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Conclusions
Problem
• Tail node embedding in graph neural networks

Proposed model: Tail‐GNN
• A new concept of transferable neighborhood translation

• to capture the relational tie between a node and its neighboring nodes
• A novel model Tail-GNN

• to narrow the gap between head and tail nodes for robust tail node embedding

Experiments
• Extensive experiments demonstrate that Tail-GNN significantly outperforms state-of-the-art models.

Ablation study

Node classification

Experimental setup

Problem: Robust tail node embedding.
Tail nodes

- Small neighborhood
- Potentially suffer from missing information

C1: How to uncover the missing neighborhood information for tail nodes?

C2: How to localize the missing information for each tail node while maintaining the 
generality across nodes?

Challenges:

• Key idea
• Neighborhood translation

• First challenge
• predict the missing neighborhood 

information for tail nodes by 
exploiting a transferable 
neighborhood translation

• Second challenge
• tailor the shared neighborhood 

translation to each target node 
w.r.t. its local context.

Neighborhood translation

• Neighborhood of head nodes
• Observed neighborhood: complete and representative
• no missing information

• Neighborhood of tail nodes
• Observed neighborhood: not representative enough
• Imperative: uncover the missing information

Predicting missing information for tail node v

Contrastive strategy

• Head nodes • Tail nodes
• Real and forged tail nodes
• Robust tail node embedding: uncover the missing information

Embedding of observed
neighborhood 

Localizing strategy

Scaling vector Shifting vector

Local context

Neighborhood aggregation

Message passing function missing neighborhood 
information

observed 
neighborhood

• Head nodes • Tail nodes

Tail-GNN

Overall objective

Discriminator

Task loss

Loss for head missing
information constraint

Loss for adversarial
constraint

Overall objective
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• Base GNN models
• GCN [1]
• GAT [2]
• GraphSAGE [3]

• Baselines (based on GCN)
• Conventional: DeepWalk [4], GCN [1]
• Refinement: Additive [5], a la carte [6], meta-tail2vec [7]
• Robust models: SDNE [8], ARGA [9], DDGCN
• Degree-aware models: Demo-Net [11], role2vec

• GCN as base model
• DEMO-Net, role2vec: can distinguish nodes of different degrees, not specifically for enhancing the tail nodes. 
• SDNE, ARGA and DDGCN: improve the robustness of graph learning, not specifically target the tail nodes. 
• Refinement models: in two stages, the embedding stage cannot benefit from the refinement stage.

• GAT and GraphSAGE as base models
• Tail-GNN still outperforms the baselines, showing its flexibility.

• Ablation study
• Random/no missing info: impairs the performance
• Without localization: hurts the performance
• Discriminator: contributes to the performance
• Without contrastive strategy: performance becomes

worse

• Scalability
• Increase linearly w.r.t. graph size
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