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Figure 1: Illustration of chain-of-thought in NLP, standard
graph prompts and graph chain-of-thought prompting.
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a Chain-of-Thought Prompting
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Figure 2: Overall framework of GCoT.

Yu, et al. "GCoT: Chain-of-Thought Prompt Learning for Graphs." SIGKDD’25.
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N Experiment

Table 2: Accuracy (%) evaluation of node and graph classification.

Node classification

Graph classification

Method
cHhods Cora Citeseer Pubmed Photo MUTAG COX2 BZR PROTEINS

GCN 3250 + 14.21 2636+ 9.03 5218+ 870 60.18 + 12.04 | 43.44 + 1514  50.95 + 23.48  47.25 + 16.59  40.28 + 0.03
GAT 31.00 + 16.22 2771+ 874 5002+ 888 5179 +12.85 | 37.33 + 10.81  50.58 + 26.16  46.55 + 16.57 40.39 + 0.04
DGI/INFOGRAPH | 54.11+ 9.60 4500+ 9.19 47.46+12.19 58.89 + 10.97 | 53.17 + 17.29  53.82 + 14.19 4933 + 15.11  52.51 + 10.29
GrapHCL 5196 + 9.43 43.12+ 9.61 4680+ 9.04 5778 +11.31 | 54.92 + 17.09 53.81 + 14.21  49.73 + 14.66 53.81 + 8.97
PrROG 50.59 + 14.64 43.17+ 849 63.07+11.96 6650+ 946 | 51.99+ 450 53.45+ 1501 5352+ 11.97 5273+ 6.57
GPF 57.60 + 13.88 4311+ 880 55.63+10.96 6529 + 10.07 | 56.55+ 13.95 54.16 + 14.07  48.65 + 13.96 53.05+ 7.62
GPF+ 5742 + 13.87 4328+ 882 57.16+10.99 65.07 + 10.01 | 56.81 + 12.93  55.24 + 13.29  50.83 + 19.74 5458 + 8.70
GrAPHPROMPT | 54.25+ 9.38 4534 +10.53 63.11+10.01 66.62+ 9.90 | 55.44 + 12.56 54.34 + 14.77  54.59 + 10.52 53.80 + 7.93
GCoT 59.67 + 1551 46.21+ 8.78 64.43+ 9.96 67.16 = 10.46 | 58.75 + 15.42 56.26 + 15.52 58.03 + 23.44 56.24 + 8.60

Best results are bolded and runner-up results are underlined.

Yu, et al. "GCoT: Chain-of-Thought Prompt Learning for Graphs." SIGKDD’25.
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Table 2: Accuracy (%) evaluation of node and graph classification.

Method Node classification Graph classification
ethods
Cora Citeseer Pubmed Photo MUTAG COX2 BZR PROTEINS

GCN 32.50 £ 1421 2636+ 9.03 52.18%f 8.70 60.18 £12.04 | 43.44 £ 15.14  50.95 + 23.48 47.25 £ 16.59 40.28 + 0.03
GAT 31.00 £ 16.22 27.71+ 874 50.02+ 888 51.79+ 1285 | 37.33 £10.81 50.58 = 26.16  46.55 £ 16.57 40.39+ 0.04
DGI/INFOGRAPH | 54.11+ 9.60 45.00+ 9.19 4746 +12.19 58.89 + 10.97 53.17 £+ 17.29  53.82 + 14.19 4933 + 15.11  52.51 £ 10.29
GRAPHCL 5196 £+ 9.43 4312+ 9.61 46.80% 9.04 57.78 £11.31 5492 +17.09  53.81 + 14.21 49.73 £ 14.66 53.81 £ 8.97
ProG 50.59 + 14.64 43.17+ 849 63.07£11.96 6650+ 946 | 51.99+ 4,50 53.45 % 15.01 53.52 £ 11.97 52.73 + 6.57
GPF 57.60 £ 13.88 43.11 £+ 8.80 55.63+£10.96 65.29 £ 10.07 56.55 £ 13.95 54.16 + 14.07 48.65 £ 13.96 53.05+ 7.62
GPF+ 57.42 + 13.87 43.28 £ 8.82 57.16 £10.99 65.07 + 10.01 56.81 + 1293  55.24 + 13.29 50.83 £19.74 54.58 £+ 8.70
GRAPHPROMPT 5425+ 938 4534 +1053 63.11 £10.01 66.62+ 990 | 5544 +12.56 5434 +14.77  54.59 £10.52 53.80+ 7.93
GCoT 59.67 + 15,51 46.21+ 8.78 64.43 £ 9.96 67.16 £10.46 | 58.75 £ 1542 56.26 £ 15.52 58.03 + 23.44 56.24 + 8.60

Best results are bolded and runner-up results are underlined.

Yu, et al. "GCoT: Chain-of-Thought Prompt Learning for Graphs." SIGKDD’25.
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Figure 3: Impact of labeled data size (number of shots) on
node and graph classification.

Table 3: Ablation study on the effects of key components.

Node classification

Graph classification

Methods Cora Pubmed MUTAG  PROTEINS
GCOT\CoT | 56.65t13.97  62.80£10.08 | 56.49+16.61  53.40+6.66
GCOT-L1 | 57.18+1434 63.31£10.05 | 56.54+14.12  54.7148.57
GCOT-L2 | 57.00+14.48 63.20410.08 | 57.68+13.84  54.77+8.81
GCOT-L3 | 57.01414.66 63.33£10.05 | 57.85£16.10  56.22+8.45
GCoT 59.67+1551 64.43+9.96 | 58.75+1542 56.24+8.60

Yu, et al. "GCoT: Chain-of-Thought Prompt Learning for Graphs." SIGKDD’25.



l Conclusions

* We hypothesized that multi-step inference could be useful to
graph prompt learning

* We proposed GCoT, a CoT-style prompt learning framework
that mimics CoT in NLP.

* Experiments showed promising results compared to traditional
single-step prompt methods on graphs.



Thank you! Questions?

* GCoT paper & github repo:

g GCoT: Chain-of-Thought Prompt Learning for Graphs

Xingtong Yu, Chang Zhou, Zhongwei Kuai, Xinming
Zhang, Yuan Fang

https:// arxiv.org/pdf/2502.08092

-

Introduction

We provide the code (in pytorch) and datasets for our paper "GCoT: Chain-of-Thought Prompt Learning for Graphs"
accepted by SIGKDD 2025.

https://github.com/Eric-Kuai/GCoT/tree/python



https://github.com/Eric-Kuai/GCoT/tree/python
https://github.com/Eric-Kuai/GCoT/tree/python
https://github.com/Eric-Kuai/GCoT/tree/python
https://arxiv.org/abs/2402.01440v4
https://arxiv.org/pdf/2502.08092
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