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ABSTRACT
The prevalence of graph structures in real-world scenarios enables

important tasks such as node classification and link prediction.

Graphs in many domains follow a long-tailed distribution in their

node degrees, i.e., a significant fraction of nodes are tail nodes with
a small degree. Although recent graph neural networks (GNNs) can

learn powerful node representations, they treat all nodes uniformly

and are not tailored to the large group of tail nodes. In particular,

there is limited structural information (i.e., links) on tail nodes,

resulting in inferior performance. Toward robust tail node embed-

ding, in this paper we propose a novel graph neural network called

Tail-GNN. It hinges on the novel concept of transferable neighbor-
hood translation, to model the variable ties between a target node

and its neighbors. On one hand, Tail-GNN learns a neighborhood

translation from the structurally rich head nodes (i.e., high-degree
nodes), which can be further transferred to the structurally limited

tail nodes to enhance their representations. On the other hand, the

ties with the neighbors are variable across different parts of the

graph, and a global neighborhood translation is inflexible. Thus,

we devise a node-wise adaptation to localize the global translation

w.r.t. each node. Extensive experiments on five benchmark datasets

demonstrate that our proposed Tail-GNN significantly outperforms

the state-of-the-art baselines.

CCS CONCEPTS
• Computing methodologies → Learning latent representa-
tions; • Information systems→ Data mining.
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1 INTRODUCTION
Real-world objects often link together to form complex network

structures, also known as graphs. For example, research papers ref-

erence each other to form a citation graph, and users interact with

(such as click or buy) products to form an e-commerce network.

The prevalence of graph structures draws active research on vari-

ous graph-based tasks, such as node classification for categorizing

papers into different topics in a citation graph, and link prediction

for product recommendation in e-commerce networks.

Traditional machine learning on graphs focuses on feature en-

gineering, a largely manual and costly process. The rise of graph

representation learning enables automatic feature extraction by pro-

jecting graph nodes into a low dimensional vector space. On one

hand, earlier graph embedding approaches [24, 27] employ local

structures such as random walks and node proximities to constrain

node embeddings. On the other hand, recent GNNs [8, 12, 31, 36]

adopt a global message passing mechanism, hinging on a powerful

neighborhood aggregation operator in which each node receives

and aggregates messages (i.e., node contents such as attributes)

from its neighboring nodes recursively.

Our problem. Many real-world graphs are long-tailed, i.e., the
node degrees follow a power-law like distribution where a signif-

icant fraction of nodes have low degrees. As shown in Fig. 1(a),

several benchmark graphs in a variety of domains exhibit a charac-

teristic long tail. However, GNNs depend their performance heavily

on the abundance of structural information. While the high-degree

or so-called head nodes link to enough neighboring nodes for mean-

ingful neighborhood aggregation, the low-degree or so-called tail
nodes link to a small neighborhood that can be biased or under-

represented, leading to unsatisfactory performance [17]. Unfortu-

nately, most state-of-the-art GNNs do not pay special attention

to tail nodes, which can marginalize the group of tail nodes and

present a major bottleneck in their performance. Thus, in this pa-

per we investigate the problem of modeling tail nodes in graph

neural networks, to learn robust tail node embeddings with limited

structural connectivity.

Prior work. Recent works [29, 34] employ degree-specific transfor-

mations on nodes of different degrees. While they distinguish nodes

based on their degrees, they aim to improve the overall performance

and are not specifically designed to enhance the embeddings of

the tail nodes, an especially challenging group due to their struc-

tural limitation. A more related study known as meta-tail2vec [17]
proposes a two-stage framework for robust tail node embedding.

In the first stage, a base embedding model (e.g., DeepWalk [24]) is

employed to produce initial node embeddings for all nodes; in the

second stage, the embeddings of tail nodes are further refined by

learning from the higher-quality embeddings of the head nodes.

The main disadvantage of this two-stage approach is that the base
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Figure 1: Illustration of tail nodes.

embedding model is decoupled from the refinement stage, implying

that any inherent bias or noise in the base embedding model can-

not be fundamentally corrected at the root. Thus, a more desirable

approach is to directly design a new GNN that asserts robustness

for the tail nodes in an end-to-end learning process.

Challenges and present work. In comparison to head nodes, tail

nodes have a small neighborhood, which may potentially suffer

from missing information. As shown in Fig. 1(b), the head node

(paper) 𝑣0 has sufficient neighborhood information matching its

own attributes (i.e., keywords “protein”, “gene”, “dna”). In contrast,

the tail node 𝑣1 has a smaller and biased neighborhood covering

“protein” but missing “cell” and “cnn” that 𝑣1 itself is focused on,

due to potential missing links indicated in the figure. This would

distort the neighborhood aggregation in GNNs. Thus, toward robust

tail node embedding, we need to address the core issue of missing

neighborhood information, which presents two challenges.

First, how to uncover the missing neighborhood information for tail
nodes? Essentially, the exploitation of missing information should

be underpinned by a unified mechanism across the graph, and yet

allow for flexibility since nodes reside in diverse local contexts [16]

on the graph. This leads to the second challenge: how to localize
the missing information for each tail node while maintaining the
generality across nodes?

To address these challenges, we propose a new graph neural

network named Tail-GNN for robust tail node embedding, in order

to close the structural gap between head and tail nodes. Tail-GNN
boils down to the novel concept of neighborhood translation. As the
basis of neighborhood aggregation in GNNs, each node is closely re-

lated to its neighbors. Consider the toy citation network in Fig. 2(a),

where we take 𝑣0 and 𝑣6 as example head nodes (papers) and 𝑣1

as an example tail node. Each head node tends to study a similar

topic as its neighboring nodes, as reflected by their features: 𝑣0

and its neighbors have similar biology keywords, whereas 𝑣6 and

its neighbors have similar computer science keywords. In other

words, there exists a relational tie between each head node and its

neighborhood. We model this relational tie as a translation oper-

ation, called neighborhood translation. As shown in Fig. 2(b), r𝑣𝑖
represents the translation vector between the embeddings of the

head node 𝑣𝑖 and its neighbors set N𝑣𝑖 .
Subsequently, to answer the first challenge, we predict the miss-

ing neighborhood information for tail nodes by exploiting a trans-
ferable neighborhood translation. That is, we learn a globally shared
neighborhood translation r from the head nodes 𝑣0 and 𝑣6 in Fig. 2(b),
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Figure 2: Illustration of neighborhood translation.

and then transfer it to the tail node 𝑣1. The gap between the trans-

lated tail node (i.e., its ideal neighborhood) and its observed neigh-

borhood represents themissing neighborhood information as shown

in Fig. 2(c). The predicted missing information can complement

neighborhood aggregation of a tail node to correct the potential

bias in its observed neighborhood. Moreover, to answer the second

challenge, we tailor the shared neighborhood translation to each

target node w.r.t. its local context. As shown in Fig. 2(b), the shared

translation r is localized into r𝑣0
and r𝑣6

for the head node 𝑣0 and 𝑣6

to suit their contexts of biology and computer science, respectively.

Similarly, the shared translation is localized to suit the tail node 𝑣1

in Fig. 2(c). While the shared translation aims to capture the general

pattern across the graph, the node-wise localization accounts for

variations across diverse localities on the graph.

Contributions. To the best of our knowledge, this is the first end-

to-end GNN model for robust tail node embeddings. To summarize,

we make the following contributions. (1) We introduce a novel

concept of transferable neighborhood translation to model the rela-

tional tie between a node and its neighboring nodes. (2) Hinged on

this concept, we propose a novel model Tail-GNN to narrow the

gap between head and tail nodes. (3) We conduct extensive experi-

ments on five benchmark datasets. Our proposed Tail-GNN obtains

state-of-the-art performance in comparison to a comprehensive

suite of baselines.

2 RELATEDWORK

Graph representation learning. Graph embedding [24, 27] has

been effective in learning structure-preserving latent representa-

tions of a graph. More recently, graph neural networks (GNNs)

[8, 12, 16, 22, 31, 36] have emerged as state-of-the-art approaches

for graph representation learning, due to their ability of captur-

ing both node contents and graph structures through the powerful

operation of neighborhood aggregation in a message passing frame-

work. For a more elaborate discussion on GNNs, we refer readers

to a comprehensive survey [35].

Robust tail node embedding. Most existing robustness tech-

niques for GNNs [3, 20, 32] only aim to enhance the overall ro-

bustness of all node representations, and do not specifically target



the most vulnerable tail nodes. Some recent GNN-based models con-

sider degree-specific transformations on nodes of different degrees

[29, 34], or use structural features including degrees to differentiate

nodes of different roles [1], but they likewise focus on the overall

performance. A closely related work is meta-tail2vec [17], which
proposes a two-stage framework for robust tail node embedding. In

the first stage, they apply a base embedding approach (e.g., graph
embedding or GNN) to produce the initial node embeddings; in the

second stage, the embeddings of tail nodes are further refined by

aggregating the well-learned embeddings of their neighboring head

nodes. In natural language processing, to address tail word embed-

ding, a series of similar two-stage refinement approaches such as

Additive [13], a la carte [11] and Nonce2vec [9] have also been

proposed. However, all these approaches separate the embedding

and refinement processes, in which the initial embedding cannot

benefit from the subsequent refinement to address the root of the

problem, calling for an end-to-end approach.

Other long-tailed problems.Many studies have been devoted to

long-tailed scenarios in other domains or problems. For example,

in cold-start recommendation [4, 15, 18, 38], there is often a long

tail of new items or users with limited historical interaction. How-

ever, they are not designed for GNNs, and may require additional

side information such as brand/price correlation [4], session or

behavior sequence [15, 38] and meta-paths [18]. Another common

long-tailed problem exists in imbalanced classes where there is a

long tail of instances in many small classes [10, 14, 26, 28, 39], or

imbalanced features where many instances have sparse feature vec-

tors [21]. While many of these studies also resort to the principle

of transferring information from head to tail distributions, due to

the different problem setting they cannot be directly applied to tail

node embedding.

3 PRELIMINARIES
In this section, we first formulate the problem of robust tail node

embedding. Next, we present a brief background on graph neural

networks, which lays the foundation of our approach.

3.1 Problem formulation

Graph. A graph is denoted by G = {V, E,X}, whereV is the set

of nodes, E is the set of edges between the nodes, andX ∈ R |V |×𝑑𝑋
is the input feature matrix for all the nodes such that x𝑣 represents
the 𝑑𝑋 -dimensional feature vector of node 𝑣 ∈ V .

For every node 𝑣 ∈ V , letN𝑣 denote the set of neighboring nodes
of 𝑣 .N𝑣 is also called the neighborhood of 𝑣 , and its cardinality |N𝑣 |
is the degree of 𝑣 . Moreover, let V

head
and V

tail
denote the set

of head and tail nodes, respectively. For some threshold 𝐾 , tail
nodes are defined as nodes with a degree not exceeding 𝐾 , i.e.,
V
tail

= {𝑣 : |N𝑣 | ⩽ 𝐾}, whereas head nodes are the complement

of tail nodes, i.e.,V
head

= {𝑣 : |N𝑣 | > 𝐾}. By their definitions, it is

apparent thatV = V
head
∪V

tail
andV

head
∩V

tail
= ∅. In this paper,

we treat𝐾 as a predetermined hyperparameter. An alternative could

be adopting a self-adaptive mechanism so that the threshold 𝐾 fits

each graph spontaneously, which is left for future work.

Problem. In this paper, we address the problem of graph repre-

sentation learning, with a focus on enhancing the representations

of structurally limited tail nodes. Formally, given a graph G, the
general goal of graph representation learning is to find a mapping

𝜓 : V → R𝑑 that can project each node 𝑣 ∈ V to a 𝑑-dimensional

vector space. Further to the general goal, we specifically emphasize

on narrowing the structural gap between tail and head nodes, so

that the quality of tail node embeddings, {𝜓 (𝑣) : 𝑣 ∈ V
tail
}, can be

made more robust to match the quality of head node embeddings,

{𝜓 (𝑣) : 𝑣 ∈ V
head
}.

3.2 Graph neural networks
Modern graph neural networks (GNNs) [35] resort to the key opera-

tion of neighborhood aggregation in a message passing framework.

Specifically, each node receives and aggregates messages (i.e., fea-
tures or embeddings) from its neighboring nodes recursively in

multiple layers. Formally, in the 𝑙-th layer of a GNN,

h𝑙𝑣 =M(h𝑙−1

𝑣 , {h𝑙−1

𝑖 : 𝑖 ∈ N𝑣};𝜃𝑙 ), (1)

where h𝑙𝑣 ∈ R𝑑𝑙 is the 𝑑𝑙 -dimensional embedding vector of node 𝑣

in the 𝑙-th layer, andM(·), parameterized by 𝜃𝑙 in the 𝑙-th layer, is

the message passing function for neighborhood aggregation. In the

input layer, h0

𝑣 is given by the input node features, i.e., h0

𝑣 ≡ x𝑣 .
While our approach Tail-GNN is built upon GNNs, it is flexible

to the choice of message passing functionM, ranging from mean

pooling [12, 33] to complex neural networks [8, 31, 36].

4 CONCEPT: TRANSFERABLE
NEIGHBORHOOD TRANSLATION

To enhance the representation learning of tail nodes, we propose a

novel concept called neighborhood translation, based on which we

further design a scheme of head-to-tail knowledge transfer.

4.1 Neighborhood translation
Generally, the tight structural connectivity between a node and its

neighbors gives rise to a relational tie between them. In particular,

a node tends to be similar to its neighboring nodes, an implicit

assumption in GNNs and graph-based approaches in general. For

instance, in Fig. 2(a), 𝑣0 and its neighborhood are similarly described

by biology keywords, whereas 𝑣6 and its neighborhood are similarly

described by computer science keywords.

Inspired by relational translation models in knowledge graph

[2], we propose neighborhood translation to model the relational

tie between a node 𝑣 and its neighborhood N𝑣 using a translation
operation. Formally, let h𝑣 denote the embedding vector of a head

node 𝑣 , and let hN𝑣
denote the embedding vector of 𝑣 ’s neighbor-

hood N𝑣 , which can be obtained via a pooling over the embedding

vectors of all the neighbors of 𝑣 . The neighborhood translation on

node 𝑣 is formulated as

h𝑣 + r𝑣 ≈ hN𝑣
. (2)

Here r𝑣 is the translation vector that can be “predicted” by a learn-

able model in order for Eq. (2) to approximately hold, which will be

materialized in Sect. 5. Note that the traditional concept of transla-

tion on graphs [2, 30] regards each edge as a translation between

two nodes to model relations, whereas in our work the translation

happens at the neighborhood level to model the missing informa-

tion in a neighborhood.
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4.2 Predicting missing neighborhood
information by head-to-tail transfer

We attempt to uncover the missing neighborhood information of

tail nodes by transferring the knowledge of neighborhood trans-

lation from head to tail nodes. In the following, we examine the

divergence and commonality between head and tail nodes to enable

transferable neighborhood translation.

Neighborhood of head nodes. As head nodes are well connected
in the graph, we assume that their observed neighborhoods are com-

plete and representative enough, so that the neighborhood trans-

lation naturally exist between a head node and its neighborhood.

Thus, we can directly learn a model to predict the translation vec-

tors in Eq. (2) for the head nodes. To be more clear, herein the

observed neighborhood simply refers to the set of neighboring

nodes explicitly given by the input graph.

Neighborhood of tail nodes.On the contrary, tail nodes are struc-
turally limited due to a variety of reasons, such as an inactive user

on a social network, a new product on a e-commerce platform, or

a paper in a less visible journal. This results in a small observed

neighborhood that can be potentially biased. In other words, the

observed neighborhood for a tail node may not be representative

enough for meaningful aggregation in GNNs. Thus, it becomes

imperative to uncover themissing neighborhood information for tail

nodes. Specifically, the missing information of a tail node 𝑣 ∈ V
tail

,

denoted by m𝑣 , is given by the difference between the embedding

vectors of its ideal neighborhood N∗𝑣 and observed neighborhood

N𝑣 . That is,
m𝑣 = hN∗𝑣 − hN𝑣

. (3)

Here the ideal neighborhoodN∗𝑣 refers to a latent, theoretical neigh-

borhood containing not only the observed neighbors but also nodes

that could have been linked to 𝑣 . The relationship among the ideal

and observed neighborhoods, as well as the missing neighborhood,

is depicted in Fig. 2(c).

Predicting missing information. To compute Eq. (3), we need

to first “predict” the representation of the unknown ideal neigh-

borhood hN∗𝑣 . Specifically, we can leverage a unifying translation

model on both head and tail nodes w.r.t. their ideal neighborhoods.

On head nodes, we regard its observed neighborhood as ideal, and

learn how to predict the translation vector r𝑣 in Eq. (2); on tail

nodes, we apply the prediction model for the translation vector to

construct their ideal neighborhood, thereby transferring knowledge

from head to tail nodes. That is, given a tail node 𝑣 ∈ V
tail

, we pre-

dict the representation of its ideal neighborhood as hN∗𝑣 = h𝑣 + r𝑣 ,
where the translation vector r𝑣 is predicted by the translation model

learned from head nodes. We can subsequently predict the missing

neighborhood information of the tail node 𝑣 as follows:

m𝑣 = h𝑣 + r𝑣 − hN𝑣
. (4)

5 CONCRETE APPROACH: TAIL-GNN
In this section, we develop a concrete approach called Tail-GNN,
hinged on the novel concept of transferable neighborhood trans-

lation just discussed. We first present the overall framework of

Tail-GNN in Fig. 3. As shown in Fig. 3(b), we distill the head nodes

to learn the transferable neighborhood translation, in order to

predict the missing information on tail nodes (Sect. 5.1). Next, in

Fig. 3(c), neighborhood aggregation is conducted on both the head

and tail nodes to realize a message-passing GNN (Sect. 5.2). Finally,

in Fig. 3(d), the node representations are utilized to optimize the

task loss, incorporating several auxiliary constraints to improve

the optimization (Sect. 5.3).

5.1 Realizing neighborhood translation
Our neighborhood translation boils down to two key strategies: the

contrastive strategy and localizing strategy.

Contrastive strategy.On one hand, as head nodes are structurally
rich, we assume their observed neighborhoods are representative

enough to be regarded as the ideal neighborhoods, as discussed in

Sect. 4. Thus, we exploit and learn the neighborhood translation

from head nodes, and then transfer the shared translation to tail

nodes in order to predict the missing neighborhood information to

complement the observed neighborhood during aggregation.

Specifically, we employ the translation concept in Eq. (2) in each

layer of Tail-GNN. Thus, the embedding vector of a head node 𝑣 in



the 𝑙-th layer should satisfy

h𝑙𝑣 + r𝑙𝑣 = h𝑙N∗𝑣 , (5)

where r𝑙𝑣 is the translation vector on node 𝑣 in the 𝑙-th layer, which

can be constructed by a shared model. Moreover, h𝑙N∗𝑣 is the repre-

sentation of the ideal neighborhood in the 𝑙-th layer. In particular,

given that 𝑣 is a head node, h𝑙N∗𝑣 can be approximated by h𝑙N𝑣
, the

representation of the observed neighborhood N𝑣 in the same layer.

Thus, in practice, Eq. (5) can be reformulated as Eq. (6), which will

be implemented as an auxiliary loss term to be further discussed in

Sect. 5.3.

∀𝑣 ∈ V
head

: h𝑙𝑣 + r𝑙𝑣 − h𝑙N𝑣
→ 0, (6)

where h𝑙N𝑣
can be represented by a mean-pooling over all nodes in

the observed neighborhood, i.e., h𝑙N𝑣
= Mean({h𝑙

𝑖
: 𝑖 ∈ N𝑣}).

On the other hand, we further utilize tail nodes as a contrast

to the head nodes, to more precisely inform the model on how to

employ the neighborhood translation on tail nodes to predict miss-

ing information. However, there exists no one-one correspondence

between head and tail nodes for a direct and more meaningful con-

trast. To this end, to enhance the contrastive power, we supplement

the tail nodes with forged tail nodes, which can be generated by ran-

domly dropping some links from the head nodes to mimic the actual

tail nodes. They contrast with their corresponding head nodes to

enhance the prediction and usage of missing neighborhood infor-

mation. Specifically, for a head node 𝑣 ∈ V
head

with neighborhood

N𝑣 , we generate a forged tail node 𝑣 ′ with neighborhood N𝑣′ such
that N𝑣′ ⊂ N𝑣 and |N𝑣′ | ⩽ 𝐾 (the degree threshold), which can be

achieved by randomly dropping some of the links of 𝑣 . For example,

in Fig. 3(b), there is a forged tail nodes 𝑣 ′
0
generated by link dropout

from the head nodes 𝑣0.

Toward robust tail node embedding, the key idea is to uncover

the missing neighborhood information. We apply the transferable

translation concept in Eqs. (3) and (4) in each layer of the GNN.

Specifically, the missing neighborhood information of a tail node 𝑣
(forged or real) in the 𝑙-th layer can be predicted as

m𝑙𝑣 = h𝑙N∗𝑣 − h
𝑙
N𝑣

= h𝑙𝑣 + r𝑙𝑣 − h𝑙N𝑣
. (7)

The predicted missing information on tail nodes will be further

employed in the neighborhood aggregation, in order to complement

their observed neighborhoods which may be biased.

Localizing strategy. A straightforward approach to construct the

translation vector r𝑣 on each node 𝑣 is to employ a globally shared

vector r (per layer), which can be made learnable. While such a

shared vector can capture the general pattern across the graph,

there still exist significant variations across a large graph containing

diverse contexts [16]. For instance, a citation graph contains papers

in different fields or topics, and a social network encompasses users

from different backgrounds. Thus, it is important to reflect the local

context of each node.

More specifically, we aim to incorporate the local context of each

node into the translation vector, and simultaneously preserve the

generality across the graph. As shown in Fig. 3(b), starting from

a globally shared and learnable translation vector r, we further

personalize it into a locality-aware translation vector r𝑣 for each
node 𝑣 w.r.t. its local context.

Formally, in the 𝑙-th layer of Tail-GNN, given the globally shared

r𝑙 ∈ R𝑑𝑙 in that layer, we devise a personalization function 𝜙 to

transform r𝑙 into a localized translation vector r𝑙𝑣 ∈ R𝑑𝑙 for node 𝑣 .
That is,

r𝑙𝑣 = 𝜙 (h𝑙𝑣, h𝑙N𝑣
, r𝑙 ;𝜃𝑙

𝜙
), (8)

where h𝑙𝑣 and h𝑙N𝑣
collectively describe the local context of 𝑣 , and

𝜃𝑙
𝜙
contains the parameters of 𝜙 in the 𝑙-th layer.

To materialize the personalization function, we consider scaling

and shifting transformations [23]. For node 𝑣 in the 𝑙-th layer, its

localized vector is given by

r𝑙𝑣 = 𝜙 (h𝑙𝑣, h𝑙N𝑣
, r𝑙 ;𝜃𝑙

𝜙
) = (𝛾𝑙𝑣 + 1) ⊙ r𝑙 + 𝛽𝑙𝑣, (9)

where 𝛾𝑙𝑣 ∈ R𝑑𝑙 is a scaling vector and 𝛽𝑙𝑣 ∈ R𝑑𝑙 is a shifting vector

that are functions of the local context {h𝑙𝑣, h𝑙N𝑣
}, given by Eqs. (10)

and (11). In particular, they have the same dimension as the shared

translation vector r𝑙 , which means scaling (⊙) and shifting (+) can
be done in an element-wise manner. Moreover, 1 is a vector of ones
to ensure that the scaling factors are centered around one.

𝛾𝑙𝑣 = LeakyReLU(W𝑙,1
𝛾 h𝑙𝑣 +W

𝑙,2
𝛾 h𝑙N𝑣

) (10)

𝛽𝑙𝑣 = LeakyReLU(W𝑙,1

𝛽
h𝑙𝑣 +W

𝑙,2

𝛽
h𝑙N𝑣
) (11)

Here LeakyReLU(·) is used as the activation function. Moreover,

each W𝑙,∗
∗ ∈ R𝑑𝑙×𝑑𝑙 is a learnable weight matrix. Thus, the person-

alization function 𝜙 is essentially parameterized by these weight

matrices, i.e., 𝜃𝑙
𝜙
= {W𝑙,1

𝛾 ,W𝑙,2
𝛾 ,W𝑙,1

𝛽
, W𝑙,2

𝛽
}.

5.2 Realizing neighborhood aggregation
We discuss the key operation of neighborhood aggregation in Tail-
GNN, on head and tail nodes, respectively.

As we do not assume any missing neighborhood information

on the head nodes, their neighborhood aggregation follows the

standard GNNs in Eq. (1). That is, we directly aggregate over the

observed neighborhood, which is taken as a good approximation

of the ideal neighborhood.

In contrast, the observed neighborhoods of tail nodes tend to be

biased and not representative enough for meaningful aggregation.

As discussed in Sect. 5.1, we can predict the missing neighborhood

information on tail nodes to complement their observed neighbor-

hood, in order to approximate the ideal neighborhood. In particular,

for a tail node 𝑣 , in the 𝑙-th layer, we first predict its missing neigh-

borhood informationm𝑙𝑣 by Eq. (7). Next, we perform neighborhood

aggregation for the (𝑙+1)-th layer by considering both the observed
neighborhood N𝑣 and the missing information m𝑙𝑣 . That is,

h𝑙+1𝑣 =M(h𝑙𝑣, {m𝑙𝑣} ∪ {h𝑙𝑖 : 𝑖 ∈ N𝑣};𝜃𝑙+1) . (12)

5.3 Overall loss
While the node representations can be fed into the task loss for end-

to-end learning, to enhance model training we further incorporate

several auxiliary constraints into the overall loss.

Task loss. The node representations from the output layer can

be employed in an end-to-end manner to minimize the loss for a

specific task, such as node classification and link prediction. Using

node classification as an example, given a set of training nodesVtr



(which also contains the corresponding forged tail nodes of the

head nodes in the training set), the task loss L𝑡 can be formulated

by cross entropy:

L𝑡 =
∑
𝑣∈Vtr

CrossEnt(hℓ𝑣, y𝑣) + 𝜆𝑡 ∥Θ∥22, (13)

where the output layer hℓ𝑣 (given ℓ layers in total) has the same

dimension as the number of classes and uses a softmax activation,

y𝑣 is a one-hot vector that encodes the class of node 𝑣 , CrossEnt(·)
is the cross entropy function, 𝜆𝑡 is a hyperparameter to adjust the

parameter regularization, and Θ encompasses all learnable param-

eters of Tail-GNN. Specifically, Θ = {Θ𝑙 : 1 ⩽ 𝑙 ⩽ ℓ} where
Θ𝑙 = {𝜃𝑙 , r𝑙−1

, 𝜃𝑙−1

𝜙
} denotes the parameters set in the 𝑙-th layer.

Loss for missing information constraint. As we assume that

the head nodes do not have missing information, we need to ensure

the missing information, if predicted on a head node, is close to

zero, as specified in Eq. (6). Thus, we formulate the following loss

to constrain the missing information:

L𝑚 =
∑
𝑣∈Vtr

𝐼𝑣
∑ℓ
𝑙=1
∥m𝑙−1

𝑣 ∥22, (14)

where 𝐼𝑣 = 1 if 𝑣 is a head node and 𝐼𝑣 = 0 if otherwise.

Loss for adversarial constraint. To make the representations

more robust, we further employ a discriminator𝐷 [7], to tell whether

a node is head or tail based on their output representation. The

discriminator, by trying to differentiate head and tail node represen-

tations, would force Tail-GNN to generate more effective missing

information for the tail nodes and thus improve their representa-

tions in order to fool the discriminator. Here we regard the output

layer of Tail-GNN as the generator, which contests with the discrim-

inator in the learning process. In particular, we use the following

loss for the discriminator:

L𝑑 =
∑
𝑣∈Vtr

CrossEnt(𝐼𝑣, 𝐷 (hℓ𝑣 ;𝜃𝑑 )) + 𝜆𝑑 ∥𝜃𝑑 ∥22,

where 𝐷 (·;𝜃𝑑 ) is the discriminator’s scoring function parameter-

ized by 𝜃𝑑 , which calculates the probability of a node being a head

node, as follows.

𝐷 (hℓ𝑣 ;𝜃𝑑 ) = 𝜎 (w⊤𝑑 LeakyReLU(W𝑑h
ℓ
𝑣 + b𝑑 )), (15)

where𝜎 is the sigmoid function,W𝑑 ∈ R𝑑ℓ×𝑑ℓ is a parametermatrix,

b𝑑 and w𝑑 ∈ R𝑑ℓ are parameter vectors. Thus, 𝜃𝑑 = {W𝑑 , b𝑑 ,w𝑑 }
contains the learnable parameters of the discriminator 𝐷 . 𝜆𝑑 is a

hyperparameter to adjust the regularizer on 𝜃𝑑 .

Overall loss. Finally, we integrate the task loss and the auxiliary

constraints to form the overall loss, which is optimized by

minΘ max𝜃𝑑 L𝑡 + 𝜇L𝑚 − 𝜂L𝑑 , (16)

where 𝜇 and 𝜂 are hyperparameters to control the importance of

the missing information constraint and the adversarial constraint,

respectively. Note that the overall loss involves a minimax game

between the discriminator and the output layer of Tail-GNN (i.e.,
the generator). We present the pseudocode of the training process

in Supplement A.

6 EXPERIMENTS
In this section, we perform an extensive empirical evaluation of

Tail-GNN on several public benchmark datasets.

Table 1: Summary of datasets.

# Nodes # Edges # Features # Classes # Tail (𝐾 = 5)

Email 1,005 25,571 128 42 235

Squirrel 5,201 217,073 2,089 5 942

Actor 7,600 33,391 931 5 4,823

CoauthorCS 18,333 327,576 6,805 15 8,037

Amazon 937,349 12,455,925 100 44 248,125

6.1 Experimental Setup

Datasets.We employ five public benchmark datasets for evaluation,

as summarized in Table 1. (1) Email [37] is an e-mail network

between members of an European research institution, where each

node is a member, and the edges denote the e-mail communications

between members. (2) Squirrel [22] is a Wikipedia network on

the topic of squirrel, in which each node is a page, and the edges

denote the citations between pages. (3) Actor [22] is an actor co-

occurrence network, in which each node is an actor, and each

edge links two actors co-occurring in the same Wikipedia page.

(4) CoauthorCS [25] is a co-authorship graph, in which each node

is an author, and each edge links two co-authors. (5) Amazon [5]

is a co-purchasing network, in which each node is an item, and

each edge links two items that have been purchased in the same

transaction. Further details and additional processing of the datasets

are in Supplement B.

Base GNN models. Our Tail-GNN is agnostic of the base GNN

model, and can flexibly work with any neighborhood aggregation-

based architecture (see Sect. 3.2). By default, we employ GCN [12]

as the base GNN model in our experiments. To further evaluate the

flexibility of Tail-GNN, we also use two other popular GNNs as the
base models, i.e., GAT [31] and GraphSAGE [8]. Their descriptions

and parameter settings are included in Supplement C.

Baselines. To comprehensively evaluate Tail-GNN, we compare

it to four categories of baselines, as follows. The details of each

baseline are further described in Supplement D.

(1) Conventional graph representation learning models: DeepWalk
[24] and GCN [12]. They treat all nodes uniformly and do not

distinguish head and tail nodes at all.

(2) Tail node refinement models: Additive [13], a la carte [11],

and meta-tail2vec [17]. They first learn node representations by

a base embedding model (any graph embedding or GNN). Next,

they perform an embedding refinement step for the tail nodes, by

incorporating additional information from neighboring head nodes.

(3) Robust graph representation learningmodels: SDNE [32],ARGA
[20] and DDGCN [3]. They aim to enhance the overall robustness

of representation learning especially on sparse graphs, but do not

specifically target at improving tail nodes.

(4)Degree-awaremodels:DEMO-Net [34] and role2vec [1].DEMO-
Net treats nodes of different degrees differently based on degree-

specific transformations, whereas role2vec is able to differentiate

the role of nodes based on structural features including degree.

Neither explicitly aims at learning robust tail node embeddings.

Settings and parameters. Following the same setup in meta-
tail2vec [17], we set the default degree threshold to 𝐾 = 5, i.e.,



Table 2: Evaluation on tail node classification using GCN as the base model.
Henceforth, tabular results are in percent; the best result is bolded and the runner-up is underlined; a dash (-) denotes no result reported for failing to work on a large dataset.

Methods

Email Squirrel Actor CoauthorCS Amazon

Accuracy Micro-F Accuracy Micro-F Accuracy Micro-F Accuracy Micro-F Accuracy Micro-F

DeepWalk 54.4 ± 0.3 51.3 ± 0.3 28.8 ± 1.6 28.0 ± 2.3 21.8 ± 0.6 18.2 ± 0.9 84.1 ± 0.7 81.5 ± 0.7 83.7 ± 0.1 74.3 ± 0.6

GCN 57.9 ± 1.2 57.7 ± 1.3 24.8 ± 1.3 23.2 ± 1.8 29.7 ± 0.2 15.0 ± 0.9 88.4 ± 0.1 86.1 ± 0.1 82.3 ± 0.2 70.6 ± 0.1

Additive 55.4 ± 0.4 52.5 ± 0.2 27.0 ± 1.7 22.9 ± 1.6 28.1 ± 0.3 15.1 ± 1.3 89.5 ± 0.1 87.8 ± 0.1 84.2 ± 0.2 73.2 ± 0.6

a la carte 21.1 ± 0.4 17.9 ± 0.5 22.5 ± 1.1 22.5 ± 0.7 28.0 ± 0.5 14.8 ± 1.4 88.7 ± 0.2 86.7 ± 0.3 81.1 ± 0.1 69.7 ± 0.7

meta-tail2vec 57.1 ± 0.1 55.3 ± 0.2 25.1 ± 0.5 21.5 ± 0.3 29.7 ± 0.4 20.1 ± 0.7 89.3 ± 0.1 87.4 ± 0.1 81.9 ± 0.1 71.4 ± 0.4

SDNE 32.9 ± 0.6 29.8 ± 0.5 23.8 ± 3.2 16.6 ± 6.2 24.4 ± 0.8 12.6 ± 5.6 70.6 ± 0.9 64.5 ± 1.1 - -

ARGA 45.1 ± 0.9 41.2 ± 1.0 22.4 ± 1.0 22.8 ± 1.9 25.9 ± 0.3 8.2 ± 0.6 74.6 ± 1.8 67.9 ± 2.5 - -

DDGCN 39.8 ± 0.6 38.9 ± 0.7 26.3 ± 2.1 26.4 ± 3.3 24.0 ± 0.4 11.7 ± 0.7 73.6 ± 0.9 68.8 ± 1.0 - -

DEMO-Net 56.9 ± 0.6 56.5 ± 0.7 28.3 ± 0.5 22.5 ± 2.2 28.4 ± 0.8 22.0 ± 1.3 90.8 ± 0.5 88.9 ± 0.6 83.1 ± 0.1 72.0 ± 0.4

role2vec 44.9 ± 1.6 43.8 ± 2.4 26.3 ± 0.8 27.5 ± 1.7 23.1 ± 0.1 18.3 ± 0.6 62.7 ± 0.3 56.3 ± 0.3 77.1 ± 0.2 61.5 ± 0.5

Tail-GCN 59.2 ± 0.8 58.5 ± 1.3 30.2 ± 1.1 31.1 ± 1.1 34.9 ± 0.5 25.2 ± 0.6 93.6 ± 0.1 92.7 ± 0.1 87.0 ± 0.1 78.2 ± 0.2

Table 3: Evaluation on tail node classification using other GNNs as the base model.

Methods

Email Squirrel Actor CoauthorCS Amazon

Accuracy Micro-F Accuracy Micro-F Accuracy Micro-F Accuracy Micro-F Accuracy Micro-F

GAT 57.9 ± 0.4 57.3 ± 0.2 24.1 ± 2.4 23.1 ± 2.6 29.8 ± 0.6 13.2 ± 2.7 88.6 ± 0.2 86.2 ± 0.2 - -

Tail-GAT 59.4 ± 0.9 58.2 ± 1.2 28.8 ± 2.1 30.4 ± 2.6 34.5 ± 1.3 24.7 ± 2.0 92.5 ± 0.1 90.8 ± 0.1 - -

GraphSAGE 52.0 ± 1.6 51.3 ± 1.7 27.1 ± 2.7 26.4 ± 4.9 33.1 ± 1.1 23.2 ± 2.4 89.8 ± 2.4 87.7 ± 1.1 79.1 ± 0.4 62.8 ± 0.6

Tail-GraphSAGE 55.7 ± 0.6 54.9 ± 0.7 28.5 ± 1.6 28.2 ± 2.4 34.1 ± 1.7 26.8 ± 1.8 93.8 ± 0.7 92.4 ± 1.4 85.1 ± 0.2 75.5 ± 0.3

nodes with degree no greater than 5 are regarded as tail nodes. Nev-

ertheless, in our model analysis (Sect. 6.4), we vary the threshold

to confirm if Tail-GNN is still superior under different values of 𝐾 .

All experiments are repeated five times, and we report the average

results with standard deviations. For detailed hyperparameters used

in the baselines and Tail-GNN, please refer to Supplement E.

6.2 Node Classification for Tail Nodes
We conduct tail node classification on the five benchmark datasets.

In particular, we use all the head nodes as training, and split the tail

nodes into validation and test with a ratio of 1:2. Note that, in model

analysis, we will conduct a further experiment to evaluate the head

nodes, to ensure that the representations of head nodes remain

competitive. Moreover, we apply a multi-class cross entropy loss in

Eq. (13) for node classification, and employ accuracy and micro-F

score as the evaluation metrics. Note that, to compute micro-F score

in the multi-class setting, we ignore the largest class.

For a fair comparison, we employ GCN as the base model for

all GNN-based approaches including our Tail-GNN, the refinement

models and other GNN-based models. Note that, as refinement

models work in a two-stage manner, we utilize the representations

learned from GCN as their input for refinement. Moreover, to eval-

uate the flexibility of Tail-GNN on diverse GNN architectures, we

further adopt GAT and GraphSAGE as the base model, and compare

them with Tail-GAT and Tail-GraphSAGE, respectively.

UsingGCN as base model.We report the results of tail node clas-

sification in Table 2. Overall, Tail-GCN significantly outperforms

not only its base model GCN, but also all other baselines owning

to the mechanism of transferable neighborhood translation. In the

following, we discuss the underlying reasons.

Firstly, DEMO-Net and role2vec can distinguish nodes of dif-

ferent degrees, which potentially benefit the group of tail nodes

by treating them differently from the head nodes. In particular,

DEMO-Net often outperforms the base model GCN, demonstrating

that it helps to discriminate nodes of varying structural features.

However, since they are not purposely designed for enhancing the

tail nodes, which is a particularly challenging group, their perfor-

mance still falls short. Secondly, SDNE,ARGA andDDGCN improve

the robustness of graph learning in general, but like DEMO-Net
and role2vec they do not specifically target the tail nodes. In con-

trast, Tail-GNN is able to leverage the head nodes to help the tail

nodes. Furthermore, they cannot cope with the large-scale Ama-

zon dataset. Specifically, ARGA becomes unresponsive without any

output in over 24 hours, while SDNE and DDGCN run out of mem-

ory. Thirdly, the various tail node refinement models work in two

stages, in which their initial embedding stage cannot benefit from

the refinement stage in an end-to-end manner. Thus, they are un-

able to fundamentally address the tail-node problem, and produce

inferior results in comparison to Tail-GNN. Nevertheless, Additive
and meta-tail2vec often outperform the base model GCN, due to
the additional refinement step on the tail nodes.

Using other GNNs as base models.We further utilize GAT and

GraphSAGE as the base GNN model and yield Tail-GAT and Tail-
GraphSAGE, respectively. Their results are reported in Table 3. We

observe that in each case, Tail-GNN outperforms its corresponding

base GNN model, showing the flexibility of Tail-GNN to effectively



Table 4: Evaluation on tail link prediction.

Methods

Squirrel Actor CoauthorCS

MAP NDCG MAP NDCG MAP NDCG

DeepWalk 29.5±0.9 45.8±0.8 30.0±1.6 46.1±1.3 32.5±1.5 48.2±1.2
GCN 38.5±0.9 53.2±0.4 33.2±1.2 48.9±0.9 77.7±1.2 83.9±0.8
Additive 36.4±0.7 51.5±0.5 32.1±0.9 48.1±0.8 77.8±0.2 83.9±0.2
meta-tail2vec 39.7±0.6 54.2±0.7 33.1±1.0 48.8±0.8 76.0±0.5 82.7±0.2
Tail-GCN 41.8±2.4 55.9±1.3 35.8±2.2 51.1±2.0 81.0±0.8 86.1±0.4

Figure 4: Ablation study. Figure 5: Scalability study.

work with various base models. Note that GAT runs out of memory

on the large-scale Amazon dataset.

6.3 Link Prediction for Tail Nodes
We employ a “hide-and-rediscover” approach for link prediction.

From the original graph, we randomly remove 5% links, and the new

graph will be used for learning node representations for all methods,

while the removed links form our ground truth. The ground truth

is divided in such a way that all links in the training set contain at

least one head node whereas all links in validation/test sets contain

at least one tail node. Subsequently, we adopt a ranking-based

methodology for link prediction [17]. Given a link (𝑣, 𝑎) in the

ground truth, we form a triple (𝑣, 𝑎, 𝑏) in which node 𝑏 is randomly

sampled from the graph and serves as a negative node. We adopt

a ranking loss in which we prefer the score between 𝑣 and 𝑎 to

be higher than the score between 𝑣 and 𝑏. We employ the widely

used ranking metrics NDCG and MAP for evaluation. A detailed

formulation of the task is included in Supplement F.

We choose several representative baselines for tail link predic-

tion, using GCN as the base model. Their results on three datasets

are reported in Table 4. Comparing with tail node classification,

we make similar observations. In particular, Tail-GCN consistently

outperforms these baselines.

6.4 Model Analysis
We further analyze various aspects of our model Tail-GNN, based
on the task of node classification using GCN as the base model.

Ablation study. To evaluate the contribution from each compo-

nent of Tail-GNN, we conduct an ablation study by comparing

with several ablated variants: (1) random miss. info: we randomly

sample a vector from a standard normal distribution, then feed it to

a multilayer perceptron (MLP) to generate the missing information;

(2) no miss. info: we remove the usage of missing information for

neighborhood aggregation on tail nodes; (3) no localization: we

Table 5: Impact of degree threshold 𝐾 .

Methods

𝐾 = 3 𝐾 = 7

Squirrel Actor Squirrel Actor

Acc. Mi.F Acc. Mi.F Acc. Mi.F Acc. Mi.F

DeepWalk 28.7 28.9 22.6 19.3 27.9 27.1 22.0 18.2

GCN 24.5 22.8 29.8 15.7 24.4 21.5 30.3 16.2

Additive 28.3 25.8 29.0 16.7 24.8 22.9 28.4 17.4

meta-tail2vec 26.9 21.2 30.4 20.5 24.7 20.5 29.1 20.0

Tail-GCN 31.5 31.7 34.9 25.5 29.9 30.9 32.9 23.6

Table 6: Evaluation on head node classification.

Methods

Squirrel Actor CoauthorCS

Acc. Micro-F Acc. Micro-F Acc. Micro-F

GCN 28.8±1.0 24.4±0.2 29.7±0.8 13.0±1.3 92.0±0.1 90.6±0.1
Tail-GCN 30.1±1.3 24.7±1.9 28.7±2.3 24.3±3.3 94.2±0.2 93.1±0.4

remove the localization of the globally shared neighborhood trans-

lation; (4) no discriminator : we remove the adversarial constraint

from Tail-GCN; (5) no contrast: we remove the forged tail nodes and

only use the head nodes for learning the neighborhood translation.

Since there are only head nodes, we also remove the discriminator.

We show the results of the ablation study in Fig. 4, and make

the following observations. Firstly, random or no missing informa-

tion impairs the performance of Tail-GNN significantly, showing

the importance of missing information for improving the tail node

embeddings. Secondly, without localization on the globally shared

neighborhood translation, Tail-GNN cannot account for the di-

verse local contexts of the nodes, which also hurts the performance.

Thirdly, the discriminator also contributes to the performance. That

means, by discriminating the head and tail nodes, the generation of

missing information can be further enhanced. Lastly, without the

contrastive strategy, the performance also becomes worse, since

there is no one-one correspondence between head and tail nodes

for a direct and more meaningful differentiation.

Scalability study. On the largest dataset Amazon, we sample five

subgraphs with between 100k and 900k nodes. In Fig. 5, we report

the training (per epoch) and inference time for Tail-GCN on the

five subgraphs. We observe that both the training and inference

time increase linearly w.r.t. the graph size in terms of the number of

nodes. The linear growth demonstrates that the proposed Tail-GNN
can scale to very large graphs in real-world scenarios.

Degree threshold 𝐾 . Although we follow meta-tail2vec [17] to
set the degree threshold as 𝐾 = 5 to define tail nodes, in Table 5

we also investigate the impact of the threshold on model perfor-

mance. Specifically, we also adopt 𝐾 = 3 and 𝐾 = 7 on two datasets,

and evaluate the performance of Tail-GNN and several represen-

tative baselines. We observe that Tail-GCN still consistently out-

performs these baselines under different 𝐾 values, showing that

our proposed approach is generally applicable by transferring the

neighborhood translation from head to tail nodes, regardless of

small changes in the degree threshold. Note that the data splits (i.e.,
train/validation/test sets) are different under different𝐾 values, and

thus their results are incomparable.



Head node classification. While our main goal is to improve tail

node embedding, we should not sacrifice the performance of head

nodes too much relative to the base GNN model. Thus, we further

compare Tail-GCN to the base model GCN, and show the results of

head node classification in Table 6. Specifically, for each dataset we

split the head nodes into two parts, 80% for training and the rest

for testing. Note that, due to the difference in training and testing

split, the performance reported here is therefore incomparable to
the results shown in Table 2.

We observe that, on head nodes, our Tail-GCN can achieve com-

petitive and even slightly better performance than GCN. We hy-

pothesize that, although our goal is focused on tail node embedding,

the head nodes can still indirectly benefit from the improved tail

node embeddings during neighborhood aggregation, as well as the

additional constraints in the overall loss.

7 CONCLUSION
In this paper, we investigate the problem of tail node embedding

in graph neural networks. We first introduce a new concept of

transferable neighborhood translation to capture the relational

tie between a node and its neighboring nodes. Subsequently, we

propose a novel model Tail-GNN to narrow the gap between head

and tail nodes for robust tail node embedding. Specifically, based on

a transferable form of neighborhood translation that can be further

localized to suit the local context of each node, we predict missing

neighborhood information for the tail nodes to complement their

neighborhood aggregation. Extensive experiments on five public

benchmark datasets show that Tail-GNN can obtain state-of-the-art

performance against a comprehensive suit of baselines. For future

work, we plan to exploit high-order neighborhood information for

tail node embedding.
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REPRODUCIBILITY SUPPLEMENT
A Pseudocode
We outline the pseudocode of model training in Alg. 1.

Algorithm 1Model Training for Tail-GNN

Input: graph G = (V, E,X) , task-related training data Vtr.

Output: Model parameters Θ.
1: initialize parameters Θ, 𝜃𝑑 ;
2: while not converged do
3: sample a batch of nodes from Vtr;

4: for each node 𝑣 in the batch do ⊲ construct forged tail nodes

5: if 𝑣 is a head node then
6: 𝑣′ ← LinkDropout(𝑣);

7: add 𝑣′ to the batch;

8: for each node 𝑣 in the batch do
9: for each layer 𝑙 ∈ {0, ..., ℓ − 1} do
10: r𝑙𝑣 = 𝜙 (h𝑙𝑣, h𝑙N𝑣 , r

𝑙
;𝜃𝑙

𝜙
) ; ⊲ localization, Eq. (9)

11: m𝑙
𝑣 ← h𝑙𝑣 + r𝑙𝑣 − h𝑙N𝑣 ; ⊲ missing information, Eq. (7)

12: if 𝑣 is a head node then ⊲ aggregation for head, Eq. (1)

13: h𝑙+1𝑣 ← M(h𝑙𝑣, {h𝑙𝑖 : 𝑖 ∈ N𝑣 };𝜃𝑙+1) ;
14: else ⊲ aggregation for tail, Eq. (12)

15: h𝑙+1𝑣 ← M(h𝑙𝑣, {m𝑙
𝑣 } ∪ {h𝑙𝑖 : 𝑖 ∈ N𝑣 };𝜃𝑙+1) ;

16: update Θ by minimizing Eq. (16) with 𝜃𝑑 fixed;

17: update 𝜃𝑑 by maximizing Eq. (16) with Θ fixed;

18: return Θ.

In line 1, we initialize all the parameters. In line 3, we sample a

batch of nodes from the training data. In lines 4–7, we construct

forged tail nodes from the head nodes by link dropout, for training

with our contrastive strategy. In lines 8–15, we perform neighbor-

hood aggregation for all the nodes. In particular, for each node, we

first personalize the neighborhood translation w.r.t. local context in

line 10; then missing information is calculated in line 11; afterwards,

neighborhood aggregation is conducted differently for head and

tail nodes in lines 12–15. In lines 16–17, we train the model with

the adversarial constraint, alternating between the generator and

the discriminator. Finally, we return the trained model Θ.
Based on the pseudocode, compared to GNNs, the overhead of

Tail-GNN includes link dropout on head nodes, the localization of

neighborhood translation, and the calculation and usage of missing

information. Taking GCN as an example base model. In GCN, the
neighborhood aggregation for one node in the 𝑙-th layer has com-

plexity 𝑂 (𝑑𝑙𝑑𝑙−1

¯𝑑), where 𝑑𝑙 is the dimension of the 𝑙-th layer and

¯𝑑 is the average node degree. In contrast, in Tail-GNN, for one node
in the 𝑙-th layer: (1) link dropout incurs 𝑂 (𝐾) time since we only

need to sample up to 𝐾 links on a head node to forge a tail node,

where 𝐾 is the degree threshold of the tail node; (2) localizing the

neighborhood translation requires traversing and mapping all the

neighbors, thus with complexity 𝑂 (𝑑𝑙−1

2 ¯𝑑) based on the calcula-

tion of h𝑙−1

N𝑣
, and Eqs. (9), (10) and (11); (3) the calculation of missing

information takes 𝑂 (𝑑𝑙−1
) time based on Eq. (7); (4) neighborhood

aggregation with missing information takes 𝑂 (𝑑𝑙𝑑𝑙−1
( ¯𝑑 + 1)) com-

plexity based on Eq. (12) where the missing information can be

regarded as an “extra” neighbor. Thus, the complexity of Tail-GNN
for one node in a single layer is𝑂

(
𝐾 +𝑑𝑙−1

2 ¯𝑑 +𝑑𝑙−1
+𝑑𝑙𝑑𝑙−1

( ¯𝑑 +1)
)
.

As 𝐾,𝑑𝑙 , 𝑑𝑙−1
are small constants, it belongs to the same complexity

class as GCN, both running in linear time in
¯𝑑 for one node in

a single layer. Overall, on graphs with the same average degree,

Tail-GNN incurs linear time w.r.t. the number of nodes.

B Details of Datasets
We give further details and describe any additional processing on

the five datasets to supplement Sect. 6.1.

(1) Email [37] is an e-mail network between members of an

European research institution, where each node is a member, and

the edges denote the e-mail communications between them. Each

member belongs to one of the 42 departments in the institution,

taken as the 42 node classes. Following previous work [17], we

employ the 128-dimensional vectors generated by DeepWalk to

serve as the node features.

(2) Squirrel [22] is a Wikipedia network on the topic of squirrel,

in which each node is a page, and the edges denote the citations

between pages. Node features correspond to informative nouns in

the articles. The articles are classified into five categories by the

number of average monthly traffic of viewership.

(3) Actor [22] is an actor co-occurrence network, in which each

node is an actor, and each edge links two actors co-occurring in the

same Wikipedia page. Node features are bag-of-word vectors, and

the actors are classified into five categories.

(4) CoauthorCS [25] is a co-authorship graph, in which each node
is an author, and each edge links two co-authors. Node features are

paper keywords from the author’s papers, and the class indicates

the most active field of each author out of 15 fields.

(5) Amazon [5] (originally called Amazon2M) is a co-purchasing

network, in which each node is an item, and each edge links two

items that have been purchased in the same transaction. Node

features are generated by extracting bag-of-word features from

the item descriptions followed by a Principal Component Analysis.

The top-level item categories are used as the class labels. In our

experiments, we use a connected subgraph with 937,349 nodes

sampled from the original graph, with a total of 44 classes.

C Details of Base GNN Models and Settings
We give additional details and model setup of the various base GNN

models used in our experiments.

Descriptions.We describe the three base GNN models below.

• GCN [12]:GCN is characterized by a graph convolution operator

to aggregate information from neighboring nodes recursively.

The convolution operator is roughly equivalent to amean pooling

over the neighbors for each node.

• GAT [31]: GAT assigns different weights to neighbors by a self-

attention mechanism during aggregation, thus accounting for

the importance of each neighbor.

• GraphSAGE [8]: GraphSAGE is similar to GCN, but places more

emphasis on the target node embedding during aggregation.

Model setup. Based on the recommendations from their original

papers, we further tune the parameters for each base GNNmodel to

attain optimal performance. In particular, for all base GNN models,

we adopt a two-layer architecture and utilize an Exponential Linear

Unit as the activation function for the hidden layer. In the output

layer, we set the dimension as the number of classes and employ a



softmax activation for node classification, and set the dimension as

16 for link prediction. Additionally, forGCN, we set the hidden layer
dimension as 32; for GAT, we set the hidden layer dimension as 8,

use 3 attention heads in each layer, and apply a dropout rate of 0.5;

for GraphSAGE, we adopt a mean-pooling over the neighbors and

concatenate the pooled embedding with the target node embedding

during aggregation, and set the hidden layer dimension as 16.

D Details of Baselines
In this section, we describe each baseline in more details.

(1) Conventional graph representation learning models.
• DeepWalk [24], which first samples a large number of paths

by random walk, then feeds them to a skip-gram model [19]

to capture node co-occurrences.

• GCN [12], the same as the base model in Supplement C.

(2) Tail node refinement models.
• Additive [13], which aggregates the embeddings of neigh-

boring nodes as the embedding of a tail node.

• a la carte [11], an extension of Additive, which further em-

ploys a transformation through an auxiliary regression task

after the aggregation.

• meta-tail2vec [17], which formulates the tail node embed-

ding problem as a few-shot regression task based on the

embeddings of 2-hop neigbhbors, under a meta-learning

paradigm [6].

(3) Robust graph representation learning models.
• SDNE [32]: a deep graph embedding model to capture both

the global and local structural information of the graph,

which is especially designed to improve the overall robust-

ness on sparse networks.

• ARGA [20]: an adversarially regularized graph autoencoder

to enhance the overall robustness of graph representation

learning.

• DDGCN [3]: a graph neural network which utilizes a dual

dropout strategy at node- and edge-levels to enhance the

overall robustness of GNNs on sparse networks. It is opti-

mized w.r.t. a self-supervised objective.

(4) Degree-aware models.
• role2vec [1]: a graph embedding approach based on attrib-

uted random walks, which utilizes features (e.g., motif and

degree) to distinguish the role of different nodes.

• DEMO-Net [34], which employs degree-specific transfor-

mations on nodes, so that nodes with different degrees are

treated differently.

These baselines, except GCN and DEMO-Net, are not trained
end-to-end with downstream tasks, for which we train a logistic

regression to perform node classification and an MLP to perform

link prediction.

E Hyperparameters Settings

Baselines. To achieve optimal performance, we tune the parame-

ters for each baseline based on their default settings in their papers.

For DeepWalk, we set the number of walks per node as 80 with

walk length 40, and set window size as 10. For Additive and a la

carte, we employ mean-pooling as the aggregation function, which

produces better performance thanmin- andmax- pooling. Formeta-
tail2vec, we set the learning rate of adaptation as 0.01, the number

of gradient updates as 5, the size of hidden layer in the regression

model as 1024, and the number of hops as 2. For both a la carte and
meta-tail2vec, we use the same regression model with Euclidean

norm. For SDNE, we set the weight of first-order proximity as 100,

and the weight of reconstruction as 10. For ARGA, we set the di-
mension of its hidden layer as 32. For DDGCN, we set the dropout
probability as 0.5, and set the dual-dropout coefficient as 1.0. For

role2vec, we utilize node degrees to distinguish roles, and set the

number of walks per node as 10 with walk length 80, and window

size as 5. For DEMO-Net, we set the hidden dimension of the first

layer as 32, and the hash dimension as 256. Its output layer follows

the same setting as the base GNN model.

Ourmethod. As we adapt Tail-GNN to different base GNNmodels

(i.e., GCN, GAT and GraphSAGE), we obtain three correspond-

ing models, namely, Tail-GCN, Tail-GAT, and Tail-GraphSAGE. In
particular, for each of them, we employ the same setup as their

corresponding base GNN model. Additionally, we set the other pa-

rameters of Tail-GNN. For node classification, we set the weights
of the auxiliary loss in Eq. (16) as 𝜇 = 0.001 and 𝜂 = 0.1; for link

prediction, we adopt 𝜇 = 0.001 and 𝜂 = 1.0, For both tasks, we set

the coefficient of regularizations including 𝜆𝑡 and 𝜆𝑑 as 0.0001.

F Formulation of Tail Link Prediction
We elaborate on the task of tail link prediction, as supplemental

information for the description in Sect. 6.3.

In general, we employ a “hide-and-rediscover” principle. Specifi-

cally, from the original graph, we randomly remove 5% links from

all links incident to nodes with degree between 2 and 10, so that the

removed links are more concentrated on the tail nodes. The new

graph will be used for learning node representations for all meth-

ods, while the removed links form our ground truth. In particular,

we employ the ground-truth links with two head nodes as training

instances, and those with two tail nodes as validation/test instances.

Moreover, we equally divide the ground-truth links with one head

node and one tail node into two subsets, one for training and the

one for validation/test. As such, all links in training contain at least

one head node, and all links in validation/test contain at least one

tail node. The links in validation/test is further split into validation

and test sets by a ratio of 1:2. Note that, there is no overlap between

ground-truth links in training, validation and test sets.

For training, given a ground-truth link (𝑣, 𝑎) with 𝑣 as a head
node, we form a triple (𝑣, 𝑎, 𝑏) in which 𝑏 is randomly sampled from

the graph and serves as a negative node. We adopt a ranking loss

in which we prefer the score between 𝑣 and 𝑎 to be higher than the

score between 𝑣 and 𝑏. To calculate the score between two nodes,

we adopt the dot product of their representation vectors. For testing,

given a ground-truth link (𝑣, 𝑎) such that 𝑣 is a tail node, we further

randomly sample another nine nodes as negative nodes, to form

a candidate list including 𝑎 and the nine negative nodes that are

randomly shuffled. For evaluation, we rank the ten nodes based on

their scores with node 𝑣 , and ideally 𝑎 should be ranked higher in

the list of ten. We employ the widely used ranking metrics NDCG

and MAP for evaluation.
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