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- Potentially suffer from missing information
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Challenges: . .
Node classification
C1: How to uncover the missing neighborhood information for tail nodes?

Table 2: Evaluation on tail node classification using GCN as the base model.

Henceforth, tabular results are in percent; the best result is bolded and the runner-up is underlined; a dash (-) denotes no result reported for failing to work on a large dataset.

C2: How to localize the missing information for each tail node while maintaining the
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translation to each target node

_ * GAT and GraphSAGE as base models
w.r.t. its local context.

(c) Neighborhood translation  Tail-GNN still outperforms the baselines, showing its flexibility.
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Tail node embedding in graph neural networks

information prediction missing information

Contrastive strategy Proposed model: Tail-GNN

* A new concept of transferable neighborhood translation
* to capture the relational tie between a node and its neighboring nodes

* Tail nodes
* Real and forged tail nodes

e Head nodes

Embedding of observed ) : L ) .
7 neighborhood * Robust tail node embedding: uncover the missing information * Anovel model Tail-GNN
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¢ ¢ Ny 0 N g o T 1y N,

Experiments

Localizing strategy Local context

l lf fl . l l l * Extensive experiments demonstrate that Tail-GNN significantly outperforms state-of-the-art models.
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