

Tail-GNN: Tail-Node Graph Neural Networks

Zemin Liu, Trung-Kien Nguyen, Yuan Fang

School of **Information Systems**

In Proceedings of the 27th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD-21) 14th -18th August, 2021

The proposed model: Tail-GNN

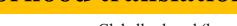
Neighborhood translation

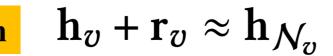
dna

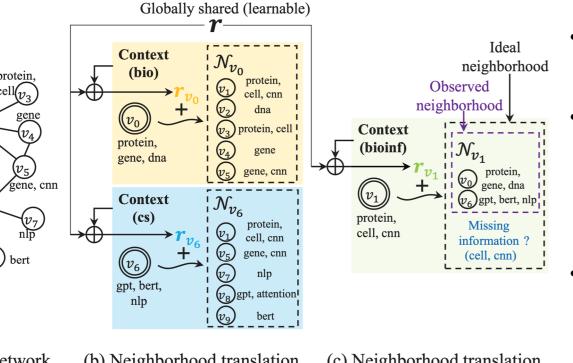
 v_2

protein

gene, di

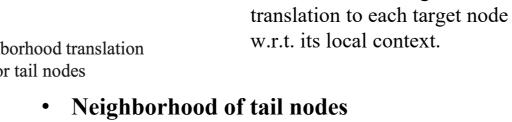

 v_1 protein, cell, cnn


gpt, bert,


nlp

 v_8 gpt,

attention



(b) Neighborhood translation (a) Toy network for head nodes

(c) Neighborhood translation for tail nodes

- Neighborhood of head nodes
 - Observed neighborhood: complete and representative
 - no missing information

 $\mathbf{m}_{v} = \mathbf{h}_{\mathcal{N}_{v}^{*}} - \mathbf{h}_{\mathcal{N}_{v}} = \mathbf{0}$

Neighborhood of tail nodes

Key idea

First challenge

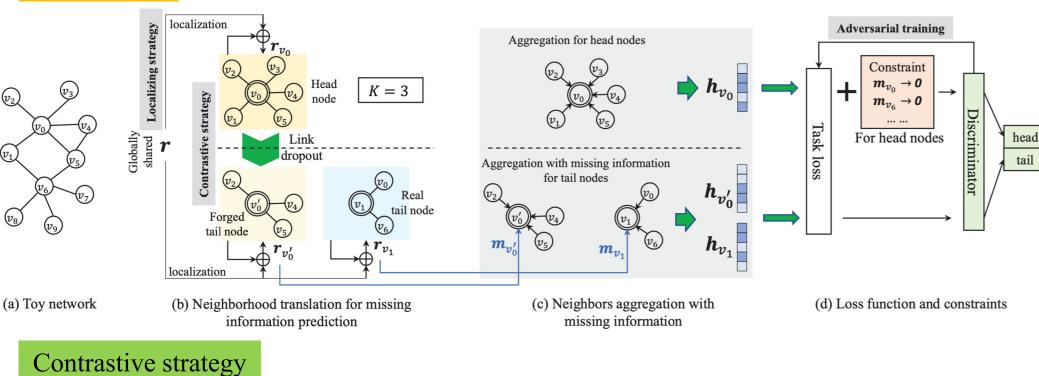
Second challenge

• Observed neighborhood: not representative enough

• Neighborhood translation

• predict the missing neighborhood

information for tail nodes by


exploiting a transferable

neighborhood translation

• tailor the shared neighborhood

• Imperative: uncover the missing information

 $\mathbf{m}_{v} = \mathbf{h}_{\mathcal{N}_{v}^{*}} - \mathbf{h}_{\mathcal{N}_{v}} \neq \mathbf{0}$ Predicting missing information for tail node v $\mathbf{h}_{\mathcal{N}_{v}^{*}} = \mathbf{h}_{v} + \mathbf{r}_{v}$ $\mathbf{m}_{v} = \mathbf{h}_{v} + \mathbf{r}_{v} - \mathbf{h}_{N_{v}}$

role2vec 44.9 ± 1.6 43.8 ± 2.4 26.3 ± 0.8 27.5 ± 1.7 23.1 ± 0.1 $\overline{18.3} \pm 0.6$ $\overline{62.7} \pm 0.3$ $\overline{56.3} \pm 0.3$ 77.1	8.2 \pm 0.6 74.6 \pm 1.8 67.9 \pm 2.5
role2vec 44.9 ± 1.6 43.8 ± 2.4 26.3 ± 0.8 27.5 ± 1.7 23.1 ± 0.1 $\overline{18.3} \pm 0.6$ $\overline{62.7} \pm 0.3$ $\overline{56.3} \pm 0.3$ 77.1	11.7 \pm 0.7 73.6 \pm 0.9 68.8 \pm 1.0
	<u>22.0</u> ± 1.3 <u>90.8</u> ± 0.5 <u>88.9</u> ± 0.6 83.1 ± 0.1 72.0 ± 0.4
	18.3 ± 0.6 62.7 ± 0.3 56.3 ± 0.3 77.1 ± 0.2 61.5 ± 0.5
Tail-GCN 59.2 \pm 0.8 58.5 \pm 1.3 30.2 \pm 1.1 31.1 \pm 1.1 34.9 \pm 0.5 25.2 \pm 0.6 93.6 \pm 0.1 92.7 \pm 0.1 87.0	25.2 \pm 0.6 93.6 \pm 0.1 92.7 \pm 0.1 87.0 \pm 0.1 78.2 \pm 0.2

 29.7 ± 0.4

 24.4 ± 0.8

 20.1 ± 0.7

 12.6 ± 5.6

 89.3 ± 0.1

 70.6 ± 0.9

 87.4 ± 0.1

 64.5 ± 1.1

 81.9 ± 0.1

 71.4 ± 0.4

Table 3: Evaluation on tail node classification using other GNNs as the base model.

Methods	Email		Squirrel		Actor		CoauthorCS		Amazon	
	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F
GAT	57.9 ± 0.4	57.3 ± 0.2	24.1 ± 2.4	23.1 ± 2.6	29.8 ± 0.6	13.2 ± 2.7	88.6 ± 0.2	86.2 ± 0.2	-	-
Tail-GAT	59.4 ± 0.9	58.2 ± 1.2	28.8 ± 2.1	30.4 ± 2.6	34.5 ± 1.3	$\textbf{24.7} \pm 2.0$	92.5 ± 0.1	90.8 ± 0.1	-	-
GraphSAGE	52.0 ± 1.6	51.3 ± 1.7	27.1 ± 2.7	26.4 ± 4.9	33.1 ± 1.1	23.2 ± 2.4	89.8 ± 2.4	87.7 ± 1.1	79.1 ± 0.4	62.8 ± 0.6
Tail-GraphSAGE	55.7 ± 0.6	54.9 ± 0.7	28.5 ± 1.6	$\textbf{28.2} \pm 2.4$	34.1 ± 1.7	26.8 ± 1.8	93.8 ± 0.7	92.4 ± 1.4	85.1 ± 0.2	75.5 ± 0.1

GCN as base model

meta-tail2vec

SDNE

 57.1 ± 0.1

 32.9 ± 0.6

 55.3 ± 0.2

 29.8 ± 0.5

 25.1 ± 0.5

 23.8 ± 3.2

 21.5 ± 0.3

 16.6 ± 6.2

- DEMO-Net, role2vec: can distinguish nodes of different degrees, not specifically for enhancing the tail nodes.
- SDNE, ARGA and DDGCN: improve the robustness of graph learning, not specifically target the tail nodes.
- **Refinement models**: in two stages, the embedding stage cannot benefit from the refinement stage.

• GAT and GraphSAGE as base models

• Tail-GNN still outperforms the baselines, showing its flexibility.

Ablation study

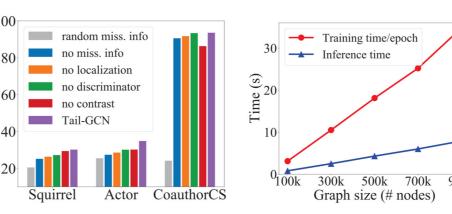


Figure 4: Ablation study. Figure 5: Scalability study.

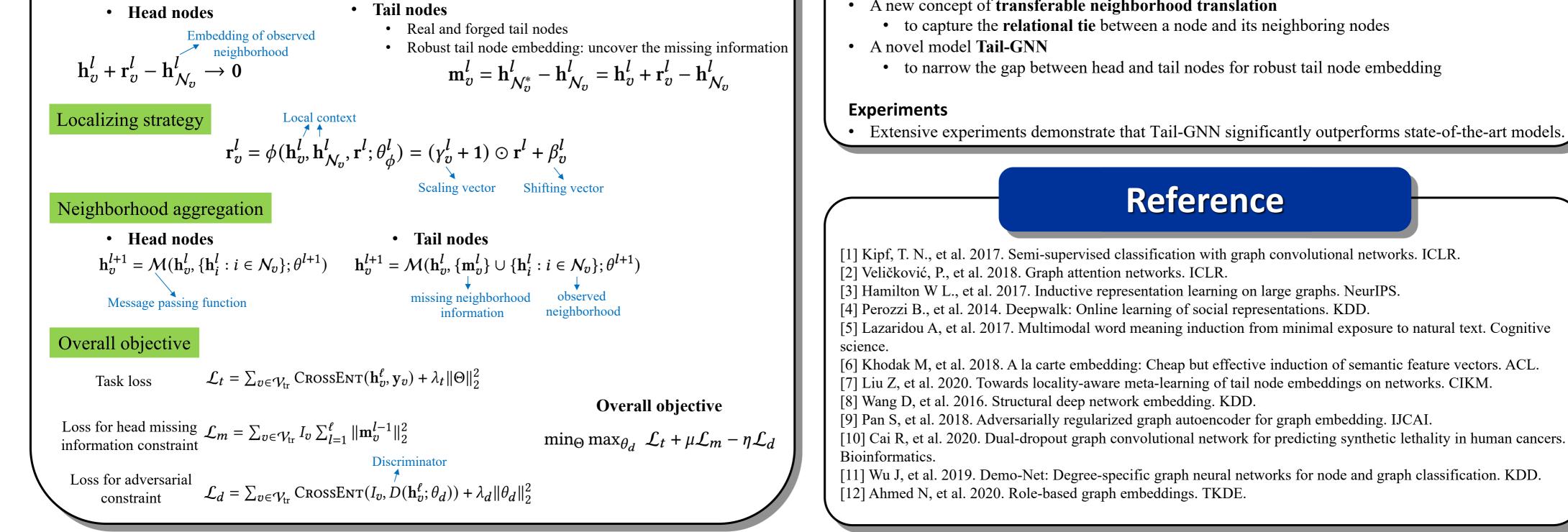
• Ablation study

- Random/no missing info: impairs the performance
- Without localization: hurts the performance
- Discriminator: contributes to the performance
- Without contrastive strategy: performance becomes worse

Scalability

• Increase linearly w.r.t. graph size

Conclusions


Problem

Tail node embedding in graph neural networks

Proposed model: Tail-GNN

A new concept of transferable neighborhood translation

Tail-GNN

