
GCoT: Chain-of-Thought Prompt Learning for Graphs
Xingtong Yu

Singapore Management University
Singapore

xingtongyu@smu.edu.sg

Chang Zhou
University of Science and Technology

of China
China

zhouchang21sy@mail.ustc.edu.cn

Zhongwei Kuai
University of Science and Technology

of China
China

asagiri@mail.ustc.edu.cn

Xinming Zhang
University of Science and Technology

of China
China

xinming@ustc.edu.cn

Yuan Fang
Singapore Management University

Singapore
yfang@smu.edu.sg

Abstract

Chain-of-thought (CoT) prompting has achieved remarkable suc-
cess in natural language processing (NLP). However, its vast po-
tential remains largely unexplored for graphs. This raises an in-
teresting question: How can we design CoT prompting for graphs
to guide graph models to learn step by step? On one hand, un-
like natural languages, graphs are non-linear and characterized by
complex topological structures. On the other hand, many graphs
lack textual data, making it difficult to formulate language-based
CoT prompting. In this work, we propose the first CoT prompt
learning framework for text-free graphs, GCoT. Specifically, we
decompose the adaptation process for each downstream task into a
series of inference steps, with each step consisting of prompt-based
inference, “thought” generation, and thought-conditioned prompt
learning. While the steps mimic CoT prompting in NLP, the exact
mechanism differs significantly. Specifically, at each step, an input
graph, along with a prompt, is first fed into a pre-trained graph
encoder for prompt-based inference. We then aggregate the hidden
layers of the encoder to construct a “thought”, which captures the
working state of each node in the current step. Conditioned on
this thought, we learn a prompt specific to each node based on
the current state. These prompts are fed into the next inference
step, repeating the cycle. To evaluate and analyze the effectiveness
of GCoT, we conduct comprehensive experiments on eight public
datasets, which demonstrate the advantage of our approach.

CCS Concepts

• Information systems→ Data mining.

Keywords

Graph learning, chain-of-thought, prompt learning.

ACM Reference Format:

Xingtong Yu, Chang Zhou, Zhongwei Kuai, Xinming Zhang, and Yuan Fang.
2025. GCoT: Chain-of-Thought Prompt Learning for Graphs. In Proceedings

Please use nonacm option or ACM Engage class to enable CC licenses
This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.
KDD ’25, August 3–7, 2025, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1454-2/2025/08
https://doi.org/10.1145/3711896.3736974

of the 31st ACM SIGKDDConference on Knowledge Discovery and DataMining
V.2 (KDD ’25), August 3–7, 2025, Toronto, ON, Canada. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3711896.3736974

KDD Availability Link:

The source code of this paper has been made publicly available at https:
//doi.org/10.5281/zenodo.15501903.

1 Introduction

Recently, Chain-of-Thought (CoT) prompting has demonstrated
significant advancement in the field of natural language processing
(NLP) [3, 45, 47], which mimics the logical process a human may
employ to solve a task. Instead of directly providing an answer, CoT
prompting decomposes a problem into several steps, guiding the
pre-trained language model to follow these steps that lead to the
final answer. For example, given the math question in Fig. 1(a), a
language model utilizes CoT prompting (e.g., initial quantity, eaten
quantity, and subtraction) to reach the final answer of 4.

However, the vast potential of CoT prompt learning remains
unexplored on pre-trained graph models. Graphs can capture the
interactions between entities in a wide range of domains, exhibit-
ing a non-linear topological structure, such as molecular graphs
[22, 24, 46], citation networks [19, 25, 50], and social networks
[14, 66]. Conventional approaches typically retrain graph neu-
ral networks (GNNs) [21, 42] or graph transformers [54, 65] for
each specific task in an end-to-end supervised manner, relying on
abundant labeled data. More recent pre-training methods [43, 55]
learn task-invariant, general properties from unlabeled graphs
through self-supervised pretext tasks and are then fine-tuned via
task-specific labels to adapt to various downstream applications
[13, 34]. To further narrow the gap between pre-training and down-
stream tasks, prompt learning [6, 30, 56] has emerged as a low-
resource alternative. They unify the objectives of pre-training and
downstream tasks using the same template and employ a light-
weight prompt to modify either the input features or hidden em-
beddings of the pre-trained graph encoder, while keeping the pre-
trained weights frozen, as shown in Fig. 1(b). A contemporary work
[18] leverages graphs to guide reasoning; however, it is built on the
CoT mechanism from NLP and relies on textual data to construct
thoughts, precluding its application to general text-free graphs. For
text-free graphs, existing graph learning methods—including super-
vised, pre-training, and prompting approaches—produce a “final

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://doi.org/10.1145/3711896.3736974
https://doi.org/10.1145/3711896.3736974
https://doi.org/10.5281/zenodo.15501903
https://doi.org/10.5281/zenodo.15501903

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Trovato et al., Xingtong Yu, Chang Zhou, Zhongwei Kuai, Xinming Zhang, and Yuan Fang

Step 1

Step 2

Query: If there are 9 apples, I eat 5

apples, how many apples are left?

Answer: There are 9 apples initially.

5 are eaten. Now there are 9 - 5 = 4

apples. The answer is 4.

Query: If there are 2 peaches, I buy 3

peaches, how many peaches are there?

Answer: …

answer

thought2

(c) Chain-of-thought graph prompting

thought1

Step K

…

answer

(a) Chain-of-thought prompting in NLP

Pre-trained

graph encoder

(b) Standard graph prompting

⊗

prompt

query graph

query graph

query graph

query graph

Pre-trained

graph encoder

Pre-trained

graph encoder

Pre-trained

graph encoder

Figure 1: Illustration of chain-of-thought in NLP, standard

graph prompts and graph chain-of-thought prompting.

answer” in a single inference step, whichmay limit the refinement of
the final prediction. In this work, we explore the following question:
Would introducing additional inference steps in a CoT style enhance
the ability of pre-trained graph models to refine their predictions?

Due to the significant differences between language and graph
data, replicating CoT prompting from NLP for graphs is challeng-
ing. In NLP, a CoT prompt can be handcrafted before the learn-
ing phase and typically consists of a structured text in the form
⟨input, chain of thought, output⟩ [47]. This prompt serves as an ex-
ample to guide the model in generating intermediate thoughts that
lead to the final answer. In contrast, our work explores a different
prompting format for text-free graphs, which mimics the CoT ap-
proach in NLP but is not a direct application. Instead of designing
prompts prior to the learning phase, we generate them step by step
based on intermediate “thoughts”, improving the model’s inference
ability on downstream tasks by incorporating additional inference
steps while freezing the pre-trained weights. To realize this vision,
we must address two questions.

First, what should be the inference steps and thoughts for a graph
task? In NLP, a thought is defined as a short instruction that reflects
a single reasoning step, with each intermediate textual answer
serving as a thought [3]. However, in general text-free graphs,
we cannot directly leverage text as prompts or thoughts. In this
work, we aim to improve the inference capability of a pre-trained
graph model by incorporating additional steps to refine the answer.
We design an inference step with three substages: prompt-based
inference, thought construction, and prompt learning. For prompt-
based inference, we feed the input graph for the downstream task,
along with some prompts, into a pre-trained graph encoder. Then,
we construct a “thought” by fusing embeddings from each layer of
the pre-trained encoder to capture the current working state with
varying levels of topological knowledge [21]. Lastly, the thought is
used to learn a set of prompts that guide the next step.

Second, how can we leverage a “thought” to learn prompts and
guide the next-step inference? In NLP, CoT prompting is typically

implemented by appending specific phrases such as “let’s think
step by step” or by providing few-shot CoT examples [8, 47]. Then,
following a given prompt template, the language model generates
new thoughts based on the query and prior thoughts, which in
turn facilitate the next reasoning step. In our work, the absence
of textual data prevents us from explicitly guiding the next step.
Moreover, since each node in a graph exhibits unique characteris-
tics, inference may benefit from node-specific prompts. Thus, we
propose a thought-conditioned prompt learning method to guide the
next inference step. Specifically, inspired by conditional prompt
learning [68], we generate a unique prompt for each node via a
conditional network (condition-net), which is conditioned on the
node-specific element of the previously constructed thought. The
generated prompts then feed into the graph encoder to initiate and
guide the next step, repeating the process.

In summary, the contributions of this work are fourfold. (1) We
propose GCoT, a Graph CoT prompting approach to guide pre-
trained graph models to perform step-by-step inference. To the
best of our knowledge, this is the first exploration of CoT-style
prompting on text-free graphs. (2) We design an inference step with
three substages: prompt-based inference, thought construction, and
thought-conditioned prompt learning. In particular, a thought is
constructed by fusing embeddings from each layer of the graph
encoder to capture fine-grained topological knowledge in each step.
(3) We employ a condition-net to generate node-specific prompts
based on the previous thought, enabling the model to perform
inference for the downstream task through a step-by-step, node-
specific adaptation. (4) We conduct extensive experiments on eight
benchmark datasets, demonstrating the superior performance of
GCoT compared to a suite of state-of-the-art methods.

2 Related Work

In this section, we briefly review related work on CoT prompting,
graph learning, and graph prompt learning.
Chain-of-Thought prompting. Chain-of-Thought (CoT) prompt-
ing has emerged as a groundbreaking technique in NLP, empower-
ing language models to address complex reasoning tasks by pro-
ducing intermediate reasoning steps [9, 45, 47]. By breaking down
problems into a sequence of logical steps, CoT emulates human-like
thought processes, leading to significant improvements in model
performance on tasks requiring structured reasoning [8, 53]. De-
spite its remarkable success in NLP applications, the potential of
CoT prompting for graphs remains largely unexplored. A contempo-
rary work, GraphCoT [18], leverages the inherent relational infor-
mation in text-attributed graphs [48, 52] to guide the reasoning pro-
cess. However, GraphCoT primarily focuses on question-answering
tasks for natural language and cannot be extended to general text-
free graphs that lack textual descriptions.
Graph representation learning. GNNs [16, 17, 21, 42, 60] are
the dominant technique for graph representations learning. They
generally update node embeddings iteratively by aggregating infor-
mation from their local neighborhoods based on a message-passing
mechanism [11, 26, 51]. Despite their success, GNNs often demand
substantial amounts of task-specific labeled data and necessitate
retraining for each new task, limiting their flexibility and scalability.
Recently, researchers have extensively investigated pre-training

GCoT: Chain-of-Thought Prompt Learning for Graphs KDD ’25, August 3–7, 2025, Toronto, ON, Canada

techniques for graphs [12, 13, 15, 20, 28, 31]. These approaches in-
volve pre-training a graph encoder using self-supervised objectives,
and then adapt the pre-trained knowledge to downstream tasks.
However, a significant gap exists between the objectives of pre-
training and those of downstream tasks, resulting in suboptimal
performance.
Graph prompt learning. First proposed in NLP, prompt learning
has emerged as a powerful framework for bridging the gap be-
tween pre-training and downstream tasks [2, 23, 27]. Recently, this
paradigm has been extended to the graph domain as a compelling
alternative to fine-tuning approaches [30, 40, 57, 59, 63]. These
methods typically utilize a universal template to align pre-training
and downstream tasks, followed by task-specific prompts that facil-
itate seamless adaptation to downstream tasks while keeping the
pre-trained model frozen. However, current graph prompt learning
methods directly produce a final answer in a single step, resulting
in insufficient refinement to the answer [7, 58, 64].

3 Preliminaries

In this section, we present the background and preliminaries rele-
vant to our work.
Graph.A graph is defined as𝐺 = (𝑉 , 𝐸), where𝑉 is the set of nodes
and 𝐸 is the set of edges. The nodes are associated with a feature
matrix X ∈ R |𝑉 |×𝑑 , where x𝑣 ∈ R𝑑 is a row of X representing the
feature vector for node 𝑣 ∈ 𝑉 . For a collection of multiple graphs,
we denote it as G = {𝐺1,𝐺2, . . . ,𝐺𝑁 }.
Graph encoder. Towards graph representation learning, one of the
most widely used families of graph encoders is graph neural net-
works (GNNs), which generally rely on message passing to capture
structural knowledge [49, 67]. Each node updates its representa-
tion by aggregating information from its neighbors, and stacking
multiple GNN layers enables iterative message propagation across
the graph. Formally, let H𝑙 denote the embedding matrix at the
𝑙-th layer, where each row h𝑙

𝑖
represents the embedding of node 𝑣𝑖 .

This matrix is iteratively computed using the embeddings from the
preceding layer:

H𝑙 = MP(H𝑙−1,𝐺 ;𝜃𝑙), (1)

where MP(·) is the message passing function, and 𝜃𝑙 represents the
learnable parameters of the graph encoder at layer 𝑙 . The initial
embedding matrix, H0, is the input feature matrix, i.e., H0 = X.
The output after a total of 𝐿 layers is then H𝐿 ; for brevity we may
simply write H. We abstract the multi-layer encoding process as

{H1,H2, · · · ,H𝐿} = GraphEncoder(X,𝐺 ;Θ), (2)

where {H1,H2, · · · ,H𝐿} denotes the embedding matrix of each
layer of the graph encoder, respectively. Θ = (𝜃1, . . . , 𝜃𝐿) is the
collection of weights across the layers.
Pre-training. As prior studies [59, 62] have suggested, mainstream
contrastive pre-training tasks on graphs [30, 43, 55] can be unified
under the task template of similarity calculation. Formally, the
unified pre-training objective is defined as follows:

L(Θ) = −
∑︁
𝑜∈Tpre

ln
∑
𝑎∈Pos𝑜 exp(sim(h𝑎, h𝑜)/𝜏)∑
𝑏∈Neg𝑜 exp(sim(h𝑏 , h𝑜)/𝜏)

, (3)

where Pos𝑜 and Neg𝑜 denote the sets of positive and negative sam-
ples for a target instance 𝑜 , respectively. h𝑜 represents the embed-
ding of the target instance, while h𝑎 and h𝑏 correspond to the
embeddings of positive and negative samples. The hyperparame-
ter 𝜏 controls the temperature scaling of the similarity function
sim(·, ·). In our framework, we follow previous work [30, 59] by
employing similarity calculation as the task template and using link
prediction as the pre-training task.
Problem definition. In this work, we explore a CoT prompt learn-
ing framework for text-free graphs. We focus on two widely used
tasks in graph learning: node classification and graph classifica-
tion, in few-shot scenarios. For node classification, given a graph
𝐺 = (𝑉 , 𝐸) with a set of node classes 𝑌 , each node 𝑣𝑖 ∈ 𝑉 is associ-
ated with a label 𝑦𝑖 ∈ 𝑌 . In contrast, graph classification considers
a collection of graphs G, where each graph 𝐺𝑖 ∈ G is assigned a
class label 𝑌𝑖 ∈ 𝑌 . In the few-shot setting, only𝑚 labeled examples
per class are available (e.g.,𝑚 ≤ 10), which is referred to as𝑚-shot
classification [30, 59].

4 Chain-of-Thought Graph Prompt Learning

In this section, we present our approach, GCoT, starting with an
overview of its framework. Then we detail its core components and
conclude with a complexity analysis of the algorithm.

4.1 Overall Framework

We illustrate the overall framework of GCoT in Fig. 2, which con-
sists of two phases: pre-training and CoT prompting.

First, we pre-train a graph encoder as shown in Fig. 2(a). Details
of the pre-training phase are provided in Sect. 3.

Second, given a pre-trained graph encoder, to guide the model
with additional inference steps before finalizing its predictions, we
propose CoT prompting, as illustrated in Fig. 2(c). Specifically, we de-
sign an inference step with three substages: prompt-based inference,
thought construction, and thought-conditioned prompt learning.
Specifically, in each inference step, we first feed the prompt and
query graph into the pre-trained graph encoder. Then, we construct
a “thought” by fusing embeddings of all hidden layers of the pre-
trained graph encoder. Lastly, as detailed in Fig. 2(b), conditioned on
the constructed thought, we employ a condition-net to generate a
series of node-specific prompts. These conditional prompts capture
individualized patterns for nodes in a fine-grained and parameter-
efficient manner. We repeat the inference step one or more times
before making the final prediction for the downstream task. It is
worth noting that, to better align the downstream task with the
pre-training task, we still incorporate a standard prompt similar to
those used in prior graph prompting methods [6, 30].

4.2 Chain-of-Thought Prompting

Next, we introduce the details of each inference step and the stan-
dard prompt learning employed in our framework.

4.2.1 Inference step. Each inference step consists of three sub-
stages, as described in the following.
Prompt-based inference. In the 𝑘-th inference step, we first feed
the query graph𝐺 = (𝑉 , 𝐸), along with its prompt-modified feature

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Trovato et al., Xingtong Yu, Chang Zhou, Zhongwei Kuai, Xinming Zhang, and Yuan Fang

Fusion

thought2

Pre-trained graph encoder

thought1

Step 1

Pre-trained

graph encoder

thoughtk
conditioned

prompt

⊗

Thought-conditioned

prompt learning

pre-training

loss

(c) Chain-of-thought prompting

Graph encoder

downstream

loss

(a) Pre-training

thoughtk

Condition-net

query

graph

(b) Thought-conditioned prompt learning

Frozen

Tuned

…

layer 1 layer L

… Pre-trained

graph encoder

Step 2 Step K

feature

matrix
⊗

standard prompt

P𝑘

Output
embedding

Answer

Figure 2: Overall framework of GCoT.

matrix, into the pre-trained encoder:

{H1
𝑘
,H2
𝑘
, · · · ,H𝐿

𝑘
} = GraphEncoder(X𝑘 ,𝐺 ;Θ0), (4)

where Θ0 denotes the frozen pre-trained weights in the graph en-
coder, and X𝑘 is the node feature matrix modified by the prompts
generated in the previous (i.e., 𝑘 − 1-th) step. The generation of
the prompts and the modification of the feature matrix are elab-
orated later in thought-conditioned prompt learning. Note that for
the first step (𝑘 = 1), the original feature matrix is used without
modification, i.e., X1 = X.
Thought construction. To leverage the hierarchical knowledge
acrossmultiple layers of the graph encoder, we construct a “thought”
by fusing the hidden embeddings from each layer of the pre-trained
graph encoder as follows:

T𝑘 = Fuse(H1
𝑘
,H2
𝑘
, · · · ,H𝐿

𝑘
), (5)

where each H𝑙
𝑘
denotes the hidden embedding from the 𝑙-th layer

during the 𝑘-th inference step. The Fuse(·) function can be im-
plemented in various ways. For example, if all hidden layers of
the graph encoder share the same dimensionality, we can adopt a
simple weighted summation1, as follows.

T𝑘 = 𝑤1 · H1
𝑘
+𝑤2 · H2

𝑘
+ · · · +𝑤𝐿 · H𝐿

𝑘
, (6)

where𝑊 = {𝑤𝑙 ∈ R : 1 ≤ 𝑙 ≤ 𝐿} are learnable parameters. The
resulting thought, T𝑘 , captures the current working state of the
graph encoder, storing multi-layer structural knowledge. In partic-
ular, the 𝑖-th row of T𝑘 reflects the thought pertaining specifically
to node 𝑣𝑖 .
Thought-conditioned prompt learning.The thought constructed
in Eq. (6) is then used for prompt generation, in order to further
guide the next inference step. Moreover, since different nodes may
exhibit distinct characteristics with respect to the downstream task,
it is beneficial to adapt the pre-trained model to node-specific pat-
terns. Thus, rather than employing a single prompt for all nodes, we
propose to leverage a conditional network (condition-net) [61, 62,
1This is the case in our experiments. If the dimensionalities differ, linear layers can be
potentially used to project them to a common dimension.

68] to generate node-specific prompts and facilitate node-specific
adaptation. Specifically, conditioned on the current thought T𝑘 , the
condition-net generates a series of prompts, collectively represented
as P𝑘 ∈ R |𝑉 |×𝑑 , as follows.

P𝑘 = CondNet(T𝑘 ;𝜙), (7)

where CondNet is the condition-net parameterized by 𝜙 . The
condition-net can be viewed as a hypernetwork [10]—a lightweight
auxiliary network such as a multi-layer perceptron (MLP)—that
generates a distinct prompt for each node from the thought, yet
avoids parameterizing a separate prompt vector for each node. In
particular, the 𝑖-th row of P𝑘 represents a unique node-specific
prompt vector p𝑘,𝑖 for node 𝑣𝑖 ∈ 𝑉 . Subsequently, the prompt vec-
tors are used to modify the node features of the query graph for
prompt-based inference in the next (i.e., 𝑘 + 1-th) step, as follows.

X𝑘+1 = P𝑘 ⊙ X, (8)

where ⊙ denotes element-wise multiplication, and X𝑘+1 represents
the input to the pre-trained graph encoder in the 𝑘 + 1-th step.

4.2.2 Standard prompt learning. To align the objectives of pre-
training and downstream tasks, we also leverage a standard prompt
following prior work, which typically modifies node features [6,
40, 59] or embeddings [30, 59]. In particular, we adopt GPF+ [6] to
generate the standard prompts. However, we emphasize that our
framework is compatible with any standard graph prompting tech-
nique. As demonstrated in Sect. 5.6, our CoT-style prompting can
be combined with several prevailing graph prompting approaches
to further enhance their performance.

Specifically, we train 𝑁 bias prompts {p1bias, . . . , p
𝑁
bias} and lever-

age attention-based aggregation to generate node-specific prompts.
While GPF+ [6] applies these prompts to graph features X, we use
them to modify the output embeddings H𝐾 after 𝐾 inference steps.
Concretely, the standard prompt for node 𝑣𝑖 is computed as

pstd,𝑖 =
𝑁∑︁
𝑗=1

𝛼𝑖, 𝑗p
𝑗

bias, where 𝛼𝑖, 𝑗 =
exp

(
a𝑗h𝐾,𝑖

)∑𝑁
𝑛=1 exp

(
a𝑛h𝐾,𝑖

) . (9)

GCoT: Chain-of-Thought Prompt Learning for Graphs KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Here, h𝐾,𝑖 denotes the 𝑖-th row of the output embedding matrix
H𝐾 , i.e., the embedding vector of node 𝑣𝑖 after 𝐾 inference steps.
{a1, a2, . . . , a𝑁 } are 𝑁 learnable linear projection vectors. The stan-
dard prompts for all nodes are stacked to form the matrix Pstd,
which is then used to modify the output embeddings H𝐾 :

H̃ = Pstd ⊙ H𝐾 . (10)

We call H̃ the answer matrix, since it is used by downstream tasks
to produce final predictions (or answers) in Sect. 4.3.

Note that for clarity and to maintain a unified representation of
various standard prompt mechanisms, we use Pstd to denote the
trainable parameters associated with these mechanisms throughout
the remainder of this paper.

4.2.3 Summary. In GCoT, we adopt the following mechanisms,
which collectively ensure the effectiveness of GCoT. (1) We fol-
low standard graph prompt learning methods [6, 30] to align pre-
training and downstream tasks, ensuring that GCoT can efficiently
adapt to different downstream tasks even in few-shot settings. (2)
The CoT-style prompting performs multiple inference steps, allow-
ing iterative refinement of its prediction for a given downstream
task. (3) The thoughts in GCoT fuse hierarchical topological knowl-
edge from graphs, enabling the capture of fine-grained structural
information. (4) Conditioned on the thought, GCoT generates a
series of node-specific prompts that reflect individualized node
characteristics in a parameter-efficient manner.

4.3 Prompt Tuning

Consider a downstream task with a labeled training set

D = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . },
where each𝑥𝑖 represents either a node or a graph and𝑦𝑖 ∈ 𝑌 denotes
its corresponding class label. Subsequently, the loss function of the
task is defined as Ldown (D;𝑊,𝜙, Pstd) =

−
∑︁

(𝑥𝑖 ,𝑦𝑖) ∈D
ln

exp
(
sim

(
h̃𝑥𝑖 , h̃𝑦𝑖

)
/𝜏
)

∑
𝑐∈𝑌 exp

(
sim

(
h̃𝑥𝑖 , h̃𝑐

)
/𝜏
) , (11)

where h̃𝑥𝑖 represents the final embedding of a node 𝑣 or a graph
𝐺 . Specifically, for node classification, h̃𝑣 corresponds to a row in
the answer matrix H̃; for graph classification, we apply a readout
operation and compute the graph embedding as h̃𝐺 =

∑
𝑣∈𝑉 h̃𝑣 .

Lastly, h̃𝑐 denotes the prototype embedding for class 𝑐 , which is
obtained by averaging the embeddings of all labeled nodes or graphs
belonging to that class.

During prompt tuning, only the weights of thought construction
(𝑊) and the condition-net (𝜙), as well as the standard prompts (Pstd),
are updated, while the pre-trained weights of the graph encoder
remain frozen. This parameter-efficient design makes our approach
well-suited for few-shot learning, where the training setD contains
only a few labeled examples.

4.4 Algorithm and Complexity Analysis

Algorithm.We outline the main steps for GCoT in Algorithm 1.
In lines 3–13, we iterate through the first 𝐾 − 1 inference steps
for a downstream task while keeping the pre-trained weights Θ0
frozen. Specifically, in lines 8–9, we generate the thought for the

Algorithm 1 Chain-of-Thought Graph Prompt Learning
Input: Pre-trained graph encoder with parameters Θ0, labeled data D for

a given downstream task
Output: Optimized parameters𝑊,𝜙, Pstd.
1: 𝑊,𝜙, Pstd ← initialization
2: while not converged do

3: X1 ← X
4: /* First 𝐾 − 1 inference steps*/
5: while inference step 1 ≤ 𝑘 < 𝐾 do

6: /* Prompt-based inference */
7: {H1

𝑘
,H2
𝑘
, · · · ,H𝐿

𝑘
} ← GraphEncoder(𝐺,X𝑘 ;Θ0)

8: /* Thought construction */
9: T𝑘 ← Fuse(H1

𝑘
,H2
𝑘
, · · · ,H𝐿

𝑘
)

10: /* Thought-conditioned prompt generation by Eq. (7) */
11: P𝑘 ← CondNet(T𝑘 ;𝜙)
12: /* Feature modification by Eq. (8) */
13: X𝑘+1 ← P𝑘 ⊙ X
14: /* Last (i.e., 𝐾-th) inference step */
15: {H1

𝐾
,H2
𝐾
, · · · ,H𝐿

𝐾
} ← GraphEncoder(𝐺,X𝐾 ;Θ0)

16: H𝐾 ← H𝐿
𝐾

17: /* Standard prompt modification by Eq. (10) */
18: H̃← Pstd ⊙ H𝐾
19: /* Update prototypical instance */
20: for each class 𝑐 do
21: h̃𝑐 ← Mean({h̃𝑥 : 𝑥 is any instance in class 𝑐 from D})
22: /* Optimizing the parameters */
23: Calculate Ldown (D;𝑊,𝜙, Pstd) by Eq. (11)
24: Update𝑊,𝜙, Pstd by backpropagating Ldown (D;𝑊,𝜙, Pstd)
25: return {𝑊,𝜙, Pstd}

𝑘-th inference step by fusing the embeddings from each layer of
the pre-trained graph encoder. In lines 10–11, we leverage this
thought to generate node-specific prompts that guide the next
inference step. In lines 14–18, we perform the last inference step,
employing a standard prompt to modify the output embedding and
obtaining the answer matrix. Finally, in lines 19–24, we calculate
and backpropagate the downstream loss to update the parameters
𝑊,𝜙, Pstd.
Complexity analysis. For a downstream graph 𝐺 , we perform 𝐾

inference steps. In each step, we first conduct prompt-based infer-
ence, the complexity of which is determined by the architecture of
the graph encoder. In a standard GNN, each node aggregates infor-
mation from up to 𝐷 neighboring nodes per layer. Consequently,
computing node embeddings over 𝐿 layers results in a complex-
ity of 𝑂 (𝐷𝐿 |𝑉 |), where |𝑉 | denotes the number of nodes. This is
followed by thought generation, which fuses embeddings from
all 𝐿 layers, introducing an additional complexity of 𝑂 (𝐿 |𝑉 |). The
generated thought is subsequently used for thought-conditioned
prompt learning, with a complexity of 𝑂 (|𝑉 |). Therefore, the com-
putational complexity for the 𝐾 inference steps is𝑂 (𝐾 (𝐷𝐿 +𝐿) |𝑉 |).
Additionally, we employ a standard prompt to modify node fea-
tures or embeddings. The complexity of this process depends on the
specific prompting mechanism. Here, we assign it a complexity of
𝑂 (|𝑉 |), which is common among graph prompting methods [6, 30].
Thus, the overall complexity of GCoT is𝑂 (𝐾 (𝐷𝐿 +𝐿) |𝑉 |), or more
simply 𝑂 (𝐾𝐷𝐿 |𝑉 |), since it is typical that 𝐿 ≪ 𝐷𝐿 .

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Trovato et al., Xingtong Yu, Chang Zhou, Zhongwei Kuai, Xinming Zhang, and Yuan Fang

Table 1: Summary of datasets.

Datasets Graphs Graph
classes

Avg.
nodes

Avg.
edges

Node
features

Node
classes

Task∗
(N/G)

Cora 1 - 2,708 5,429 1,433 7 N
Citeseer 1 - 3,327 4,732 3,703 6 N
Pubmed 1 - 19,717 88,648 500 3 N
Photo 1 - 7,650 238,162 745 8 N

MUTAG 188 2 17.9 18.9 7 - G
COX2 467 2 41.2 43.5 3 - G
BZR 405 2 35.8 38.4 3 - G

PROTEINS 1,113 2 39.1 72.8 4 3 G
∗ This column indicates the type of downstream task conducted for each dataset: “N”
denotes node classification, while “G” denotes graph classification.

5 Experiments

In this section, we conduct experiments to evaluate GCoT, and
analyze the empirical results.

5.1 Experimental Setup

Datasets.We conduct experiments on eightwidely used benchmark
datasets, spanning citation networks, e-commerce, protein struc-
tures, and molecular graphs. Cora [32], Citeseer [37], and Pubmed
[37] are citation networks, each consisting of a single graph. In
these datasets, nodes represent academic papers and edges denote
citation relationships between them. Photo [38] is an e-commerce
co-purchase network derived from Amazon’s photography-related
product categories, where nodes correspond to products and edges
indicate frequently co-purchased items. PROTEINS [1] is a dataset
of protein structures. In each graph, nodes correspond to secondary
structures, and edges capture spatial or sequential relationships
within the amino acid sequence. MUTAG [35], BZR [35], and COX2
[35] are molecular graph datasets, representing nitroaromatic com-
pounds, ligands associated with benzodiazepine receptors, and
molecular structures related to cyclooxygenase-2 inhibitors, re-
spectively. These datasets are summarized in Table 1, with further
descriptions in Appendix A.
Baselines.We compare GCoT with state-of-the-art methods across
three categories. (1) Supervised GNNs: GCN [21] and GAT [42] are
trained directly on downstream labels in a supervised manner, with-
out any pre-training. (2)Graph pre-trainingmodels: DGI/InfoGraph2
[39, 42] and GraphCL [55] adopt a “pre-train, fine-tune” strategy.
They first perform self-supervised pre-training using unlabeled
graphs and are later fine-tuned for downstream tasks, where a
classifier is trained with few-shot labels while keeping the pre-
trained encoder frozen. (3)Graph prompt learning models: ProG [41],
GPF [6], GPF+ [6], and GraphPrompt [30] employ self-supervised
pre-training followed by prompt tuning. Unlike the fine-tuning
methods, these methods leverage a unified task template, and train
task-specific prompts for downstream adaptation. Further descrip-
tions of these baselines are presented in Appendix B.

2DGI is originally designed for node-level tasks, while InfoGraph extends it to graph-
level classification. In our experiments, we apply DGI to node classification and Info-
Graph to graph classification.

Downstream tasks and evaluation. We perform experiments on
two downstream tasks: node classification and graph classification.
Both types of task follow an𝑚-shot classification setup, where for
each class, we randomly select𝑚 instances (nodes or graphs) as
labeled examples. The remaining instances are treated as the test
set. In our main results, we set 𝑚 = 1 for both node and graph
classification tasks. Additionally, to examine the robustness of our
method, we vary𝑚 within the range [1, 10], allowing us to analyze
the performance under different few-shot scenarios. We construct
100 independent𝑚-shot tasks for each type of classification through
repeated sampling. Each task is evaluated using five different ran-
dom seeds, resulting in a total of 500 experimental runs per task
type. We adopt accuracy as the performance metric and report both
the mean and standard deviation across these runs, in line with
previous studies [29, 30, 44].

5.2 Implementation Details

We outline key settings for the baselines and GCoT.
Baseline settings. We utilize the official codes for all open-source
baselines. Each model was tuned based on the settings recom-
mended in their respective work to achieve optimal performance.

For the baseline GCN [21], we employ a 2-layer architecture, and
set the hidden dimensions to 64. For GAT [42], we employ a 2-layer
architecture and set the hidden dimension to 64. Additionally, we
apply 8 attention heads in the first GAT layer. For DGI [42], we
utilize a 1-layer GCN as the backbone and set the hidden dimensions
to 256. Additionally, we employ PReLU as the activation function.
For InfoGraph [39], a 1-layer GCN is used as the backbone, with
its hidden dimensions set to 256. For GraphCL [55], a 1-layer GCN
is also employed as its backbone, with the hidden dimensions set
to 256. Specifically, we select edge dropping as the augmentations,
with a default augmentation ratio of 0.2. For GraphPrompt [30], a 3-
layer GCN is used as the backbone for all datasets, with the hidden
dimensions set to 256. For GPF and GPF+ [6], we employ a 3-layer
GCN as the backbone for all datasets. The hidden dimensions are
set to 256. For ProG [41], we employ a 2-layer GCN as the backbone
for all datasets. The hidden dimensions are set to 100.
GCoT settings. For our proposed GCoT, we utilize a 3-layer GCN
as the backbone for all datasets, with the hidden dimensions set to
256. We set the number of inference step as 2 for node classifica-
tion task, and 3 for graph classification task. The condition-net is
implemented as a two-layer MLP with a bottleneck architecture
[61, 62]. Its input dimension is 256, while the hidden dimension is
set to 32 for node classification and 8 for graph classification.
Environment. All experiments were conducted on Ubuntu 22.04.2,
using a machine equipped with AMD EPYC 7742 64-core processors
and NVIDIA GeForce RTX 3090 (24 GB) GPUs.

5.3 Performance Evaluation

We first evaluate one-shot classification tasks. Then, we examine
the model performance as the number of shots increases. Note that
for the other experiments in Sect. 5.4 and thereafter, we adopt the
one-shot setting.

GCoT: Chain-of-Thought Prompt Learning for Graphs KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Table 2: Accuracy (%) evaluation of node and graph classification.

Methods Node classification Graph classification
Cora Citeseer Pubmed Photo MUTAG COX2 BZR PROTEINS

GCN 32.50 ± 14.21 26.36 ± 9.03 52.18 ± 8.70 60.18 ± 12.04 43.44 ± 15.14 50.95 ± 23.48 47.25 ± 16.59 40.28 ± 0.03
GAT 31.00 ± 16.22 27.71 ± 8.74 50.02 ± 8.88 51.79 ± 12.85 37.33 ± 10.81 50.58 ± 26.16 46.55 ± 16.57 40.39 ± 0.04

DGI/InfoGraph 54.11 ± 9.60 45.00 ± 9.19 47.46 ± 12.19 58.89 ± 10.97 53.17 ± 17.29 53.82 ± 14.19 49.33 ± 15.11 52.51 ± 10.29
GraphCL 51.96 ± 9.43 43.12 ± 9.61 46.80 ± 9.04 57.78 ± 11.31 54.92 ± 17.09 53.81 ± 14.21 49.73 ± 14.66 53.81 ± 8.97

ProG 50.59 ± 14.64 43.17 ± 8.49 63.07 ± 11.96 66.50 ± 9.46 51.99 ± 4.50 53.45 ± 15.01 53.52 ± 11.97 52.73 ± 6.57
GPF 57.60 ± 13.88 43.11 ± 8.80 55.63 ± 10.96 65.29 ± 10.07 56.55 ± 13.95 54.16 ± 14.07 48.65 ± 13.96 53.05 ± 7.62
GPF+ 57.42 ± 13.87 43.28 ± 8.82 57.16 ± 10.99 65.07 ± 10.01 56.81 ± 12.93 55.24 ± 13.29 50.83 ± 19.74 54.58 ± 8.70
GraphPrompt 54.25 ± 9.38 45.34 ± 10.53 63.11 ± 10.01 66.62 ± 9.90 55.44 ± 12.56 54.34 ± 14.77 54.59 ± 10.52 53.80 ± 7.93

GCoT 59.67 ± 15.51 46.21 ± 8.78 64.43 ± 9.96 67.16 ± 10.46 58.75 ± 15.42 56.26 ± 15.52 58.03 ± 23.44 56.24 ± 8.60

Best results are bolded and runner-up results are underlined.

One-shot performance.We present the results for one-shot node
and graph classification in Table 2. We make several major obser-
vations, as follows.

(1) GCoT consistently outperforms the baseline methods across
both node and graph classification, demonstrating its overall ad-
vantage and robustness.

(2) Supervised methods tend to underperform compared to oth-
ers, as they do not leverage any pre-trained model. On the other
hand, graph pre-training models achieve improved performance
through self-supervised pre-training on unlabeled graphs.

(3) Standard graph prompt learning approaches—ProG, GPF,
GPF+, and GraphPrompt—often outperform fine-tuning of the pre-
trained models, due to their alignment between pre-training and
downstream objectives, as well as their parameter efficiency. How-
ever, they still fall short compared to GCoT, due to their single-step
inference process that lacks iterative refinement of the final answer.
This highlights the effectiveness of our CoT-style prompting, which
enables step-by-step inference.
Few-shot performance. To investigate the effect of labeled data
size on performance, we vary the number of shots in both node
and graph classification tasks. The results are presented in Fig. 3,
comparing GCoT against several competitive baselines. We make
the following observations.

(1) GCoT generally outperforms the baselines on both node and
graph classification tasks, particularly in low-shot settings (e.g.,
𝑚 ≤ 5), where labeled data are limited.

(2) As the number of shots increases (e.g.,𝑚 > 5), all methods
generally exhibit improved performance, as expected. Nevertheless,
GCoT remains highly competitive, often achieving the best or near-
best results.

(3) On the PROTEINS dataset, the performance of all methods
tends to fluctuate more. A possible reason is that this dataset ex-
hibits greater variability in graph sizes compared to other datasets:
The standard deviation of graph sizes in PROTEINS is 45.78, whereas
other datasets fall within the range of 4.04 to 15.29. This may con-
tribute to the unstable performance. Despite this, GCoT demon-
strates greater robustness than the competing methods.

Node classification Graph classification

Figure 3: Impact of labeled data size (number of shots) on

node and graph classification.

5.4 Ablation Study and Visualization

To thoroughly evaluate the contribution of CoT-style prompting to
graph models, we perform an ablation study and visualization.
Ablation study. To investigate the effect of step-by-step inference
and the impact of thoughts constructed from different layers, we
compare GCoT with four variants. The first variant is GCoT\CoT,
which produces the final answer in a single inference step without
CoT-style prompting. The other three variants are GCoT-L1, GCoT-
L2, and GCoT-L3, which utilize only the hidden embeddings from
the first, second, and third layers of the pre-trained graph encoder
as the thought, respectively. (Recall that we employ a 3-layer GCN
as the graph encoder.)

As shown in Table 3, GCoT consistently outperforms all vari-
ants. Specifically, the advantage over GCoT\CoT underscores the

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Trovato et al., Xingtong Yu, Chang Zhou, Zhongwei Kuai, Xinming Zhang, and Yuan Fang

Table 3: Ablation study on the effects of key components.

Methods Node classification Graph classification
Cora Pubmed MUTAG PROTEINS

GCoT\CoT 56.65±13.97 62.80±10.08 56.49±16.61 53.40±6.66
GCoT-L1 57.18±14.34 63.31±10.05 56.54±14.12 54.71±8.57
GCoT-L2 57.00±14.48 63.20±10.08 57.68±13.84 54.77±8.81
GCoT-L3 57.01±14.66 63.33±10.05 57.85±16.10 56.22±8.45
GCoT 59.67±15.51 64.43± 9.96 58.75±15.42 56.24±8.60

importance of step-by-step inference, which enables iterative refine-
ment of the predictions. Moreover, the advantage over single-layer-
based thoughts demonstrates the effectiveness of fusing hierarchical
knowledge from different layers of the pre-trained graph encoder
in constructing the thoughts.
Visualization. To further demonstrate the impact of our CoT de-
sign, we visualize the output embeddings produced by GCoT\CoT
(the first variant in the ablation study) and the answer embeddings
by GCoT, as well as the embeddings of thoughts constructed in
the first inference step. As shown in Fig. 4, each point represents
the embeddings associated with a node, and different colors rep-
resent different classes of the nodes. With CoT-style prompting,
node embeddings from different classes exhibit a clearer separa-
tion compared to those produced by GCoT\CoT, underscoring the
effectiveness of GCoT in enhancing class distinction. Moreover,
the thoughts generated in the first inference step already show
some clustering—though not as well as the final node embeddings
produced by GCoT—since they only reflect an intermediate state
before the final step (two steps in total are used).

5.5 Heterophily Sensitivity

To examine the robustness of GCoT on heterophilic graphs [62], we
conduct one-shot node classification onWisconsin [33] and Squirrel
[36]. Specifically, Wisconsin is a network of 251 nodes represent-
ing webpages, with 199 edges indicating hyperlink connections
among them. Node features are constructed using a bag-of-words
approach based on webpage content. Squirrel [36] consists of 5,201
Wikipedia pages discussing predefined topics. Nodes represent
individual webpages, while edges capture 217,073 hyperlink con-
nections between them. Node features are constructed using key
informative nouns extracted from the text content of the Wikipedia
pages. As shown in Table 4, GCoT outperforms other competitive
baselines on heterophilic node classification. These results indicate
that our CoT-style prompting can generalize across both homophilic
and heterophilic graphs.

5.6 Flexibility of Graph Prompting Methods

To evaluate the flexibility and robustness of GCoT, we evaluate its
performance using various standard graph prompting methods as
the standard prompt. We integrate ProG [41], GPF [6], GPF+ [6],
and GraphPrompt [30] into our framework. Specifically, ProG,
GPF, and GPF+ are employed to modify the input features at the
first inference step, whereas GraphPrompt is utilized to modify the
output embeddings at the final step. The results for both node and
graph classification on four datasets are presented in Table 5. Across

Pubmed

Standard

prompting

Chain-of-thought

prompting

1st step

thought

Photo

Figure 4: Visualization of node and thought embeddings. Dif-

ferent colors represent different node classes.

Table 4: Accuracy (%) evaluation of node classification on

heterophilic graphs.

Methods Wisconsin Chameleon

DGI 28.04 ± 6.47 19.33 ± 4.57
GraphCL 29.85 ± 8.46 27.16 ± 4.31

ProG 28.99 ± 11.14 25.90 ± 3.95
GPF 32.18 ± 11.36 25.98 ± 3.71
GPF+ 32.02 ± 11.17 26.12 ± 3.75
GraphPrompt 31.48 ± 5.18 25.36 ± 3.99

GCoT 32.80 ± 11.59 27.96 ± 3.89

all cases, GCoT outperforms its standard prompting counterparts,
highlighting the robustness and flexibility of our CoT design.

5.7 Hyperparameter Analysis

Next, we study the sensitivity of two key hyperparameters, namely,
the hidden dimension of the condition-net, and the number of
inference steps performed.
Hidden dimension of condition-net. In our experiments, we
implement the condition-net as a two-layer MLP with a bottleneck
design. To examine the effect of the MLP architecture, we vary its
hidden dimension 𝑠 and present the results in Fig. 5. The results
reveal that 𝑠 = 32 generally yields strong results for node classifi-
cation, and 𝑠 = 8 for graph classification. A smaller 𝑠 may restrict
the model’s representational capacity, limiting its effectiveness,

GCoT: Chain-of-Thought Prompt Learning for Graphs KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Table 5: Accuracy (%) evaluation of GCoT with different stan-

dard prompting methods.

Prompting Node classification Graph classification
Cora Pubmed MUTAG PROTEINS

ProG 50.59±14.64 63.07±11.96 51.99±14.50 52.73±6.57
with GCoT 52.62±15.27 64.01±11.27 58.42±15.39 55.82±8.79

GPF 57.60±13.88 55.63±10.96 56.55±13.95 53.05±7.62
with GCoT 58.98±15.28 62.63±10.01 57.66±13.11 56.98±8.30

GPF+ 57.42±13.87 57.16±10.99 56.81±12.93 54.58±8.70
with GCoT 59.35±15.37 62.18±10.49 58.54±13.29 55.45±9.20

GraphPrompt 54.25± 9.38 63.11±10.01 55.44±12.56 53.80±7.93
with GCoT 58.40±14.74 63.79± 9.40 58.28±15.47 55.32±8.43

In each group, the first row represents a standard prompting method, and the second
row represents the standard prompting coupled with our CoT design.

Node classification Graph classification

Figure 5: Impact of hidden dimension 𝑠 in the condition-net.

whereas a larger 𝑠 introduces additional trainable parameters and
increases the risk of overfitting in few-shot scenarios.
Number of inference steps. We further investigate the influence
of the number of inference steps, 𝐾 , with the results summarized
in Fig. 6. For node classification, we observe that 𝐾 = 2 generally
yields the best performance, whereas 𝐾 = 3 is optimal for graph
classification. This discrepancy may stem from the fact that graph
classification relies more on global structural information, which
may be better captured with more inference steps. Notably, for
the Proteins dataset, 𝐾 = 7 achieves the highest performance,
likely due to its intrinsic complexity and variability, as discussed in
Sect. 5.3.

5.8 Computational Efficiency Analysis

To evaluate the efficiency of GCoT, we perform one-shot node
classification on a large-scale dataset called CLUSTER [5], which
comprises 1,172,320 nodes and 43,038,630 edges. The accuracy eval-
uation is shown in Table 6, whereas inference time comparisons
with strong baselines are reported in Table 7.

While GCoTmaintains higher accuracy on the large-scale dataset,
we observe additional inference time due to its multi-step inference
on the test set. Such a limitation of CoT has also been observed in
NLP. In our case, inference time increases roughly linearly with the
number of steps, which is acceptable considering the significant
accuracy gains.

Node classification Graph classification

Figure 6: Impact of number of inference steps 𝐾 .

Table 6: Accuracy (%) evaluation of node classification on the

large-scale CLUSTER dataset.

Methods DGI GraphCL GraphPrompt GPF+ GCoT

Accuracy 21.27 23.82 22.18 24.27 27.54

Table 7: Inference time (milliseconds) on the test set of a node

classification task.

Methods Cora Pubmed MUTAG CLUSTER

GraphPrompt 3.90 5.62 5.85 955.25
GPF+ 5.25 5.92 4.79 713.08
GCoT 7.95 13.95 11.44 2340.00

6 Conclusions

In this paper, we proposed GCoT, the first CoT prompting frame-
work for text-free graphs. Specifically, we introduced the notion
of step-by-step inference, where each inference step consists of
three substages: prompt-based inference, thought construction, and
thought-conditioned prompt learning. Concretely, we first feed the
prompt-modified query graph into a pre-trained graph encoder,
and then construct a thought by fusing the hidden embeddings
from all layers of the pre-trained encoder to capture hierarchical
structural knowledge. Subsequently, conditioned on the thought,
we generate a series of node-specific prompts to guide the next
inference step. After multiple such inference steps, GCoT makes
a prediction on the final “answer.” Lastly, we conducted extensive
experiments on eight public datasets, demonstrating that GCoT
significantly outperforms a range of state-of-the-art baselines.

Acknowledgments

This research / project is supported by the Ministry of Education,
Singapore, under its Academic Research Fund Tier 2 (Proposal ID:
T2EP20122-0041). Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the author(s) and
do not reflect the views of the Ministry of Education, Singapore.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Trovato et al., Xingtong Yu, Chang Zhou, Zhongwei Kuai, Xinming Zhang, and Yuan Fang

References

[1] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan,
Alex J Smola, and Hans-Peter Kriegel. 2005. Protein function prediction via graph
kernels. Bioinformatics 21, suppl_1 (2005), i47–i56.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. NeurIPS 33 (2020),
1877–1901.

[3] Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang Yu, Tao He, Haotian
Wang, Weihua Peng, Ming Liu, Bing Qin, and Ting Liu. 2023. A survey of chain of
thought reasoning: Advances, frontiers and future. arXiv preprint arXiv:2309.15402
(2023).

[4] Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shus-
terman, and Corwin Hansch. 1991. Structure-activity relationship of mutagenic
aromatic and heteroaromatic nitro compounds. correlation with molecular or-
bital energies and hydrophobicity. Journal of medicinal chemistry 34, 2 (1991),
786–797.

[5] Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent,
Yoshua Bengio, and Xavier Bresson. 2023. Benchmarking graph neural networks.
Journal of Machine Learning Research 24, 43 (2023), 1–48.

[6] Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen. 2024.
Universal prompt tuning for graph neural networks. NeurIPS (2024).

[7] Yuan Fang, Yuxia Wu, Xingtong Yu, and Shirui Pan. 2025. Few-Shot Learning on
Graphs: From Meta-Learning to LLM-empowered Pre-Training and Beyond. In
Companion Proceedings of WWW. 9–12.

[8] Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang.
2024. Towards revealing the mystery behind chain of thought: a theoretical
perspective. NeurIPS 36 (2024).

[9] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang,
Jamie Callan, and Graham Neubig. 2023. Pal: Program-aided language models. In
ICML. 10764–10799.

[10] David Ha, Andrew M Dai, and Quoc V Le. 2022. HyperNetworks. In ICLR.
[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. NeurIPS (2017), 1025–1035.
[12] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,

and Jure Leskovec. 2020. Strategies for Pre-training Graph Neural Networks. In
ICLR.

[13] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020.
GPT-GNN: Generative pre-training of graph neural networks. In SIGKDD. 1857–
1867.

[14] Shuo Ji, Xiaodong Lu, Mingzhe Liu, Leilei Sun, Chuanren Liu, Bowen Du, and
Hui Xiong. 2023. Community-based dynamic graph learning for popularity
prediction. In SIGKDD. 930–940.

[15] Xinke Jiang, Zidi Qin, Jiarong Xu, and Xiang Ao. 2023. Incomplete graph learning
via attribute-structure decoupled variational auto-encoder. In WSDM. 304–312.

[16] Xinke Jiang, Rihong Qiu, Yongxin Xu, Wentao Zhang, Yichen Zhu, Ruizhe Zhang,
Yuchen Fang, Xu Chu, Junfeng Zhao, and YashaWang. 2024. RAGraph: A General
Retrieval-Augmented Graph Learning Framework. In NeurIPS.

[17] Xinke Jiang, Dingyi Zhuang, Xianghui Zhang, Hao Chen, Jiayuan Luo, and
Xiaowei Gao. 2023. Uncertainty quantification via spatial-temporal tweedie
model for zero-inflated and long-tail travel demand prediction. In CIKM.

[18] Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Kumar Roy, Yu Zhang, Zheng Li,
Ruirui Li, Xianfeng Tang, Suhang Wang, Yu Meng, et al. 2024. Graph chain-
of-thought: Augmenting large language models by reasoning on graphs. arXiv
preprint arXiv:2404.07103 (2024).

[19] Anshul Kanakia, Zhihong Shen, Darrin Eide, and KuansanWang. 2019. A scalable
hybrid research paper recommender system for microsoft academic. InWWW.
2893–2899.

[20] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. In
Bayesian Deep Learning Workshop.

[21] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. In ICLR.

[22] Namkyeong Lee, Kanghoon Yoon, Gyoung S Na, Sein Kim, and Chanyoung Park.
2023. Shift-robust molecular relational learning with causal substructure. In
SIGKDD. 1200–1212.

[23] Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The Power of Scale for
Parameter-Efficient Prompt Tuning. In EMNLP. 3045–3059.

[24] Yibo Li, Yuan Fang, Mengmei Zhang, and Chuan Shi. 2024. FineMolTex: Towards
Fine-grained Molecular Graph-Text Pre-training. arXiv preprint arXiv:2409.14106
(2024).

[25] Yibo Li, Xiao Wang, Hongrui Liu, and Chuan Shi. 2024. A Generalized Neural
Diffusion Framework on Graphs. In AAAI. 8707–8715.

[26] Yibo Li, Xiao Wang, Yujie Xing, Shaohua Fan, Ruijia Wang, Yaoqi Liu, and Chuan
Shi. 2024. Graph Fairness Learning under Distribution Shifts. InWWW. 676–684.

[27] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and
Jie Tang. 2021. GPT understands, too. arXiv preprint arXiv:2103.10385 (2021).

[28] Yang Liu, Deyu Bo, Wenxuan Cao, Yuan Fang, Yawen Li, and Chuan Shi. 2025.
Graph Positional Autoencoders as Self-supervised Learners. arXiv:2505.23345

[29] Zemin Liu, Yuan Fang, Chenghao Liu, and Steven CH Hoi. 2021. Relative and
absolute location embedding for few-shot node classification on graph. In AAAI.
4267–4275.

[30] Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. 2023. GraphPrompt:
Unifying pre-training and downstream tasks for graph neural networks. InWWW.
417–428.

[31] Yuanfu Lu, Xunqiang Jiang, Yuan Fang, and Chuan Shi. 2021. Learning to pre-train
graph neural networks. In AAAI. 4276–4284.

[32] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.
2000. Automating the construction of internet portals with machine learning.
Information Retrieval (2000).

[33] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang.
2020. Geom-gcn: Geometric graph convolutional networks. arXiv preprint
arXiv:2002.05287 (2020).

[34] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. GCC: Graph contrastive coding for graph
neural network pre-training. In SIGKDD. 1150–1160.

[35] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with
Interactive Graph Analytics and Visualization. In AAAI. 4292–4293.

[36] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2021. Multi-scale attributed
node embedding. Journal of Complex Networks (2021), cnab014.

[37] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine
(2008).

[38] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[39] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2020. Infograph: Un-
supervised and semi-supervised graph-level representation learning via mutual
information maximization. In ICLR.

[40] Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. 2022. GPPT:
Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks.
In SIGKDD. 1717–1727.

[41] Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. 2023. All in one:
Multi-task prompting for graph neural networks. In SIGKDD. 2120–2131.

[42] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. In ICLR.

[43] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2019. Deep Graph Infomax. In ICLR.

[44] Ning Wang, Minnan Luo, Kaize Ding, Lingling Zhang, Jundong Li, and Qinghua
Zheng. 2020. Graph few-shot learning with attribute matching. In CIKM. 1545–
1554.

[45] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou. 2023. Self-consistency improves chain
of thought reasoning in language models. ICLR (2023).

[46] Xu Wang, Huan Zhao, Wei-wei Tu, and Quanming Yao. 2023. Automated 3D
pre-training for molecular property prediction. In SIGKDD. 2419–2430.

[47] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. NeurIPS 35 (2022), 24824–24837.

[48] Zhihao Wen and Yuan Fang. 2023. Augmenting Low-Resource Text Classification
with Graph-Grounded Pre-training and Prompting. In SIGIR. 506–516.

[49] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. TNNLS
32, 1 (2020), 4–24.

[50] Chenyan Xiong, Russell Power, and Jamie Callan. 2017. Explicit semantic ranking
for academic search via knowledge graph embedding. In WWW. 1271–1279.

[51] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful
are graph neural networks?. In ICLR.

[52] Hao Yan, Chaozhuo Li, Ruosong Long, Chao Yan, Jianan Zhao, Wenwen Zhuang,
Jun Yin, Peiyan Zhang, Weihao Han, Hao Sun, et al. 2023. A comprehensive
study on text-attributed graphs: Benchmarking and rethinking. NeurIPS 36 (2023),
17238–17264.

[53] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and
Karthik Narasimhan. 2024. Tree of thoughts: Deliberate problem solving with
large language models. NeurIPS 36 (2024).

[54] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,
Yanming Shen, and Tie-Yan Liu. 2021. Do transformers really perform badly for
graph representation?. In NeurIPS. 28877–28888.

[55] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. NeurIPS 33
(2020), 5812–5823.

[56] Xingtong Yu, Yuan Fang, Zemin Liu, Yuxia Wu, Zhihao Wen, Jianyuan Bo, Xin-
ming Zhang, and Steven CH Hoi. 2024. Few-Shot Learning on Graphs: from
Meta-learning to Pre-training and Prompting. arXiv preprint arXiv:2402.01440
(2024).

https://arxiv.org/abs/2505.23345

GCoT: Chain-of-Thought Prompt Learning for Graphs KDD ’25, August 3–7, 2025, Toronto, ON, Canada

[57] Xingtong Yu, Yuan Fang, Zemin Liu, and Xinming Zhang. 2024. Hgprompt:
Bridging homogeneous and heterogeneous graphs for few-shot prompt learning.
In AAAI, Vol. 38. 16578–16586.

[58] Xingtong Yu, Zechuan Gong, Chang Zhou, Yuan Fang, and Hui Zhang. 2025.
SAMGPT: Text-free graph foundation model for multi-domain pre-training and
cross-domain adaptation. In Proceedings of the ACM on Web Conference 2025.
1142–1153.

[59] Xingtong Yu, Zhenghao Liu, Yuan Fang, Zemin Liu, Sihong Chen, and Xinming
Zhang. 2024. Generalized graph prompt: Toward a unification of pre-training
and downstream tasks on graphs. IEEE TKDE (2024).

[60] Xingtong Yu, Zemin Liu, Yuan Fang, and Xinming Zhang. 2023. Learning to
count isomorphisms with graph neural networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 37. 4845–4853.

[61] Xingtong Yu, Zhenghao Liu, Xinming Zhang, and Yuan Fang. 2025. Node-Time
Conditional Prompt Learning In Dynamic Graphs. In ICLR.

[62] Xingtong Yu, Jie Zhang, Yuan Fang, and Renhe Jiang. 2025. Non-homophilic
graph pre-training and prompt learning. In SIGKDD.

[63] Xingtong Yu, Chang Zhou, Yuan Fang, and Xinming Zhang. 2024. Multigprompt
for multi-task pre-training and prompting on graphs. In WWW. 515–526.

[64] Xingtong Yu, Chang Zhou, Yuan Fang, and Xinming Zhang. 2024. Text-Free
Multi-domain Graph Pre-training: Toward Graph Foundation Models. arXiv
preprint arXiv:2405.13934 (2024).

[65] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim.
2019. Graph transformer networks. NeurIPS 32 (2019).

[66] Shiqi Zhang, Yiqian Huang, Jiachen Sun, Wenqing Lin, Xiaokui Xiao, and Bo
Tang. 2023. Capacity constrained influence maximization in social networks. In
SIGKDD. 3376–3385.

[67] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI open (2020), 57–81.

[68] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. 2022. Conditional
prompt learning for vision-language models. In CVPR. 16816–16825.

Appendices

A Further Descriptions of Datasets

We provide more comprehensive descriptions of the benchmark
datasets345 used in our experiments.
• Cora [32] is a citation network composed of 2,708 research pa-
pers in the field of computing, each classified into one of seven
categories. The network consists of 5,429 citation links between
papers. Each paper is represented by a binary word vector, where
each entry indicates the presence or absence of a word from a
predefined vocabulary of 1,433 unique terms.
• Citeseer [37] includes 3,312 computer science publications, cate-
gorized into six distinct classes, separate from those in Cora. The
citation network contains 4,732 edges. Each document is encoded
as a binary word vector that captures the presence or absence of
words from a dictionary comprising 3,703 unique terms.
• PubMed [37] is a citation network of 19,717 biomedical articles
related to diabetes, divided into three categories. The network
includes 44,338 citation edges. Unlike Cora and Citeseer, each doc-
ument is represented by a TF/IDF-weighted word vector derived
from a dictionary of 500 unique terms.
• Photo [38] consists of 7,487 photography-related products, each
assigned to one of eight categories. The co-purchase network
contains 119,043 edges, where connections indicate products
frequently bought together. Each product is described by a fea-
ture vector extracted from metadata and customer reviews, with
category labels corresponding to product types.
• MUTAG [4] is a dataset of nitroaromatic compounds aimed at
predicting their mutagenic effects on Salmonella typhimurium.

3https://github.com/shchur/gnn-benchmark/raw/master/data/npz/
4https://huggingface.co/datasets/graphs-datasets/MUTAG
5https://chrsmrrs.github.io/datasets/docs/datasets/

Each compound is modeled as a graph, where nodes represent
atoms with categorical labels (encoded as one-hot vectors) based
on atom types, and edges depict the chemical bonds connecting
them. The dataset comprises 188 molecular graphs with 7 unique
node types.
• BZR [35] consists of 405 molecular graphs representing ligands
that interact with benzodiazepine receptors. Each molecule is
treated as an independent graph and is classified into one of two
categories.
• COX2 [35] includes 467 molecular structures of cyclooxygenase-
2 inhibitors. In this dataset, nodes correspond to atoms, while
edges define chemical bonds—which may be single, double, triple,
or aromatic. The molecules are divided into two distinct classes.
• PROTEINS [1] is a dataset of protein structure graphs that encode
both biochemical and structural properties. In this dataset, nodes
represent secondary structural elements, while edges capture
connectivity based on spatial proximity or amino acid sequence
adjacency. Each node falls into one of three categories, and graphs
are classified into two broader groups.

B Further Descriptions of Baselines

We provide additional details about the baseline methods used in
our experiments.
(1) Supervised GNNs.
• GCN [21]: A graph neural network that aggregates node infor-
mation using mean-pooling, thereby enabling nodes to capture
structural information from their neighbors.
• GAT [42]: Unlike GCN, GAT incorporates attention mechanisms
to assign different weights to neighboring nodes, refining the
aggregation process based on their relative importance.

(2) Graph Pre-training Models.
• DGI [42]: A self-supervised pre-training method that maximizes
mutual information between local node embeddings and the
graph’s global representation, thereby enhancing structural aware-
ness.
• InfoGraph [39]: An extension of DGI designed for graph-level
tasks, aligning node and graph representations by optimizing
their similarity.
• GraphCL [55]: A contrastive learning framework that lever-
ages diverse graph augmentations to extract structural patterns,
aiming to improve representation consistency across transforma-
tions.

(3) Standard Graph Prompting Models.
• ProG [41]: Reformulates node- and edge-level tasks as graph-
level problems by employing prompt graphs with task-specific
structures to guide adaptation.
• GPF [6]: A universal prompt-tuning strategy for pre-trained
graph models that transforms input graph features to mimic
various prompting effects.
• GPF+ [6]: An enhanced version of GPF that integrates an atten-
tion mechanism to dynamically refine prompt representations.
• GraphPrompt [30]: Bridges pre-training and downstream tasks
using subgraph similarity-based prompting, where a learnable
prompt is optimized to incorporate task-relevant information for
both node and graph classification.

https://github.com/shchur/gnn-benchmark/raw/master/data/npz/
https://huggingface.co/datasets/graphs-datasets/MUTAG
https://chrsmrrs.github.io/datasets/docs/datasets/

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Chain-of-Thought Graph Prompt Learning
	4.1 Overall Framework
	4.2 Chain-of-Thought Prompting
	4.3 Prompt Tuning
	4.4 Algorithm and Complexity Analysis

	5 Experiments
	5.1 Experimental Setup
	5.2 Implementation Details
	5.3 Performance Evaluation
	5.4 Ablation Study and Visualization
	5.5 Heterophily Sensitivity
	5.6 Flexibility of Graph Prompting Methods
	5.7 Hyperparameter Analysis
	5.8 Computational Efficiency Analysis

	6 Conclusions
	References
	A Further Descriptions of Datasets
	B Further Descriptions of Baselines

