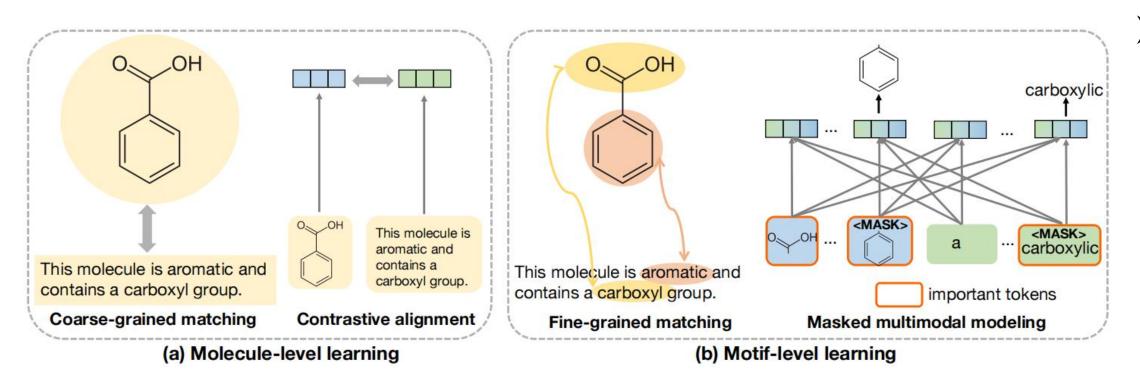
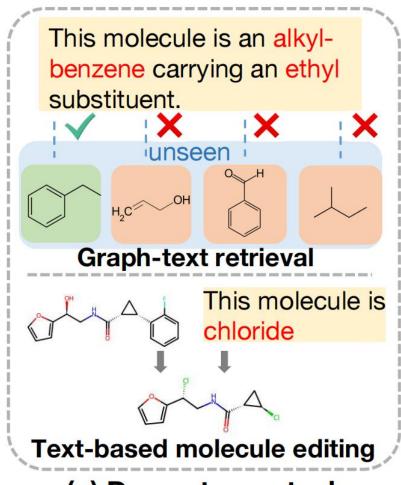


KDD2 25 Advancing Molecular Graph-Text Pre-training via Fine-grained Alignment

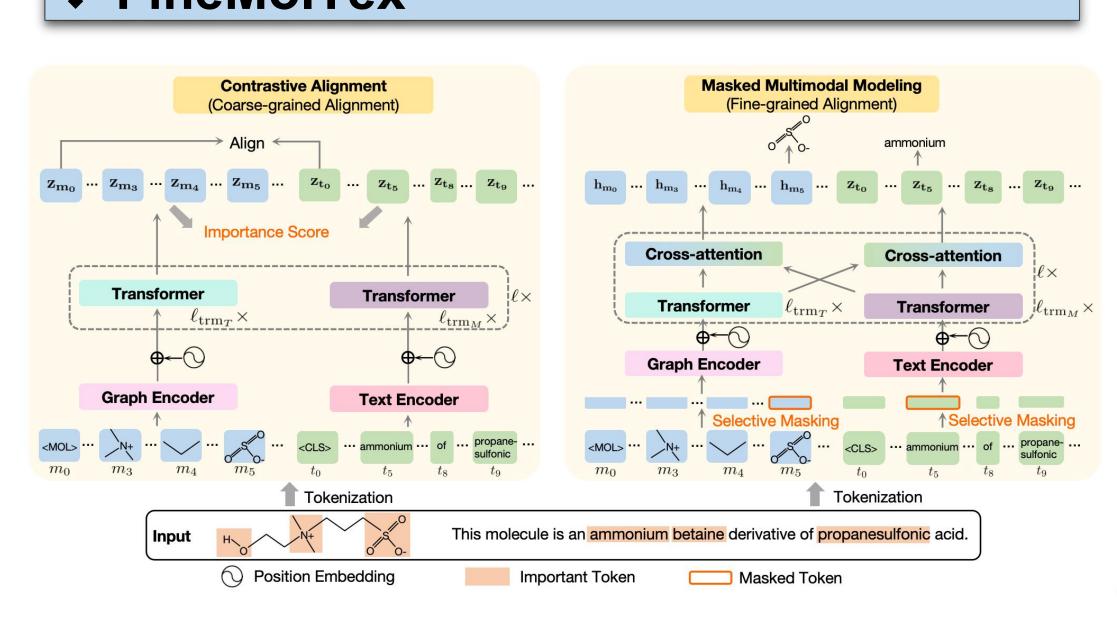

Yibo Li¹, Yuan Fang²*, Mengmei Zhang³, Chuan Shi¹*,

¹Beijing University of Posts and Telecommunications


²Singapore Management University

³China Telecom Bestpay

Motivation


> Traditional multimodal molecular learning frameworks fail to capture fine-grained knowledge of the sub-molecule level.

(c) Downstream tasks

- ➤ Motif-level knowledge is necessary for the generalization to unseen molecules.
- > Motif-level knowledge bridges the gap for downstream tasks that require fine-grained knowledge.

❖ FineMolTex

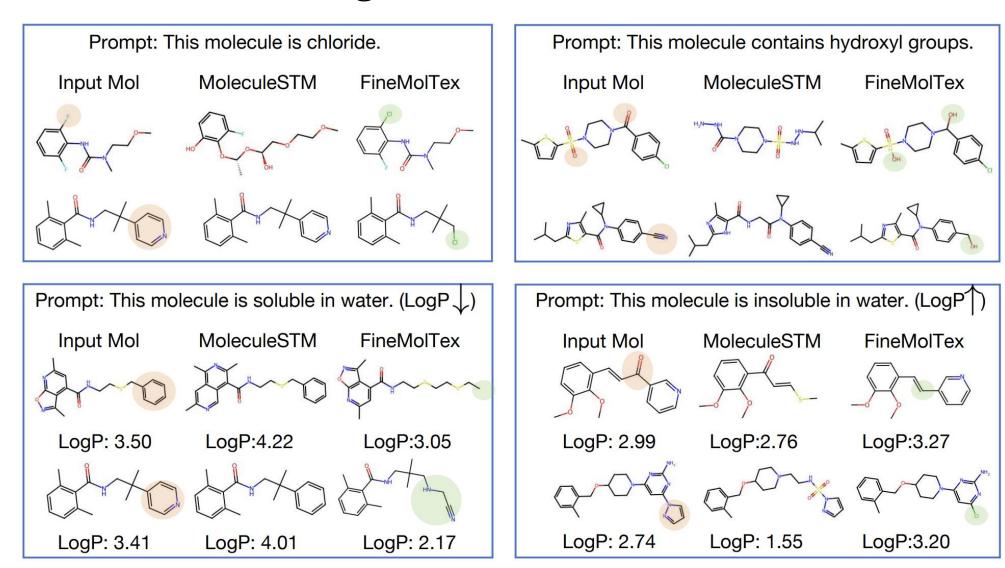
> Contrastive Alignment:

$$\begin{split} L_{\text{con}} &= -\frac{1}{2} \mathbb{E}_{m_0, t_0} \left[\log \frac{\exp(\cos(\mathbf{z_{m_0}}, \mathbf{z_{t_0}})/\tau)}{\exp(\cos(\mathbf{z_{m_0}}, \mathbf{z_{t_0}})/\tau) + \sum_{t_0'} \exp(\cos(\mathbf{z_{m_0}}, \mathbf{z_{t_0'}})/\tau)} \right. \\ &+ \log \frac{\exp(\cos(\mathbf{z_{t_0}}, \mathbf{z_{m_0}})/\tau)}{\exp(\cos(\mathbf{z_{t_0}}, \mathbf{z_{m_0}})/\tau) + \sum_{m_0'} \exp(\cos(\mathbf{z_{t_0}}, \mathbf{z_{m_0'}})/\tau)} \right], \end{split}$$

> Masked Multimodal Modeling:

$$L_{\text{pre}} = \beta \sum_{i} \text{CE}(\hat{y}_{m_i}, y_{m_i}) + \alpha \sum_{i} \text{CE}(\hat{y}_{t_j}, y_{t_j})$$

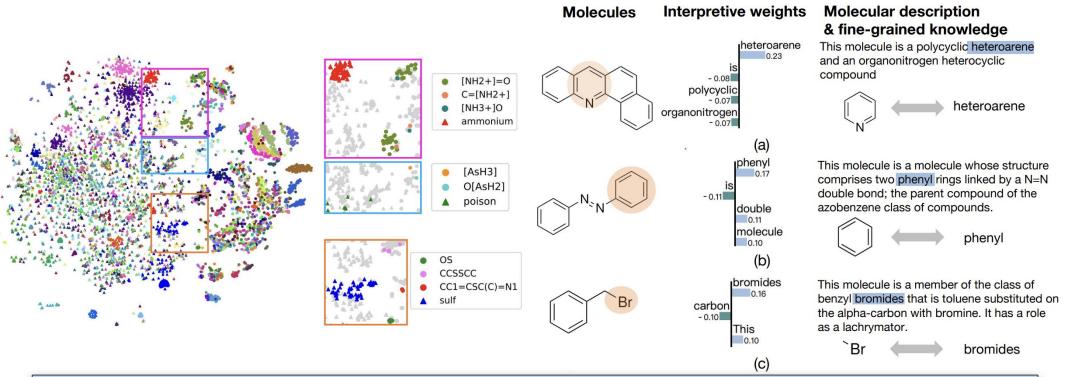
> Importance Score:


$$\omega_{t_i} = \frac{\exp(\cos(z_{t_i}, z_{t_0}))}{\sum_{j=1}^{N} \exp(\cos(z_{t_j}, z_{t_0}))}, \ \omega_{m_i} = \frac{\exp(\cos(z_{m_i}, z_{m_0}))}{\sum_{j=1}^{N} \exp(\cos(z_{m_j}, z_{m_0}))}$$

Experiments

➤ RQ1. Can FineMolTex better generalize to unseen molecules?

	Give	n Molecular G	raph	Given Text			
T	4	10	20	4	10	20	
KV-PLM	68.38 ± 0.03	47.59 ± 0.03	36.54 ± 0.03	67.68±0.03	48.00 ± 0.02	34.66±0.02	
MolCA	83.75 ± 0.54	74.25 ± 0.26	66.14±0.21	81.27 ± 0.33	69.46 ± 0.17	62.13 ± 0.16	
MoMu-S	70.51 ± 0.04	55.20 ± 0.15	43.78 ± 0.10	70.71 ± 0.22	54.70 ± 0.31	44.25 ± 0.43	
MoMu-K	69.40 ± 0.11	53.14 ± 0.26	42.32 ± 0.28	68.71 ± 0.03	53.29 ± 0.05	43.83 ± 0.12	
3D-MoLM	81.35 ± 0.14	73.65 ± 0.13	64.79 ± 0.15	79.78 ± 0.22	62.38 ± 0.16	53.43 ± 0.11	
MV-Mol	92.24 ± 0.26	85.38 ± 0.19	79.41 ± 0.43	91.28 ± 0.13	85.32 ± 0.15	80.37 ± 0.22	
MoleculeSTM	92.14 ± 0.02	86.27 ± 0.02	81.08 ± 0.05	91.44 ± 0.02	86.76 ± 0.03	81.68±0.03	
FineMolTex	96.78 ± 0.05	92.48 ± 0.02	87.94 ± 0.14	96.29 ± 0.12	91.65 ± 0.15	85.07±0.11	


> RQ2. Can FineMolTex bridge the gap to tasks centered on motiflevel knowledge?

➤ RQ3. Can FineMolTex perform better on single-modality tasks?

§									
Model	BBBP	Tox21	ToxCast	Sider	ClinTox	MUV	HIV	Bace	Avg
AttrMask	67.8±2.6	75.0±0.2	63.6±0.8	58.1±1.2	75.4±8.8	73.8±1.2	75.4±0.5	80.3±0.0	71.2
ContextPred	63.1±3.5	74.3 ± 0.2	61.6±0.5	60.3 ± 0.8	80.3 ± 3.8	71.4±1.4	70.7 ± 3.6	78.8 ± 0.4	70.1
InfoGraph	64.8 ± 0.6	76.2 ± 0.4	62.7 ± 0.7	59.1±0.6	76.5 ± 7.8	73.0 ± 3.6	70.2 ± 2.4	77.6 ± 2.0	70.0
MolCLR	67.8±0.5	67.8 ± 0.5	64.6 ± 0.1	58.7 ± 0.1	84.2 ± 1.5	72.8 ± 0.7	75.9 ± 0.2	71.1±1.2	71.3
GraphMVP	68.1±1.4	77.1 ± 0.4	65.1±0.3	60.6 ± 0.1	84.7 ± 3.1	74.4 ± 2.0	77.7 ± 2.5	80.5 ± 2.7	73.5
GraphCL	69.7±0.7	73.9 ± 0.7	62.4 ± 0.6	60.5 ± 0.9	76.0 ± 2.7	69.8±2.7	78.5 ± 1.2	75.4±1.4	70.8
KV-PLM	70.5 ± 0.5	72.1 ± 1.0	55.0 ± 1.7	59.8 ± 0.6	89.2 ± 2.7	54.6 ± 4.8	65.4±1.7	78.5 ± 2.7	68.2
MoMu-S	70.5 ± 2.0	75.6 ± 0.3	63.4±0.5	60.5 ± 0.9	79.9 ± 4.1	70.5 ± 1.4	75.9 ± 0.8	76.7 ± 2.1	71.6
MoMu-K	70.1 ± 1.4	75.6 ± 0.5	63.0 ± 0.4	60.4 ± 0.8	77.4 ± 4.1	71.1 ± 2.7	76.2 ± 0.9	77.1±1.4	71.4
MolCA	70.0 ± 0.5	77.2 ± 0.5	64.5 ± 0.8	63.0 ± 1.7	89.5 ± 0.7	72.1±1.3	77.2 ± 0.6	79.8 ± 0.5	74.2
MoleculeSTM	70.0 ± 0.5	76.9 ± 0.5	65.1±0.4	61.0 ± 1.1	92.5±1.1	73.4 ± 2.9	77.0 ± 1.8	80.8 ± 1.3	74.6
FineMolTex	$73.5{\pm}1.6$	77.1 ± 1.2	68.6 ± 0.9	$64.8 \!\pm\! 1.4$	$92.5{\pm}0.8$	$\textbf{76.3} \!\pm\! 1.2$	$79.0 \!\pm\! 1.4$	84.0 ± 1.5	76.9

> RQ4. Has FineMolTex learned fine-grained knowledge?

Conclusion

- > We reveal that fine-grained motif-level knowledge is crucial for molecular representation learning.
- ➤ We propose FineMolTex to jointly learn both coarseand fine-grained knowledge through a contrastive alignment. task and a masked multimodal learning task, respectively.
- > Extensive experimental results verify the effectiveness of FineMolTex.
- > Contact: liyibo@u.nus.edu
- > Github: https://github.com/liushiliushi/FineMolTex