Pre-training on Large-Scale Heterogeneous Graph

Xungiang Jiang?!, Tianrui Jial, Yuan Fang?,
Chuan Shit=*, Zhe Lin3, Hui Wang?
!Beijing University of Posts and Telecommunications

2Singapore Management University

3Peng Cheng Laboratory, Shenzhen, China

< SMU

SINGAPORE MANAGEMENT
UNIVERSITY




Introduction

PT-HGNN

()
O
2
—]
[ T]
Z
—]
N

Experiments

Conclusions




Introduction

PT-HGNN

()
O
2
—]
[ T]
Z
—]
N

Experiments

Conclusions




Introduction e ENEIIERNETI -

B Graph Neural Network (GNN)
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lligefelifeifelaR | abel Scarcity on Graph Data |

B GNNs need abundant task-specific labeled = Better results

» However, labeled data is usually expensive or infeasible to obtain

B Learning from Unlabeled Data = Pre-training

» Unlabeled data (i.e., the whole graph) is abundant
» Recent progresses of pre-training in CV and NLP relieve the
reliance on labeled data, and some recent works propose to

pre-train GNNSs In a self-supervised manner
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B Existing pre-training methods for GNNs

» They are mainly designed for homogeneous graphs

B Heterogeneous Graphs
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B Two fundamental problems

€ 1. How to effectively capture the semantic and structural properties on a

heterogeneous graph during pre-training

» Structural properties, rich semantics ...... - varying characteristics of different types

» Preserve the inherent semantic and structural properties - Node and Network Schema

& 2. How to efficiently pre-train GNNs on a large-scale heterogeneous graph

» Real-word heterogeneous graphs : billions of nodes and edges - Scalability
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PT-HGNN

Preserve heterogeneous semantic and structural properties as transferable

knowledge, and sparsify large-scale heterogeneous graph for efficient pre-training
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Figure 1: The overall framework of PT-HGNN.
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B Node-level pre-training task: Negative sample selection
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B Node-level pre-training task: Negative sample selection

2. Select negative samples dissimilar enough
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B Schema-level pre-training task

~ Y\ * Network schema captures both high-order
ﬁﬁfﬂ f(P1)
Smlm Contrasive sce semantics and structural properties
Semantic 1 058
Eetfcloder @ Mithor 1 organization  Author 2
k ) g ﬁ— 8 publish/published
author 1 Author 2 @w o -:3;‘ ‘ % ,..Wt @ contain/contained
8§ 58 e e
Model the relation Meta-path Motif schema

between center node [, meta-graph is limited to express high-order structure

with context nodes « motif is intractable to match when the graph is so large

» schema is the only defining structure that captures both

semantic and structural properties
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B Schema-level pre-training task

sampling according to schema
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MEICININE Schema-level pre-training task

B Schema-level pre-training task

« Sampling Negative samples from:
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B Edge Sparsification

Why edge Sparsification:
« Preserve more meaningful edges (lower noise in graphs)

* Improve the time efficiency on large graph

4

Method : Relation based Personalized PageRank

P2
Acceleration :
ol Random-Walk Formulation (Forward Search) + Top-K Entries




PT-HGNN

B Edge Sparsification

Edge Sparsification of Large-Scale Heteroge

The construction process of sparse heterogeneous graph
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Experiments Baselines & Datasets

B Baselines

¢ EdgePred
¢ DGI

B Datasets
€ GPT-GNN

¢ GraphCL
€ ContextPred ¢ No-Pretrain

B Statistics of Datasets

Open Academic Graph (OAG) unifies

two academic graphs:

Microsoft Academic Graph and Aminer

Dataset #nodes #edges #venues  #papers  #fields  #authors #institutes #P-V #P-P #P-F #P-A #A-1
CS 11,918,983 107,263,811 27,433 5,597,605 289,930 5,985,759 18,256 5,597,606 31,441,552 47,462,559 15,571,614 7,190,480
Mater 4,552,941 42,161,581 15,141 2,442,235 79,305 2,005,362 10,898 2,442,235 13,011,272 19,119,947 5,582,765 2,005,362
Engin 5,191,920 36,146,719 19,867 3,239,504 99,444 1,819,100 14,005 3,239,504 4,848,158 22,498,822 3,741,135 1,819,100
Chem 12,158,967 159,537,437 19,142 7,193,321 183,782 4,748,812 13,910 7,193,321 74,018,600 57,162,528 16,414,176 4,748,812
OAG 178,663,987 2,236,196,802 53,073 89,606,257 615,288 88,364,081 25,288 89,606,258 1,021,237,518 657,049,405 300,853,688 167,449,933

#nodes: 178 million; #edges: 2 billion



B Experiment results on Node classification and Link Prediction

Whole graph: OAG
Domain specific subgraphs: Computer science, material, chemistry, engineering

 ———N
Dataset | Downstream Task | No pre-train  EdgePred DGI ContextPred  GraphCL ~ GPT-GNN || PT-HGNN ﬂ Improv. |
l
paver_Fielq | NDCG || 27.42£0.42 31374032 328240.67 3315071 32.64%0.65 35.24%0.47 || 36.04x037 | 227% |
P MRR || 23.17+0.45 32.13+0.52 33.43+0.81 33.24+0.57 33.24+0.67 33.57+0.71 || 37.76+0.42 || 12.48% |
l
CS | paser_venue | NDCO || 27.76£056 3577059 34.23£0.71 3430+0.92 32.11x069 36.15£0.53 || 38.81x0.51 || 7.35% |
P MRR || 11.39+0.37 16.34+047 16.21+0.62 17.66+0.81  16.29+0.49 19.13+0.65 || 21.19+0.45 || 10.76% |
Author N | NDCG || 7627053 79.41:068 8138+0.93  79.22£0.72  79.95:0.89 80.20£0.51 || 82.190.60 || 2.48% b1
MRR || 54.82+0.49 59.06+0.74 58.98+0.79 60.23+0.83  60.55+0.74 60.94+0.52 || 63.38+0.38 || 4.00% ::‘s_l
——— l
0AG |5 NDCG || 42284050 43.25£0.61 44.23+0.53 43.07+£0.74 42.6620.66 44.05£0.75 || 47.1320%8 |ir €.56% |
APEITVENUE | MRR || 22.76+0.37  23.40+0.35 24.38+0.35 24.12+0.42  25.0320.48 25.19+0.45 || 26.75+0.57 ||| 6.19% |
Author ND | NDCG || 76:52£1.13  78.0120.86 77.98+0.93 77882072  78.1120.93 79.33+0.87 || 79.99:0.92 :{1.83%:
MRR || 5465+053 58.00+0.63 5830+048 57.49+0.60 58.22+0.53 59.08+0.52 || 61.32+0.55 ||| 3.79% ,

On average 4.98% improvement: our proposed pre-training strategy is capable of

exploiting transferable information and graph properties on heterogeneous graphs
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B Experiment results on Node classification and Link Prediction

D
N0

Evaluate the effect of node- and schema-level pre-training tasks on heterogeneous graphs

Downstream Task  No pre-train PT-HGNN,,,4. PT-HGNN ;. PT-HGNN

Paper—Field | PCC 27.42 35.80 35.16 36.04 * Node-level : PT-HGNN,,, 4,
P MRR 23.17 36.82 36.21 37.76
NDCG 27.76 36.23 35.24 38.81 . Schema-level - PT-HGNN
Paper-Venue | '\ b 11.39 20.42 18.92 21.19 sche
NDCG 76.27 80.41 81.25 82.19 o
AuthorND | /mp 54.82 60.57 62.02 63.38 * Combination : PT-HGNN

 In link prediction, PT-HGNN,,, 4. Mmodel the pairwise interaction, which performs better
* In node classification, PT-HGNN,_;,. obtain better performance by focusing on modeling the structure context

» The combination offers strong capability in both downstream tasks
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B Freezing vs. Full Fine-tuning

i N
{ 3
Downstream Task  No pre-train | PT-HGNN (FE) PT-HGNN 5 PT-HGNN(FE) achieves better performance than the
' |
) NDCG 27.42 I 32.81 . 36.04 _ . :
Paper-Field |\ oo 517 325 | 3776 no pre-train model, which are able to capture the
NDCG 2776 1 3593 | 3881 transferable knowledge
Paper-Venue | \pp 1139 | 1845 1 2119 J
I I ~ . .
Author ND | NPCG 627 814l 8219 > the performance of PT-HGNN in freezing mode
MRR 54.82 I 62.15 : 63.38 o .
\ h exhibits competitive performance to that of the full

- - - - -

fine-tuning mode in some cases



B Transfer Experiment

« Knowledge transferring from pre-training to fine-tuning

does not guarantee a gain in performance

» Positive correlation value between graphs results

In positive transferring and vice versa
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B Time Efficiency

Downstream Task NoPPR PPR Improv.

Do o Ficld NDCG 36.54 36.04 -1.38%
P MRR 38.12 3776  -0.95%
Do erVen NDCG 3782 3881 2.62%
per-venue MRR 2042 2119 3.77%
NDCG 8087 82.19 1.63%

Author ND MRR 60.09 63.38 5.48%
6d2  37.9  41.97%

P T o e e T e s
, Time Efficiency ~ Time Per Batch(s)

1

-

» With the edges sparsification based on personalized
PageRank, the training efficiency is increased
» Pre-training on the pre-processed heterogeneous

graph achieve the competitive performance
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Conclusion

» PT-HGNN, which is a pre-training framework, enables the GNN to
capture heterogeneous semantics and structural properties

» Edge sparsification strategy retains meaningful graph structures while
accelerating the pre-training procedure

» Extensive experiments on one of the largest heterogeneous graphs
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