally derive

that
∑

( 𝑗,𝑘 ) ∈E (u𝑖, 𝑗 −u𝑖,𝑘 )2 = 𝜆𝑖 , which indicates that 𝜆𝑖 reflects the
frequency magnitude of eigenvector u𝑖 over the graph. In this paper,
we follow the popular positional encoding methods and adopt top-𝑘
eigenvectors as initial positions to reduce complexity. Therefore,
we redefine U = [u1, · · · , u𝐾 ] ∈ R𝑁×𝐾 , where 𝐾 ≤ 𝑁 .

4 Proposed Framework: GraphPAE
In this section, we introduce GraphPAE, a novel GAE designed to
reconstruct both node features and positions. There are three key
components in GraphPAE: corruption, encoder, and decoder, as
illustrated in Figure 2(a).

4.1 Data Corruption
The corruption-reconstruction paradigm has become a basic com-
ponent of autoencoders. A well-designed masking strategy can
prevent information leakage and enhance model efficiency [16].
Existing GAEs commonly apply the random masking strategy to
the discrete nodes and edges. However, node positions, such as
eigenvectors, are continuous by nature and are not suitable for the

random masking approach. Therefore, we adopt different corrup-
tion strategies for these two modalities.
Feature Masking. We follow GraphMAE [18] and replace the
masked node features with a learnable vector. Specifically, we ran-
domly sample a subset of nodes Ṽ ⊂ V and reset their features.
The corrupted feature matrix X̃ is defined as:

X̃𝑖 =

{
x[𝑀 ] , if 𝑣𝑖 ∈ Ṽ
X𝑖 , if 𝑣𝑖 ∉ Ṽ

(1)

where X𝑖 ∈ R𝑑 is the original feature of node 𝑣𝑖 , and x[𝑀 ] ∈ R𝑑 is
a learnable vectors.
Position Offsetting. Inspired by the recent advances in molecular
representation learning [78], we propose to add random offsets
to node positions. Specifically, we use the top-𝑘 eigenvectors of
graph Laplacian U ∈ R𝑁×𝐾 as the initialization of node positions.
Similar to the feature corruption, we define the corruption of node
positions as:

Ũ𝑖 =

{
U𝑖 + 𝛿, if 𝑣𝑖 ∈ Ṽ
U𝑖 , if 𝑣𝑖 ∉ Ṽ

(2)
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where U𝑖 ∈ R𝐾 denotes the position for node 𝑣𝑖 and 𝛿 ∈ R𝐾 is a
noise vector sampled from a uniform distributionU

(
−𝜇𝑝 , 𝜇𝑝

)
. In

practice, we set 𝜇𝑝 to 0.001 or 0.01 for different datasets.
Relative Positional Encoding. Reconstructing eigenvectors en-
ables GAEs to learn different frequency information. However, it
is challenging to recover the corrupted eigenvectors as they suffer
from the sign- and basis-ambiguity [1, 31]. To address this, we com-
pute the Euclidean distance between each pair of nodes to obtain
their relative node distances

P𝑖, 𝑗 =

{
∥U𝑖 − U𝑗 ∥2, if A𝑖, 𝑗 = 1
0, otherwise

(3)

where P ∈ R𝑁×𝑁 is the relative distance matrix and we use P̃
to indicate its corrupted version. The relative distance matrix is
used as a surrogate of node positions to eliminate the ambiguity of
eigenvectors.

4.2 GraphPAE Encoder
After corruption, the node features and pair-wise distances are then
fed into the encoder to learn node and position representations
through message-passing, which can be formulated as

X(𝑙+1)
𝑖

, P(𝑙+1)
𝑖

= 𝑓
(𝑙+1)
enc

(
X(𝑙 )
𝑖
,

{
X(𝑙 )
𝑗

}
𝑗∈N𝑖

, P(𝑙 )
𝑖

)
, (4)

where 𝑙 ∈ {0, 1, 2, ..., 𝐿} indicates the layer of encoder, and N𝑖 is
the neighbors of node 𝑣𝑖 . The first layer of the encoder, e.g., 𝑓

(0)
enc ,

is designed to align the dimensions of node features and position
representations. Specifically, it first lifts the scalar relative distance
P𝑖, 𝑗 ∈ R into a vector representation P(0)

𝑖, 𝑗
∈ R𝑑ℎ through a series

of Gaussian RBF kernels

P(0)
𝑖, 𝑗

= MLP
( [
𝐺 (P𝑖, 𝑗 ; 𝜇1, 𝜎), · · · ,𝐺 (P𝑖, 𝑗 ; 𝜇𝑑 , 𝜎)

] )
, (5)

where MLP stands for Multi-layer Perceptron and 𝐺 (P𝑖, 𝑗 ; 𝜇𝑘 , 𝜎) =
exp

(
−

(
P𝑖, 𝑗 − 𝜇𝑘

)2 /2𝜎2
)
is the 𝑘-th Gaussian basis functions with

mean 𝜇𝑘 and standard deviation 𝜎 . As for the node features, it uses
another MLP to transform them into 𝑑ℎ-dimension representations

X(0)
𝑖

= MLP (X𝑖 ) . (6)

After transformation, the encoder needs to aggregate information
from both sides to update the node and position representations
layer by layer, as shown in Figure 2(b).
Feature Path: PE-enhanced MPNNs. It is well-established that
the expressive power of traditional MPNNs is bounded by the 1-WL
test [6, 10]. Fortunately, existing methods prove that adding posi-
tion information to the message-passing process can significantly
improve the expressive power of MPNNs [11, 22]. Inspired by the
recent progress in graph PEs [57], we propose to incorporate the
position representation into MPNNs as follows:

𝛼
(𝑙 )
𝑖, 𝑗

= 𝑓att
(
X(𝑙 )
𝑖
,X(𝑙 )

𝑗

)
, 𝛼

(𝑙 )
𝑖, 𝑗

∈ R𝑑 ,

X(𝑙+1)
𝑖

=
∑︁
𝑗∈N𝑖

(
𝛼
(𝑙 )
𝑖, 𝑗

+ P(𝑙 )
𝑖, 𝑗

)
⊙ MLP

(
X(𝑙 )
𝑗

)
,

(7)

where 𝑓att is the attention function to calculate the weights of neigh-
bors and ⊙ indicates the element-wise multiplication. In general,
there are many MPNNs to implement the attention function. For

example, if the encoder is GAT [54], then 𝑑ℎ corresponds to the
number of attention heads, and the attention function is defined as

𝛼
(𝑙 )
𝑖, 𝑗

= LeakyReLU
(
w𝑇

[
W(𝑙 )X(𝑙 )

𝑖
∥ W(𝑙 )X(𝑙 )

𝑗

] )
, w ∈ R2𝑑ℎ .

(8)
For GatedGCN, 𝑑ℎ is equal to the dimension of the node represen-
tation, and the attention function is defined as

𝛼
(𝑙 )
𝑖, 𝑗

= Sigmoid
(
W(𝑙 )

1 X(𝑙 )
𝑖

+W(𝑙 )
2 X(𝑙 )

𝑗

)
. (9)

Without loss of generality, we omit edge features in the formulation.
Regarding the normalization function in Figure 2(b), GAT uses the
Softmax function, and GatedGCN applies degree normalization.
Position Path: RefineNode Positions. The feature path improves
the expressiveness of GraphPAE, but still lacks diverse frequency
information. To solve this issue, the position path uses the learned
attention weights to update the position representations

P(𝑙+1)
𝑖, 𝑗

= 𝛼
(𝑙 )
𝑖, 𝑗

+ P(𝑙 )
𝑖, 𝑗
. (10)

Intuitively, the attention weights gradually refine position represen-
tations to approach the ground-truth node positions. Notably, the
relative distance P is calculated based on the eigenvectors of graph
Laplacian, which contains various frequency information, from
low-frequency u1 to high-frequency u𝐾 . Therefore, leveraging the
refined position representations to reconstruct the relative distance
can force the encoder to learn diverse frequency information. We
find that this design is quite useful in the heterophilic node clas-
sification task, where high-frequency information dominates the
classification performance. Experiments can be seen in Section 5.1.

4.3 GraphPAE Decoder
So far, we have described the encoder of GraphPAE, which effec-
tively learns both node and position representations. The decoder
then utilizes these representations to recover the corrupted infor-
mation. In practice, we find that corrupting both node features and
positions simultaneously can negatively impact performance, as
the recovery process in one path depends on the information from
the other. To resolve this, we corrupt only one path’s data during
training, leaving the other path’s data intact.
Feature Reconstruction. The node representations are learned
by masking node features and preserving the node positions

X̃(𝐿)
𝑖

, P(𝐿)
𝑖

= 𝑓enc

(
X̃(0)
𝑖
,

{
X̃(0)
𝑗

}
𝑗∈N𝑖

, P(0)
𝑖

)
, (11)

To reconstruct the original node features, we apply a feature decoder
𝑓 𝑋dec to map the node representations back to the feature space. The
reconstruction process is defined as

X
′
𝑖 = 𝑓

𝑋
dec

(
X̃(𝐿)
𝑖

)
, (12)

where X
′
𝑖
is the is the reconstructed feature of node 𝑣𝑖 . We follow

GraphMAE and use the scaled cosine error (SCE) as the loss function
of feature reconstruction

Lfeat =
1
|Ṽ |

∑︁
𝑣𝑖 ∈Ṽ

(
1 −

X𝑇
𝑖
X

′
𝑖

∥X𝑖 ∥ · ∥X
′
𝑖
∥

)𝛾
, (13)

where 𝛾 ≥ 1 is a hyperparameter.



KDD ’25, August 3–7, 2025, Toronto, ON, Canada Yang Liu et al.

Algorithm 1 GraphPAE.

1: Input: Graph G = {V, E,X}, masking ratio 𝑟 , epochs 𝑇 , and
noise scale 𝜇𝑝 .

2: Preprocess: Compute top-𝐾 eigenvectors U and node distance
matrix P with U.

3: Init: Encoder 𝑓enc, feature decoder 𝑓 𝑋dec, position decoder 𝑓 𝑃dec,
and learnable token x[𝑀 ] .

4: for 𝑡 = 1 to 𝑇 do
5: Randomly select 𝑟 |V| nodes fromV to form Ṽ .
6: Replace features in Ṽ with x[𝑀 ] to obtain X̃.
7: Add noise 𝛿 ∼ U(−𝜇𝑝 , 𝜇𝑝 ) to eigenvectors of nodes in Ṽ

for Ũ; compute corrupted distances P̃ with Ũ.
⊲ Data Corruption

8: Encode X̃ with P via 𝑓enc for node representations X̃(𝐿) .
9: Encode P̃ with X via 𝑓enc for positional encodings P̃(𝐿) .

⊲ Encoder
10: Decode X̃(𝐿) and P̃(𝐿) via 𝑓 𝑋dec and 𝑓

𝑃
dec to reconstruct fea-

tures X′ and distances P′.
11: Compute Lfeat with X and X′, and Lpos with P and P′.
12: L = Lfeat + 𝛼Lpos.

⊲ Decoder
13: Update 𝑓enc, 𝑓 𝑋dec, and 𝑓

𝑃
dec by minimizing L.

14: end for
15: return Trained encoder 𝑓enc.

PositionReconstruction.The position representations are learned
by offsetting eigenvectors and preserving the original node features

X(𝐿)
𝑖

, P̃(𝐿)
𝑖

= 𝑓enc

(
X(0)
𝑖
,

{
X(0)
𝑗

}
𝑗∈N𝑖

, P̃(0)
𝑖

)
, (14)

Similarly, a position decoder 𝑓 𝑃dec is used to recover the original
pair-wise node distances

P
′
𝑖, 𝑗 = 𝑓

𝑃
dec

(
P̃(𝐿)
𝑖, 𝑗

)
(15)

For position reconstruction loss, we adopt Huber loss [23], which
can make smooth gradients for better convergence

L𝑖, 𝑗pos =


(
P′𝑖,𝑗−P𝑖,𝑗

)2

2 , if |P′
𝑖, 𝑗

− P𝑖, 𝑗 | < 1
|P′
𝑖, 𝑗

− P𝑖, 𝑗 | − 1
2 , otherwise

Lpos =
1∑

𝑣𝑖 ∈Ṽ |N𝑖 |
∑︁

𝑣𝑖 ∈Ṽ, 𝑗∈N𝑖

L𝑖, 𝑗pos

(16)

The overall loss function is formulated as a weighted combination
of the feature and position reconstruction losses

L = Lfeat + 𝛼Lpos (17)

where 𝛼 is the hyperparameter. The pseudocode of GraphPAE is
presented in Algorithm 1.

5 Experiments
In this section, we conduct extensive experiments, including node
classification, graph prediction, and transfer learning on large-scale
molecule graphs to verify the effectiveness of GraphPAE. Moreover,

we perform ablation studies on position reconstruction and dual-
path design. Finally, we analyze the influence of the loss of weight
and the number of eigenvectors.

5.1 Node Classification
Dataset.We evaluate the performance of GraphPAE on 6 represen-
tative heterophilic graphs: BlogCatalog [35], Chameleon, Squirrel,
Actor [40], arXiv-year [19], and Penn94 [52]. Specifically, arXiv-
year and Penn94 are large-scale graphs (> 40,000) to evaluate the
scalability of the methods. As these datasets place greater emphasis
on high-frequency information, they are well suited to evaluate
GraphPAE’s ability to capture diverse frequency components.
Baselines and Settings.We benchmark GraphPAE against a wide
range of graph self-supervised baselines, which can be roughly di-
vided into: (1) contrastive learning, i.e., DGI [55], BGRL [51], MV-
GRL [15], CCA-SSG [75], and Sp2GCL [1]. (2) graph autoencoders,
i.e., VGAE [26], GraphMAE [18], GraphMAE2 [17], MaskGAE [28],
S2GAE [50], and AUG-MAE [59]. We use GAT with 4 heads and
1024 hidden units as the encoder for all methods, and the number
of layers is searched in the range of {2, 3}. Moreover, we adopt
two-layer MLPs with ReLU activation as both feature and position
decoders for efficiency and scalability. In the evaluation protocol,
we freeze the encoder and generate node representations. The node
representations are then input into a linear classifier for training
with labeled data and inference for node classification. For all meth-
ods, we use the Adam optimizer and run 10 times on each graph.
Results. As shown in Table 2, GraphPAE consistently outperforms
all baseline methods across all datasets, demonstrating the effective-
ness of our framework. We highlight two important observations
as follows. (1) GraphPAE surpasses both spatial- and spectral-based
contrastive learning methods on most datasets, indicating its ability
to effectively encode both spatial and spectral patterns through the
joint reconstruction of features and positions. (2) GraphPAE also
consistently outperforms existing GAEs, including those focused on
feature reconstruction, structure reconstruction, and hybrid strate-
gies. This superior performance is mainly attributed to two key
factors. First, the incorporation of positional encodings enhances
the expressivity of node representations. Second, reconstructing
positions encourages the GAE to capture diverse frequency infor-
mation, leading to high-quality graph representations.

5.2 Graph Prediction
Datasets. For graph-level tasks, we evaluate GraphPAE on 7 OGB
datasets [19], including 3 graph regression tasks and 4 graph classi-
fication tasks. For all datasets, we use public splits for a fair com-
parison. We use MSE and ROC-AUC as the evaluation metrics for
regression and classification, respectively.
Baselines and Settings. We select 5 contrastive learning meth-
ods, i.e., InfoGraph [49], GraphCL [71], MVGRL [15], JOAO [70],
and Sp2GCL [1], and 4 graph autocoders, i.e., GraphMAE [18],
GraphMAE2 [17], StructMAE [32], and AUG-MAE [59]. We use
a two-layer GatedGCN as the encoder and set the hidden dimen-
sion 𝑑ℎ = 300. We adopt two-layer MLPs as feature and position
decoders. For evaluation, we freeze the encoder to output node
representations and input them into pooling functions for graph
representations. Similarly, we input the graph representations into
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Table 2: Node classification results of different graph self-supervised learning, mean accuracy (%) ± standard deviation. Bold
indicates the best performance and underline means the runner-up.

Dataset
Small Graphs Large Graphs

BlogCatalog Chameleon Squirrel Actor arXiv-year Penn94

Supervised 80.52±2.10 80.02±0.87 71.91±1.03 33.93±2.47 46.02±0.26 81.53±0.55

DGI 72.07±0.16 43.83±0.14 34.56±0.10 27.98±0.09 - -
BGRL 79.74±0.46 61.24±1.07 43.24±0.52 26.61±0.57 41.43±0.04 63.31±0.49
MVGRL 63.24±0.94 73.19±0.42 60.09±0.44 34.64±0.20 - -
CCA-SSG 74.00±0.28 75.00±0.75 61.58±1.98 27.79±0.58 40.78±0.01 62.63±0.20
Sp2GCL 72.73±0.46 78.88±1.04 62.61±0.87 34.70±0.92 39.09±0.02 68.80±0.45

VGAE 60.47±1.84 62.32±1.90 42.50±1.35 31.57±0.75 36.39±0.21 55.31±0.28
GraphMAE 79.90±1.13 79.50±0.57 61.13±0.60 32.15±1.33 40.30±0.04 67.97±0.21
GraphMAE2 77.34±0.12 79.13±0.19 70.27±0.88 34.48±0.26 38.97±0.03 67.86±0.42
MaskGAE 73.10±0.08 74.50±0.87 68.53±0.44 33.44±0.34 40.59±0.04 63.84±0.03
S2GAE 75.76±0.43 60.24±0.37 68.60±0.56 26.17±0.38 40.32±0.12 70.24±0.09

AUG-MAE 82.03±0.69 70.10±1.88 62.57±0.67 33.42±0.38 37.10±0.13 69.90±0.43

GraphPAE 85.76±1.22 80.51±1.25 72.05±1.40 38.55±1.35 41.85±0.04 71.79±0.37

Table 3: Graph regression and classification results of different graph self-supervised learning on OGB datasets. Bold indicates
the best performance and underline means the runner-up. ↓means lower the better and ↑means higher the better.

Task Regression (Metric: RMSE ↓) Classification (Metric: ROC-AUC% ↑)
Dataset molesol molipo molfreesolv molbace molbbbp molclintox moltocx21

Supervised 1.173±0.057 0.757±0.018 2.755±0.349 80.42±0.96 68.17±1.48 88.14±2.51 74.91±0.51

InfoGraph 1.344±0.178 1.005±0.023 10.005±8.147 73.64±3.64 66.33±2.79 64.50±5.32 69.74±0.57
GraphCL 1.272±0.089 0.910±0.016 7.679±2.748 73.32±2.70 68.22±2.19 74.92±4.42 72.40±1.07
MVGRL 1.433±0.145 0.962±0.036 9.024±1.982 74.88±1.43 67.24±3.19 73.84±2.75 70.48±0.83
JOAO 1.285±0.121 0.865±0.032 5.131±0.782 74.43±1.94 67.62±1.29 71.28±4.12 71.38±0.92
Sp2GCL 1.235±0.119 0.835±0.026 4.144±0.573 78.76±1.43 68.72±1.53 80.88±3.86 73.06±0.75

GraphMAE 1.050±0.034 0.850±0.022 2.740±0.233 79.14±1.31 66.55±1.78 80.56±5.55 73.84±0.58
GraphMAE2 1.225±0.081 0.885±0.019 2.913±0.293 80.74±1.53 67.67±1.44 75.75±3.65 72.93±0.69
StructMAE 1.499±0.043 1.089±0.002 2.568±0.262 77.75±0.42 65.66±1.16 79.42±4.56 71.13±0.61
AUG-MAE 1.248±0.026 0.917±0.013 2.395±0.158 78.54±2.49 67.05±0.63 82.66±1.98 74.33±0.07

GraphPAE 1.015±0.045 0.810±0.018 2.058±0.188 81.11±1.24 68.56±0.71 82.69±3.39 74.46±0.54

a linear classifier to evaluate the performance for downstream tasks.
We use Adam optimizer and report the metrics with mean results
and standard deviation of 10 seeds.
Results. Table 3 summarizes the results of graph-level tasks. Graph-
PAE consistently achieves superior performance across both re-
gression and classification benchmarks, highlighting its ability
to learn high-quality graph representations. Notably, GraphPAE
shows competitive performance against contrastive learning meth-
ods and even exhibits notable improvements compared against the
spectral-based method Sp2GCL on molfreesolv, molbace, and mol-
clintox. In addition, GraphPAE also outperforms other GAEs across
most datasets. We attribute these gains to the proposed position
corruption-reconstruction strategy, which improves the encoder’s
ability to identify crucial substructures for downstream tasks.

5.3 Transfer Learning
Settings.We conduct transfer learning experiments on molecule
property prediction to evaluate the generalization ability of Graph-
PAE. Specifically, we follow the setting of [34], which first pre-trains
the encoder on 2 million molecules sampled from ZINC15 [48], and
then fine-tunes on QM9 [64] to predict the quantum chemistry
properties. We compare GraphPAE with the state-of-the-art mole-
cule graph pre-training model, i.e., GraphCL [71], GraphMAE [18],
Mole-BERT [65], and SimSGT [34]. We use a five-layer GatedGCN
with 300 hidden units. Upon finishing pre-training, a two-layer MLP
is attached after the graph representations for property prediction.
During the fine-tuning protocol, the encoder and attached MLP
are trained together on labeled data of downstream tasks. Consis-
tent with [34], we divided QM9 into train/validation/test sets with
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Table 4: Quantum chemistry property results of transfer learning on QM9. The best and runner-up results are highlighted with
bold and underline, respectively.

Target 𝜇 𝛼 𝜖homo 𝜖lumo Δ𝜖 𝑅2 ZPVE 𝑈0 𝑈 𝐻 𝐺 𝐶𝑣

Unit D 𝑎3
0 10−2meV 10−2meV 10−2meV 𝑎2

0 10−2meV meV meV meV meV cal/mol/K

GraphCL 1.035 2.321 2.030 3.667 4.523 40.725 2.063 2.461 1.745 1.734 1.751 1.747
GraphMAE 1.030 2.924 2.407 6.373 4.813 41.955 4.623 1.411 2.207 2.208 2.207 2.200
Mole-BERT 1.031 1.918 1.477 4.127 4.240 44.374 2.190 2.532 2.509 2.511 2.516 2.508
SimSGT 1.064 2.413 2.837 4.227 4.107 40.504 2.127 1.948 2.420 2.416 2.416 2.410

GraphPAE 0.703 0.879 1.199 2.141 2.289 36.480 0.502 0.510 0.639 0.639 0.641 0.643

Table 5: Ablation studies of position reconstruction and framework design on node- and graph-level tasks. Exp No.: the
number of different experimental settings. Corrupt Info.: corrupted information during training. Recon Info.: information to be
reconstructed during training. Bold indicates the best performance.

Exp Corrupt Info. Recon Info. Dual-Path Node-level Graph-level

No. Feature Position Feature Position Blog (↑) Squirrel (↑) Bace (↑) Bbbp (↑) Freesolv (↓)

a ! ! ! 82.8±1.7 66.4±1.6 78.4±1.2 66.4±1.7 2.79±0.40
b ! ! ! ! 83.5±1.0 68.5±0.9 78.9±2.1 66.8±0.6 2.44±0.36
c ! ! 84.6±1.6 71.3±0.9 79.4±3.4 67.7±0.9 2.20±0.14
d ! ! ! ! ! 85.8±1.2 72.1±1.4 81.1±1.2 68.6±0.7 2.06±0.19

80%/10%/10% by scaffold splits. We use Adam optimizer and run it
5 times to report average MAE and standard deviation.
Results. From Table 4, we observe that GraphPAE demonstrates
robust generalization across all prediction targets compared to state-
of-the-art models. Among the baselines, Mole-BERT and SimSGT
are specially designed for molecular graph pretraining, incorpo-
rating customized reconstruction objectives tailored to the charac-
teristics of molecular graphs. Specifically, Mole-BERT pretrains a
discrete codebook within the subgraph of nodes, inherently captur-
ing both features and local structural patterns. During reconstruc-
tion, the model replaces the raw features with codebook entries
as predictive targets. SimSGT employs a tokenizer to encode fea-
ture and local structure information, using tokenized output as
reconstruction targets. Despite these tailored strategies, GraphPAE
consistently outperforms these models. The superiority is largely
attributed to the effective positional encodings obtained by position
corruption-reconstruction, enabling the graph representations to
capture crucial substructures for prediction targets such as cycles.

5.4 Ablation Studies
To verify the effectiveness of important designs of GraphPAE, we
conduct extensive ablation experiments. We select 2 datasets for
node-level tasks and 3 datasets for graph-level tasks.
Effectiveness of Position Reconstruction. To achieve position
corruption-reconstruction, GraphPAE inevitably introduces posi-
tional encodings into the encoder. Firstly, we verify that the superior
performance is attributed not only to the introduction of positional
encodings but also to the position reconstruction. We conducted
two sets of comparative experiments in Table 5: one comparing
Exp a with Exp b, and another comparing Exp c with Exp d. We

have the following summaries: (1) In Exp a, both features and posi-
tions are corrupted, but only the features are reconstructed. In Exp
b, both features and positions are reconstructed. We observe that
Exp b performs better than Exp a, demonstrating the effectiveness
of position reconstruction. (2) In Exp c, we remove both position
corruption and reconstruction from GraphPAE. Comparing Exp
d against Exp c, we find that the encoder incorporating position
reconstruction consistently improves performance compared to
feature reconstruction alone.
Effectiveness of Dual-Path Reconstruction. Comparing Exp b
and Exp c in Table 5, we observe that position reconstruction with-
out the dual-path architecture fails to improve performance and
may even lead to degradation. Specifically, in Exp b, both masked
features and noisy positions are reconstructed directly from node
representations. However, recovering relative distances from node
representations generated with corrupted positions is more diffi-
cult than recovering them from refined distance encoding directly.
Rather than enhancing node representations or capturing diverse
frequency information, the corrupted positional inputs introduce
additional noise during training. As a result, applying position
corruption-reconstruction without appropriate design hinders the
model’s ability to learn meaningful structural patterns. Based on
these observations, we propose a dual-path architecture that disen-
tangles feature and relative distance encodings for reconstruction.
Experimental results from Exp d demonstrate that this strategy con-
sistently achieves the best performance across datasets, validating
the effectiveness of our dual-path encoder design.
Improvement Attributed to L𝑝𝑜𝑠 and PEs. Since integrating po-
sitional encodings also enhances representation learning, it remains
unclear how much of the performance gain in GraphPAE stems
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Table 6: Ablation studies of L𝑝𝑜𝑠 and positional encodings.

Methods Bace (↑) Bbbp (↑) Freesolv (↓)
GraphPAE 81.11±1.24 68.56±0.71 2.058±0.19
w/o L𝑝𝑜𝑠 79.40±3.45 67.74±0.92 2.204±0.14

w/o L𝑝𝑜𝑠 & PEs 79.14±1.31 66.55±1.78 2.740±0.23
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Figure 3: Influence of the loss weight 𝛼 and the number of
eigenvectors 𝐾 .

from the position corruption-reconstruction mechanism, and how
much from the positional information itself. Therefore, we conduct
ablation studies on bothL𝑝𝑜𝑠 and positional encodings. Specifically,
we remove L𝑝𝑜𝑠 from Equation 17 while keeping PEs, to evaluate
the effect of position reconstruction. Then, we remove both L𝑝𝑜𝑠
and PEs to isolate the impact of positional information. The results
are reported in Table 6. Notably, even with positional encodings
retained, removing L𝑝𝑜𝑠 consistently leads to a noticeable per-
formance decline across all datasets, highlighting the importance
of the proposed position corruption-reconstruction mechanism in
enhancing GAEs.

5.5 Parameters Analysis
We conduct additional parameter analysis of the loss weight 𝛼 and
the number of eigenvectors 𝐾 .
Influence of the loss weight 𝛼 in GraphPAE. Figure 3(a) and 3(b)
present the hyperparameter analysis of 𝛼 to further examine the
influence of the positional reconstruction loss L𝑝𝑜𝑠 . We summarize
the key observations as follows: (1) As 𝛼 increases within a cer-
tain threshold, the performance improves progressively, indicating
that position reconstruction contributes positively to the quality
of learned representations. (2) However, excessively large values
of 𝛼 lead to performance degeneration. This suggests assigning a
high weight to position reconstruction may cause the encoder to

overemphasize positional information at the expense of overall rep-
resentation learning. (3) While the optimal value of 𝛼 varies slightly
across datasets, we observe that the best-performing range typically
lies within {1e-3, 1e-2, 1e-1}, making it easy to search in practice.
Additional hyperparameter details are provided in Appendix B.2.
Influence of the number of eigenvectors 𝐾 in GraphPAE. We
further analyze the effect of the number of eigenvectors𝐾 on perfor-
mance using the Squirrel and Chameleon datasets, as shown in Fig-
ure 3(c) and 3(d). As 𝐾 increases, performance generally improves
due to the model’s ability to capture a wider range of frequency
information. However, once 𝐾 surpasses a certain threshold, the
performance gains become marginal. Therefore, to balance effec-
tiveness and computational efficiency, we adopt a moderate value
of 𝐾 , typically in the range of [50, 100], which provides a good
trade-off in practice.

6 Conclusion
In this paper, we propose GraphPAE, a graph autoencoder that
reconstructs both node features and relative distance. To enhance
models’ expressivity to distinguish intricate patterns and the ability
to integrate various frequency information, GraphPAE introduces
position corruption and recovery into GAEs and designs a dual-path
reconstruction strategy. Extensive experiments, including node
classification, graph prediction, and transfer learning, demonstrate
the superiority of our GraphPAE.
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Appendices
A Spectral Analysis of Masking Strategies
Masking Strategies for Node Features and Edges. We conduct
the experiments in the Squirrel datasets with a 20% masking ratio.
For node feature masking, given the node feature matrix X, we
randomly mask 20% of the node in the dataset and set the feature
vector to zero. The remaining 80% of nodes retain their original
feature. The corrupted feature matrix is defined as X̃. For edge
masking, given the original graph structureA, we randomly remove
20% of the edges from the graph while preserving the node features.
This process results in a structurally corrupted graph with a new
adjacency matrix Ã.

Table 7: Statistics of node classification datasets.

Datasets Nodes Edges Features Classes Train/Valid/Test

BlogCatalog 5,196 343,486 8,189 6 120/1,000/1,000
Chameleon 2,277 62,792 2,325 5 1,092/729/456
Squirrel 5,201 396,846 2,089 5 2,496/1,664/1,041
Actor 7,600 53,411 932 5 3,648/2,432/1,520
arXiv-year 169,343 2,315,598 128 5 84671/42335/42337
Penn94 41,554 2,724,458 4,814 2 19,407/9,703/9,705

Table 8: Statistics of graph prediction datasets.

Dataset Graphs Avg. Nodes Avg. Edges Classes Task Metric

molesol 1,128 13.3 13.7 1 Regression RMSE
mollipo 4,200 27.0 29.5 1 Regression RMSE
molfreesolv 642 8.7 8.4 1 Regression RMSE
molbace 1,513 34.1 36.9 1 Binary Class. ROC-AUC
molbbbp 2,039 24.1 26.0 1 Binary Class. ROC-AUC
molcintox 1,477 26.2 27.9 2 Binary Class. ROC-AUC
moltox21 7,831 18.6 19.3 12 Binary Class. ROC-AUC

ZINC15 2,000,000 26.62 57.72 - Pre-Training -
QM9 1,177,631 8.80 18.81 12 Targets Finetuning MAE

Computation of Frequency Magnitudes. First, we calculate
Laplacian matrix by:

L = I𝑁 − D−1/2AD−1/2 (18)

The eigenvectors of L are decomposed as L = U𝚲U⊤, where 𝚲 =

diag({𝜆𝑖 }𝑁𝑖=1), U = [u1, · · · , u𝑁 ] ∈ R𝑁×𝑁 , and the eigenvalues
are ordered as 0 ≤ 𝜆1 ≤ · · · ≤ 𝜆𝑁 ≤ 2. 𝜆𝑖 reflects the frequency
magnitude of corresponding eigenvector u𝑖 over the graph. We
transform node features into the spectral domain by

X𝑠 = U⊤X, X𝑠 ∈ R𝑁×𝑑 . (19)

In particular, the i-th row of X𝑠 corresponds to the frequency mag-
nitude at eigenvalue 𝜆𝑖 . With 𝑑-dimensional X𝑠 , we first calculate
the mean magnitude by:

X̄𝑠 =
1
𝑑

𝑑∑︁
𝑖=1

X𝑠:,𝑖 , X̄𝑠 ∈ R𝑁 (20)

For a given frequency band [𝑓1, 𝑓2], we extract the set of indices I
corresponding to eigenvalues within this range:

I = {𝑖 | 𝑓1 ≤ 𝜆𝑖 ≤ 𝑓2} (21)
The average frequency magnitude within this band is computed as:

X̄𝑠[ 𝑓1,𝑓2 ] =
1
|I |

∑︁
𝑖∈I

X̄𝑠 [𝑖], X̄𝑠[ 𝑓1,𝑓2 ] ∈ R (22)

For feature masking case, we calculate L by substituting A into
Equation 18. Then we decompose L and get U. By substituting U, X,
and X̃ in Equation (19)-(22), we can get the frequency magnitude
of original and corrupted graphs. The comparison of differences is
shown in Figure 1(a). For edge masking case, we calculate L and L̃
by substituting A and Ã into Equation 18. Then we decompose L
and L̃, and get U and Ũ. By substituting U, Ũ, and X in Equation
(19) - (22), we can also get the frequency magnitude of original and
corrupted graphs as shown in Figure 1(b).
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Table 9: Hyperparameters of node classification.

Dataset lr wd 𝑟 𝛼 dp dpedge 𝐾

BlogCatalog 0.001 0.0 0.25 0.1 0.6 0.0 50
Chameleon 0.001 0.0 0.25 0.01 0.0 0.0 50
Squirrel 0.001 0.0 0.5 0.001 0.6 0.0 50
Actor 0.0005 0.0 0.25 0.01 0.0 0.0 50
arXiv-year 0.001 0.0 0.5 0.01 0.0 0.0 100
Penn94 0.001 0.0 0.25 0.001 0.0 0.0 200

Table 10: Hyperparameters of graph prediction.

Dataset pooling epoch lr wd 𝑟 𝛼 dp dpedge 𝐾

molesol sum 20 0.0005 0.0 0.75 0.1 0.6 0.5 8
molipo sum 20 0.0005 0.0001 0.25 0.001 0.6 0.0 30
molfreesolv sum 100 0.0001 0.0 0.5 0.1 0.5 0.5 15
molbace mean 100 0.001 0.0 0.75 0.1 0.5 0.5 30
molbbbp mean 20 0.001 0.0 0.5 0.01 0.6 0.6 30
molclintox mean 20 0.0001 0.0 0.25 0.01 0.6 0.0 30
moltocx21 mean 20 0.0001 0.0 0.25 0.1 0.0 0.6 8

Table 11: Additional experiment results on homophilic and
large-scale graphs.

Methods Facebook Wiki ogbg-products

BGRL 89.71±0.35 79.02±0.13 78.59±0.02
CCA-SSG 89.45±0.60 78.85±0.32 75.27±0.05
GraphMAE 89.54±0.36 78.94±0.48 78.89±0.01
GraphMAE2 88.49±0.43 78.84±0.44 81.59±0.02

GraphPAE 91.46±0.23 79.32±0.29 79.10±0.02

B Experimental Details
B.1 Statistics of Datasets
We benchmark GraphPAE across various tasks, including node
classification, graph prediction, and transfer learning. Specifically,
we conduct experiments on six node classification datasets and
seven graph-level prediction datasets and select ZINC15 and QM9
for transfer learning. For datasets in node classification and graph
prediction, we utilize public data splits. In transfer learning, we fol-
low [34] and divide QM9 into train/valid/test sets with 80%/10%/10%

by scaffold split. Detailed statistics of the node- and graph-level
datasets are presented in Table 7 and Table 8, respectively.

B.2 Hyperparameters
Hyperparameter details of node classification and graph prediction
are reported in Table 9 and Table 10. 𝑟 denotes the mask ratio and
𝛼 is the loss weight of L𝑝𝑜𝑠 . dp and dp𝑒𝑑𝑔𝑒 represent the dropout
of node features and edge features, respectively. For transfer learn-
ing, we pre-train GraphPAE on 2 million molecules sampled from
ZINC15 with 100 epochs. The mask ratio is set to 0.35, and the loss
weight for L𝑝𝑜𝑠 is 0.01. Both node and edge dropout are set to 0.0,
and the number of eigenvectors for positional encoding is 6. During
fine-tuning, the encoder and the attached MLP are jointly trained
on the QM9 dataset using an initial learning rate of 0.001 and no
weight decay. We apply a dropout rate of 0.1 to both node features
and edge features within GNN layers.

B.3 Additional Experiment Results.
We further evaluate GraphPAE on homophilic graphs, including
Facebook [42] and Wiki [36], as well as a large-scale graph ogbn-
products [19]. Notably, ogbn-products contains 2,449,029 nodes and
61,859,140 edges, making it a suitable benchmark to demonstrate the
scalability of GraphPAE. The experimental results are summarized
in Table 11, and we make the following observations: (1) GraphPAE
consistently achieves competitive performance across these differ-
ent benchmarks. (2) The performance gains on homophilic graphs
are less pronounced compared to those on heterophilic graphs. We
conjecture this is because, in homophilic graphs, a small portion of
very low-frequency information is sufficient.

C Complexity Analysis
The eigen-decomposition complexity is O(𝑁 3). However, we only
need to decompose the smallest 𝐾 eigenvalues, which reduces com-
plexity to O

(
𝑁 2𝐾

)
. Additionally, the decomposition is performed

once per graph, so its cost is amortized over the entire experiment.
During training, GraphPAE introduces an additional O (E) com-

plexity per layer for PE computation and an extra cost for relative
node distance reconstruction. Since we only reconstruct corrupted
node pairs, the complexity remains much lower than O (E). How-
ever, this slight overhead enables the encoder to capture more
diverse frequency information.
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