Tail-GNN: Tail-Node Graph Neural Networks

Zemin Liu, Trung-Kien Nguyen, Yuan Fang

In Proceedings of the 27th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD-21) 14th -18th August, 2021

- Problem & related work
- Challenges & insights
- Proposed model: Tail-GNN
- Experiments
- Conclusions

Graph Representation Learning

- Graph embedding approaches
 - DeepWalk [1], node2vec [2], ...
- Graph neural networks (GNNs) [3,4,5]

$$\mathbf{h}_{v}^{l} = \mathcal{M}(\mathbf{h}_{v}^{l-1}, \{\mathbf{h}_{i}^{l-1} : i \in \mathcal{N}_{v}\}; \theta^{l})$$

- Message passing function
- [1] Perozzi B., et al. 2014. Deepwalk: Online learning of social representations. KDD.
- [2] Grover A., et al. 2014. node2vec: Scalable feature learning for networks. KDD.
- [3] Kipf, T. N., et al. 2017. Semi-supervised classification with graph convolutional networks. ICLR.
- [4] Veličković, P., et al. 2018. Graph attention networks. ICLR.
- [5] Hamilton W L., et al. 2017. Inductive representation learning on large graphs. NeurIPS.

Problem: long-tailed node distribution

- Long-tailed distribution
 Node degree
- GNNs
 - Depend on the abundance of structural information (head nodes *vs*. tail nodes)
 - Do not pay special attention to tail nodes
- Problem
 - Robust tail node embedding with GNNs
 - Definition for tail and head nodes

 $\mathcal{V}_{\text{tail}} = \{ v : |\mathcal{N}_v| \leq K \} \qquad \qquad \mathcal{V}_{\text{head}} = \{ v : |\mathcal{N}_v| > K \}$

Long-tailed node distribution

Related Work

- Degree-specific models [1,2]
 - Distinguish nodes based on their degrees
 - Not specifically designed to enhance the embeddings of the tail nodes
- meta-tail2vec [3]
 - For tail node embedding
 - Main disadvantage: decoupled two-stage, not end-to-end

[1] Wu J, et al. 2019. Demo-Net: Degree-specific graph neural networks for node and graph classification. KDD.
 [2] Tang X, et al. 2020. Investigating and Mitigating Degree-Related Biases in Graph Convoltuional Networks. CIKM.
 [3] Liu Z, et al. 2020. Towards locality-aware meta-learning of tail node embeddings on networks. CIKM.

- Problem & related work
- Challenges & insights
- Proposed model: Tail-GNN
- Experiments
- Conclusions

- Tail nodes
 - Small neighborhood
 - Potentially suffer from missing information
- Challenges

C1: How to uncover the missing neighborhood information for tail nodes?

C2: How to localize the missing information for each tail node while maintaining the generality across nodes?

Tail node v_1 Head node v_0 Toy citation network

Insights: Tail-GNN

- Key idea
 - Neighborhood translation
- First challenge
 - predict the missing neighborhood information for tail nodes by exploiting a transferable neighborhood translation
- Second challenge
 - tailor the shared neighborhood translation to each target node w.r.t. its local context.

- Problem & related work
- Challenges & insights
- Proposed model: Tail-GNN
- Experiments
- Conclusions

Concept: transferable neighborhood translation

Neighborhood translation

complete and representative no missing information

$$\mathbf{m}_{v} = \mathbf{h}_{\mathcal{N}_{v}^{*}} - \mathbf{h}_{\mathcal{N}_{v}} = \mathbf{0} \longleftarrow \text{Missing information} \longrightarrow \mathbf{m}_{v} = \mathbf{h}_{\mathcal{N}_{v}^{*}} - \mathbf{h}_{\mathcal{N}_{v}} \neq \mathbf{0}$$

Embedding of

ideal neighborhood

Embedding of observed neighborhood

Embedding of ideal neighborhood

Imperative: uncover the

missing information

Embedding of observed neighborhood

10

Predicting missing . information for tail node v

Predict embedding of ideal neighborhood for tail node v

 $\Rightarrow h_{\mathcal{N}_v^*} = h_v + r_v$ Predict missing information $m_v = h_v + r_v - h_{\mathcal{N}_v}$ for tail node v

Tail-GNN: overall framework

Tail-GNN: realizing neighborhood translation (1)

- Contrastive strategy
 - Head nodes

- Forged tail nodes: randomly dropping some links from the head nodes, for contrast
- Robust tail node embedding: uncover the missing neighborhood information

$$\underset{\text{information}}{\text{missing neighborhood}} \quad \mathbf{m}_{v}^{l} = \mathbf{h}_{\mathcal{N}_{v}^{*}}^{l} - \mathbf{h}_{\mathcal{N}_{v}}^{l} = \mathbf{h}_{v}^{l} + \mathbf{r}_{v}^{l} - \mathbf{h}_{\mathcal{N}_{v}}^{l}$$

Head

v₄ node

Link

dropout

 $\hat{\oplus}^{r_{v'_0}}$

K = 3

Real

tail node

 (v_6)

localization

strategy

Contrastive

localization

Forged

tail node

Localizing strategy

Globally shared

Tail-GNN: realizing neighborhood translation (2)

- Localizing strategy
 - Local context of each node
 - Generality across the graph

- Scaling and shifting factors [1]

$$\mathbf{r}_{v}^{l} = \phi(\mathbf{h}_{v}^{l}, \mathbf{h}_{\mathcal{N}_{v}}^{l}, \mathbf{r}^{l}; \theta_{\phi}^{l}) = (\gamma_{v}^{l} + 1) \odot \mathbf{r}^{l} + \beta_{v}^{l}$$
Scaling vector Shifting vector

[1] Perez E, et al. 2018. FiLM: Visual reasoning with a general conditioning layer. AAAI.

Tail-GNN: neighborhood aggregation

• Neighborhood aggregation

• Head nodes

• Tail nodes

Aggregation for head nodes

$$\mathbf{h}_{v}^{l+1} = \mathcal{M}(\mathbf{h}_{v}^{l}, \{\mathbf{h}_{i}^{l}: i \in \mathcal{N}_{v}\}; \theta^{l+1}) \qquad \mathbf{h}_{v}^{l+1} = \mathcal{M}(\mathbf{h}_{v}^{l}, \{\mathbf{m}_{v}^{l}\} \cup \{\mathbf{h}_{i}^{l}: i \in \mathcal{N}_{v}\}; \theta^{l+1})$$

$$\mathbf{h}_{v}^{l+1} = \mathcal{M}(\mathbf{h}_{v}^{l}, \{\mathbf{m}_{v}^{l}\} \cup \{\mathbf{h}_{i}^{l}: i \in \mathcal{N}_{v}\}; \theta^{l+1})$$

$$\mathbf{h}_{v}^{l+1} = \mathcal{M}(\mathbf{h}_{v}^{l}, \{\mathbf{m}_{v}^{l}\} \cup \{\mathbf{h}_{i}^{l}: i \in \mathcal{N}_{v}\}; \theta^{l+1})$$

$$\mathbf{h}_{v}^{l+1} = \mathcal{M}(\mathbf{h}_{v}^{l}, \{\mathbf{m}_{v}^{l}\} \cup \{\mathbf{h}_{i}^{l}: i \in \mathcal{N}_{v}\}; \theta^{l+1})$$

Tail-GNN: overall loss

- Task loss Cross entropy $\mathcal{L}_t = \sum_{v \in \mathcal{V}_{tr}} \text{CrossEnt}(\mathbf{h}_v^{\ell}, \mathbf{y}_v) + \lambda_t \|\Theta\|_2^2$
- Loss for missing information constraint $\mathcal{L}_m = \sum_{v \in \mathcal{V}_{tr}} I_v \sum_{l=1}^{\ell} \|\mathbf{m}_v^{l-1}\|_2^2 \longrightarrow \underset{\text{information}}{\text{Missing}}$
- Loss for adversarial constraint [1]

$$\mathcal{L}_{d} = \sum_{v \in \mathcal{V}_{tr}} \text{CrossEnt}(I_{v}, D(\mathbf{h}_{v}^{\ell}; \theta_{d})) + \lambda_{d} \|\theta_{d}\|_{2}^{2}$$

Discriminator

• Overall loss

[1] Goodfellow I J, et al. 2014. Generative Adversarial Nets. NeurIPS.

- Problem & related work
- Challenges & insights
- Proposed model: Tail-GNN
- Experiments
- Conclusions

Experimental setup

Datasets

	# Nodes	# Edges	# Features	# Classes	# Tail ($K = 5$)
Email	1,005	25,571	128	42	235
Squirrel	5,201	217,073	2,089	5	942
Actor	7,600	33,391	931	5	4,823
CoauthorCS	18,333	327,576	6,805	15	8,037
Amazon	937,349	12,455,925	100	44	248,125

Base GNN models

- GCN [1]
- GAT [2]
- GraphSAGE [3]

Baselines

- Conventional:
 - DeepWalk [4], GCN [1]
- Refinement:
 - Additive [5], a la carte [6], meta-tail2vec [7]
- Robust models:
 - SDNE [8], ARGA [9], DDGCN
- Degree-aware models:
 - Demo-Net [11], role2vec

[1] Kipf, T. N., et al. 2017. Semi-supervised classification with graph convolutional networks. ICLR.
[2] Veličković, P., et al. 2018. Graph attention networks. ICLR.
[3] Hamilton W L., et al. 2017. Inductive representation learning on large graphs. NeurIPS.
[4] Perozzi B., et al. 2014. Deepwalk: Online learning of social representations. KDD.
[5] Lazaridou A, et al. 2017. Multimodal word meaning induction from minimal exposure to natural text. Cognitive science.
[6] Khodak M, et al. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. ACL.
[7] Liu Z, et al. 2020. Towards locality-aware meta-learning of tail node embeddings on networks. CIKM.
[8] Wang D, et al. 2016. Structural deep network embedding. KDD.
[9] Pan S, et al. 2018. Adversarially regularized graph autoencoder for graph embedding. IJCAI.
[10] Cai R, et al. 2020. Dual-dropout graph convolutional networks for node and graph classification. KDD.
[17] Huu J, et al. 2019. Demo-Net: Degree-specific graph neural networks for node and graph classification. KDD.
[17] Ahmed N, et al. 2020. Role-based graph embeddings. TKDE.

Node classification for tail nodes

GCN as base model

Table 2: Evaluation on tail node classification using GCN as the base model.

Henceforth, tabular results are in percent; the best result is **bolded** and the runner-up is <u>underlined</u>; a dash (-) denotes no result reported for failing to work on a large dataset.

Methods	Email		Squirrel		Actor		CoauthorCS		Amazon	
	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F
DeepWalk GCN	54.4 ± 0.3 57.9 ± 1.2	51.3 ± 0.3 57.7 ± 1.3	$\frac{28.8}{24.8} \pm 1.6$	$\frac{28.0}{23.2} \pm 2.3$	21.8 ± 0.6 $\underline{29.7} \pm 0.2$	18.2 ± 0.9 15.0 ± 0.9	84.1 ± 0.7 88.4 ± 0.1	81.5 ± 0.7 86.1 ± 0.1	83.7 ± 0.1 82.3 ± 0.2	$\frac{74.3}{70.6} \pm 0.6$
Additive a la carte meta-tail2vec	55.4 ± 0.4 21.1 ± 0.4 57.1 ± 0.1	52.5 ± 0.2 17.9 ± 0.5 55.3 ± 0.2	27.0 ± 1.7 22.5 ± 1.1 25.1 ± 0.5	22.9 ± 1.6 22.5 ± 0.7 21.5 ± 0.3	$28.1 \pm 0.3 \\28.0 \pm 0.5 \\\underline{29.7} \pm 0.4$	15.1 ± 1.3 14.8 ± 1.4 20.1 ± 0.7	$\begin{array}{c} 89.5 \pm 0.1 \\ 88.7 \pm 0.2 \\ 89.3 \pm 0.1 \end{array}$	87.8 ± 0.1 86.7 ± 0.3 87.4 ± 0.1	$\frac{84.2}{81.1} \pm 0.2$ 81.1 ± 0.1 81.9 ± 0.1	73.2 ± 0.6 69.7 ± 0.7 71.4 ± 0.4
SDNE ARGA DDGCN	32.9 ± 0.6 45.1 ± 0.9 39.8 ± 0.6	29.8 ± 0.5 41.2 ± 1.0 38.9 ± 0.7	$23.8 \pm 3.2 \\ 22.4 \pm 1.0 \\ 26.3 \pm 2.1$	16.6 ± 6.2 22.8 ± 1.9 26.4 ± 3.3	24.4 ± 0.8 25.9 ± 0.3 24.0 ± 0.4	12.6 ± 5.6 8.2 ± 0.6 11.7 ± 0.7	$70.6 \pm 0.9 74.6 \pm 1.8 73.6 \pm 0.9$	64.5 ± 1.1 67.9 ± 2.5 68.8 ± 1.0	- - -	- - -
DEMO-Net role2vec	56.9 ± 0.6 44.9 ± 1.6	56.5 ± 0.7 43.8 ± 2.4	28.3 ± 0.5 26.3 ± 0.8	22.5 ± 2.2 27.5 ± 1.7	28.4 ± 0.8 23.1 ± 0.1	$\frac{22.0}{18.3 \pm 0.6}$	$\frac{90.8}{62.7} \pm 0.5$	$\frac{88.9}{56.3} \pm 0.6$	83.1 ± 0.1 77.1 ± 0.2	72.0 ± 0.4 61.5 ± 0.5
Tail-GCN	$\textbf{59.2} \pm 0.8$	58.5 ± 1.3	30.2 ± 1.1	31.1 ± 1.1	$\textbf{34.9} \pm 0.5$	$\textbf{25.2} \pm 0.6$	93.6 ± 0.1	92.7 ± 0.1	87.0 ± 0.1	78.2 ± 0.2

• Other GNNs as the base model

Table 3: Evaluation on tail node classification using other GNNs as the base model.

Methods	Email		Squirrel		Actor		CoauthorCS		Amazon	
	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F
GAT Tail-GAT	$57.9 \pm 0.4 \\ 59.4 \pm 0.9$	57.3 ± 0.2 58.2 ± 1.2	$24.1 \pm 2.4 \\ 28.8 \pm 2.1$	23.1 ± 2.6 30.4 ± 2.6	$\begin{array}{c c} 29.8 \pm 0.6 \\ \textbf{34.5} \pm 1.3 \end{array}$	13.2 ± 2.7 24.7 ± 2.0	88.6 ± 0.2 92.5 ± 0.1	86.2 ± 0.2 90.8 \pm 0.1		-
GraphSAGE Tail-GraphSAGE	$52.0 \pm 1.6 \\ 55.7 \pm 0.6$	51.3 ± 1.7 54.9 ± 0.7	$27.1 \pm 2.7 \\ 28.5 \pm 1.6$	26.4 ± 4.9 28.2 ± 2.4	33.1 ± 1.1 34.1 ± 1.7	23.2 ± 2.4 26.8 ± 1.8	89.8 ± 2.4 93.8 ± 0.7	87.7 ± 1.1 92.4 ± 1.4	$79.1 \pm 0.4 \\ 85.1 \pm 0.2$	62.8 ± 0.6 75.5 ± 0.3

Ablation study and scalability study

Figure 4: Ablation study.

Figure 5: Scalability study.

• Ablation study

- Random/no missing info impairs the performance
- Without localization: hurts the performance
- Discriminator contributes to the performance
- Without contrastive strategy: performance becomes worse

. Scalability

- Increase linearly w.r.t. graph size

- Problem & related work
- Challenges & insights
- Proposed model: Tail-GNN
- Experiments
- Conclusions

Conclusions

- Problem
 - Tail node embedding in graph neural networks
- Proposed model
 - A new concept of **transferable neighborhood translation**
 - to capture the relational tie between a node and its neighboring nodes
 - A novel model Tail-GNN
 - to narrow the gap between head and tail nodes for robust tail node embedding
- Experiments

Thanks!

Tail-GNN: Tail-Node Graph Neural NetworksZemin Liu, Trung-Kien Nguyen, Yuan Fang

In Proceedings of the 27th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD-21) 14th -18th August, 2021